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 Cognitive radio systems provide an intelligent solution to spectrum scarcity 

by dynamically accessing underutilized frequency bands licensed to primary 

users. Among various sensing techniques, energy detection (ED) is 

extensively adopted due to its inherent simplicity and minimal 

computational requirements, but suffers from poor performance at low 

signal-to-noise ratio (SNR) environments under channel impairments such as 

additive white gaussian noise (AWGN) and multipath fading. This paper 

proposes an enhanced spectrum sensing approach by integrating ED with 

entropy-based techniques, specifically Kapur and Renyi entropy measures. 

The proposed methods are evaluated under AWGN and various fading 

environments with binary phase shift keying (BPSK) and quadrature phase 

shift keying (QPSK) modulations. Simulation results demonstrate substantial 

improvements in detection performance. The results show that entropy-

based enhancements significantly improve the reliability of spectrum sensing 

in cognitive radio (CR) systems operating under challenging channel 

conditions. Among the fading models, the Nakagami channel causes the 

greatest degradation in detection probability, followed by the Rayleigh 

fading channel. ED with Renyi entropy improves Pd by 15-fold and 8-fold, 

compared to ED under Nakagami and Rayleigh channels respectively. 
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1. INTRODUCTION 

The unprecedented growth of wireless technologies has directed to an increased demand for radio 

spectrum, making spectrum scarcity a critical challenge for service providers in meeting the rising demands 

of modern communication services. According to the federal communications commission (FCC), even with 

optimal allocation, 80 to 90% of the licensed spectrum remains underutilized at any given time and location 

[1]. One creative way to make use of the unused spectrum is cognitive radio (CR) [2]. Wireless systems 

operate across both licensed and unlicensed frequency bands. For instance, CR utilizes the unlicensed 

industrial, scientific, and medical (ISM) bands, such as 902–928 MHz, 2.4–2.5 GHz, and 5.725–5.875 GHz, 

while licensed bands are used for applications such as AM radio (535 kHz–1.605 MHz), LTE (700 MHz– 

2.6 GHz), and marine/aerospace communication (300–535 kHz) [3]. Within the cognitive radio network 

(CRN), two categories of users are identified: primary users (PUs), who possess licensed access to exact 

spectrum bands, and secondary users (SUs), who opportunistically utilize vacant spectrum without causing 

interference to PUs [4], [5]. CRs address the issue of spectrum scarcity through dynamic and intelligent 

spectrum access, enabled by spectrum sensing (SS) techniques. SS detects spectrum holes (unoccupied 

frequency bands) that can be utilized by SUs [6]-[8]. Various techniques have been developed for SS, 

https://creativecommons.org/licenses/by-sa/4.0/
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including matched filter detection (MFD), cyclostationary feature detection and energy detection (ED). 

Among these methodologies, ED is the most widely used due to its simplicity, fast implementation and 

independence from prior knowledge of PU signals [9], [10]. 

ED functions by comparing the energy of the received signal to a predefined threshold to determine 

availability of spectrum. While ED performs well in noise-stable environments, its effectiveness deteriorates 

at low signal-to-noise ratios (SNRs) and under noise uncertainty [11], [12]. Several enhancements have been 

proposed to address these limitations. The entropy-based detection has gained attention as a promising SS 

technique. It offers low complexity and robustness to noise without requiring prior knowledge of the PU 

signal. Since entropy quantifies signal uncertainty and reaches its maximum for uniform distributions, it 

serves as a useful criterion to differentiate between signal and noise [13], [14]. Numerous entropy-augmented 

ED methodologies have been proposed in the literature. For example, kernel principal component analysis 

has been used to implement adaptive threshold for ED under noise uncertainty, particularly in low SNR 

conditions [15]. Other studies have modelled the impact of sample size on noise ambiguity [16], and 

examined how fading, shadowing, and the hidden terminal problem influence ED performance [17], [18]. 

Hybrid matched filter detection (HMFD) [19], which combines MFD and ED is though effective, but 

introduces higher computational complexity. However, entropy-based techniques remain attractive due to 

their noise resilience and lower computational demands [20]. The histogram-based entropy estimators [21] 

and multi-stage detectors [22] balance complexity and performance. Techniques like the K-slot ED algorithm 

[23] and sample entropy for multiband sensing [24] enhance performance, but at the cost of increased 

computational load. The machine learning (ML) [25] and deep learning (DL) [26] methods also have been 

applied for SS. The ML methods have been explored to enhance detection accuracy under complex 

conditions like fading, shadowing and low SNR [26]. However, these approaches are less practical for 

lightweight CR devices due to high training costs, data requirements and computational complexity [27]. 

Most prior work has used Shannon entropy [28] along with the various sensing techniques. The ED methods 

and its variants that are reported in the literature are compared in Table 1. 

 

 

Table 1. Comparison of the reported works in the literature 
Authors (year) Method Remarks 

Zhang et al. 

(2010) [12] 

Frequency domain entropy-based SS scheme is studied 

and compared with ED and cyclostationary detectors 

Studied for Shannon entropy only. Analyzed for 

additive white gaussian noise (AWGN) and 
Rayleigh channels. Used double sideband (DSB) 

and single sideband (SSB) modulation. Poor Pd at 

low SNR. 
Prieto et al. 

(2018) [13] 

Bartlett periodogram employed for entropy estimation Shannon entropy only used. Studied for AWGN 

channel. Inferior performance at low SNR. 

Prieto et al. 
(2019) [21] 

ED with Shannon entropy Shannon entropy used. No modulation. Poor 
performance at low SNR. AWGN channel only. 

Tenorio et al. 

(2022) [24] 

Sample entropy-based SS Evaluated only for AWGN, ignores Rayleigh, 

Rician, and Nakagami channels. 
Pandian et al. 

(2023) [26] 

Random forest, logistic regression, support vector 

machine (SVM), and k-nearest neighbor (KNN) 

Classical ML method used. No SNR effects and 

fading channel considered. 

Usman et al. 
(2022) [28] 

ED with Shannon entropy Shannon entropy employed. No modulation. 
AWGN channel only. 

 

 

Among the ED with different entropy methods, the ED with Shannon entropy shows better 

performance. Most of the studies have been carried out for AWGN channels only. Despite the progress in 

entropy-based detection and hybrid approaches, challenges remain in ensuring high detection accuracy at low 

SNR conditions, fading environments, and noise uncertainty while maintaining computational efficiency. The 

existing better performing ED method rely on Shannon entropy. This motivates the current study, which 

proposes a novel entropy augmented ED technique that incorporates Kapur and Renyi entropy methods. The 

proposed method aims to strike a balance between detection performance and computational complexity, 

offering robust sensing capabilities both under AWGN and various fading channels with different modulation 

methods.  

The paper is structured as follows: following this introduction, section 2 presents the proposed 

entropy-augmented EDE method and presents the detection probability (Pd) under various channel 

conditions. Section 3 discusses the simulation and performance evaluations, including a comparison of the 

proposed techniques with the existing methods such as conventional ED and involving Shannon entropy. 

Finally, section 4 provides the conclusions and outlines future research directions. 
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2. METHOD 

The proposed EDE method is shown in Figure 1. It has two distinct stages. The initial stage 

computes the energy of the received signal r(t) after band pass filtering through squaring and integration 

process. The second stage estimates the entropy. This entropy is then compared with the predefined threshold 

level to determine whether the spectrum is present or not. Both simulation and theoretical evaluation have 

been carried out and they are discussed. 

 

 

 
 

Figure 1. The proposed entropy-augmented ED method 

 

 

2.1.  Theoretical evaluation 

Pd of signal for the spectrum holes is theoretically computed based on the equations obtained for the 

different channel conditions and the different entropy methods. The equations are obtained as: 

− Representation of signals: the signal received by the SUs is described as a binary hypothesis (H0 & H1) 

testing to determine whether PU is in idle or busy state. H0 denotes the absence of PU and H1 denotes the 

existence of PU [29]. The signal received r(t) by SU is characterized by the subsequent two distinct 

hypotheses (1): 

 

𝑟(𝑡) = {
𝑒(𝑡); 𝐻0

𝑘 ∗ 𝑚(𝑡) + 𝑒(𝑡); 𝐻1
 (1) 

 

m(t) represents the signal transmitted by PU and e(t) represents the noise component. k stands for the 

channel’s amplitude gain and its value depends on the noisy environment. The value of k for AWGN channel 

is 1. 

− Filtering: it is assumed that both the signal m(t) and noise e(t) are independent and identically distributed, 

exhibiting a mean of zero and variance 𝜎𝑚
2  and 𝜎𝑒

2 respectively. Further, m(t) is statistically independent 

of e(t) [30]. The signal r(t) received by SU is subjected to a band-pass filter with bandwidth B, and its 

transfer function is given as (2): 

 

𝐻(𝑓) = {

2

√𝑁0
; |𝑓 − 𝑓𝑐| ≤ 𝐵

0; |𝑓 − 𝑓𝑐| > 𝐵
 (2) 

 

where 𝑁0 is power spectral density (PSD), 𝑓𝑐 is carrier frequency, and B is bandwidth. 

− Energy estimation: the filtered signal r(t) is subsequently squared and integrated over a time period T [31] 

to estimate its energy. The resultant energy (Z) is given as 
1

𝑁0
∫ 𝑟2(𝑡)𝑑𝑡

T

0
. The estimated energy is 

considered to have a chi-square distribution with 2BwT degrees of freedom when there is only noise (H0). 

If both signal and noise (H1) are present, it is considered having non-central chi-square distribution, which 

has the same degrees of freedom and a non-centrality parameter that is based on the signal strength. The 

decision statistic for evaluating the energy of a signal is expressed as (3): 

 

𝑍~ {
χ2𝑑

2  ; 𝐻0       

χ2𝑑
2 (2𝛾); 𝐻1

 (3) 
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The PDF corresponding to a chi-squared distribution in this case, labelled as Z, described by (4) [32]: 

 

𝑓𝑍(𝑧) = {

1

2𝑑 (d)
𝑦𝑑−1𝑒−

𝑦

2  ; 𝐻0                       

1

2
(

𝑦

2𝛾
)

𝑑−1

2 𝑒−
2𝛾+𝑦

2 𝐼𝑑−1(√2𝛾𝑦) ; 𝐻1

 (4) 

 

Here, Γ(.) stands for the gamma function and Iu(.) stands for the u-th order modified Bessel function of the 

first kind [33].  

− Entropy estimation: a measure of the average amount of information contained in each symbol is called 

entropy. For a continuous random variable, the entropy of PDF f(r) is as (5): 

 

𝐻(𝑟) = − ∫ 𝑓(𝑟)𝑙𝑜𝑔2𝑓(𝑟)𝑑𝑟
∞

−∞
 (5) 

 

The Shannon entropy associated with a random variable is given by (6): 

 

𝐸𝑠(𝑟) = − ∑ 𝑓(𝑟)𝑙𝑜𝑔2𝑓(𝑟)∞
𝑟=−∞  (6) 

 

Kapur’s entropy with entropy order α is represented by (7): 

 

𝐸𝑘(𝑟) =
1−(∑ 𝑓(𝑟)1 𝛼⁄ )∞

𝑟=−∞
𝛼

1−𝛼
 (7) 

 

Renyi entropy is represented by (8): 

 

𝐸𝑟1(𝑟) =
1

1−𝛼
log (∑ 𝑓(𝑟)𝛼)∞

𝑟=−∞  (8) 

 

− Decision: the ED relies on a predefined threshold, which is important for evaluating aspects that 

contribute to its performance: i) probability of false alarm (Pf) and ii) detection probability (Pd). For a 

particular threshold, Pd and Pf can be described as (9): 

 

𝑃𝑑 = 𝑃(𝐻 > 𝜆 𝐻0⁄ ) 𝑎𝑛𝑑 𝑃𝑓 = 𝑃(𝐻 > 𝜆 𝐻1)⁄  (9) 

 

Pd for different channel environments are evaluated as: 

− AWGN channel: the probability of failure Pf, is obtained for AWGN channel using the incomplete gamma 

function [33]. The Pd is obtained from the cumulative distribution function given in (4) involving the 

generalized Marcum Q-function, which depends on the SNR, Pd = 1 − FZ(z), where Fz(z) is (10): 

 

FZ(z) = 1 − Qd(√2γ, √z) (10) 

 

Then Pd for an AWGN channel can be expressed as (11): 

 

Pd = Qd(√2γ, √λ) (11) 

 

where Qd (.,.) signifies the generalized Marcum-Q function [34]. 

− Rayleigh fading channel: Pd under Rayleigh fading is determined by averaging in (10) over the SNR 

distribution using an integral involving the generalized Marcum Q-function. This occurs when the signal 

undergoes multipath scattering, causing its amplitude to follow a Rayleigh distribution, resulting in an 

exponential probability density function for the SNR γ. 

 

Pd Ray = ∫ Qd(r, √λ)
1

𝛾̅
𝑒

(−
𝑟2

2𝛾̅
)
𝑟𝑑𝑟

∞

0
 (12) 

 

substituting 𝑝2 =
1

𝛾̅
, m=d, a=1, and 𝑏 =  √𝜆 yields the Pd in Rayleigh channel given in (13): 
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∫ dx. x. exp (−
p2x2

2
) Qm(ax, b) =

1

p2 exp (−
b2

2
) {(

p2+a2

a2 )m−1 [exp (
b2

2
.

a2

p2+a2) −
∞

0

                                                                                  ∑
1

n!
(

b2

2
.

a2

p2+a2)nm−2
n=0 ] + ∑

1

n!
(

b2

2
)nm−2

n=0 } (13) 

 

Pd Ray = e−
λ

2 ∑
1

n!

d−2
n=0 (

λ

2
)

n

+ (
1+γ̅

γ̅
)

d−1

{e
−λ

2(1+γ̅) − e−
λ

2 ∑
1

n!
[

λγ̅

2(1+γ̅)
]

n
d−2
n=0 } (14) 

 

− Rician fading channel: the SNR has a PDF involving the modified Bessel function when the signal power 

follows a Rician distribution, which is defined by the Rician factor K. The average Pd under Rician 

fading, Pd Ric, is determined by averaging (10): 

 

Pd Ric = ∫ Qd(𝑟, √λ)(
𝐾+1

𝛾̅
)𝑒

(−𝐾−
(𝐾+1)𝑟2

2𝛾̅
)
𝐼0(2√

𝐾(𝐾+1)𝑟2

2𝛾̅
)𝑟𝑑𝑟

∞

0
 (15) 

 

For u=1, the corresponding solution may be solved using [35], which is provided in (16): 

 

∫ dx. x. exp (−
p2x2

2
) I0(cx)Q(ax, b) =

1

p2 exp (
c2

2p2)Q(
ac

p√p2+a2
,

bp

√p2+a2
)

∞

0
 (16) 

 

Pd Ric|u=1 = Q (√
2Kγ̅

K+1+γ̅
, √

λ(K+1)

K+1+γ̅
) (17) 

 

− Nakagami fading channel: when the signal follows a Nakagami distribution with fading parameter m [36], 

the average Pd under Nakagami fading is obtained by averaging (10) over this distribution using the 

change of variable 𝑟 = √2𝛾.  

 

Pd Nak = α ∫ Qd(𝑟, √λ)𝑟2𝑚−1𝑒
(−

𝑚𝑟2

2𝛾̅
)
𝑑𝑟

∞

0
 (18) 

 

Following the evaluation of the integral, Pd Nak can be expressed in a closed form as described in (19): 

 

𝐺𝑀 = ∫ 𝑑𝑥. 𝑥𝜌 exp (−
𝑝2𝑥2

2
)

∞

0
𝑄𝑚(𝑎𝑥, 𝑏) ; 𝜌 > −1 (19) 

 

𝑃𝑑 𝑁𝑎𝑘 = 𝛼 [𝐺1 + 𝛽 ∑
𝜆 2⁄

2𝑛!
𝐹1 (𝑚; 𝑛 + 1;

𝜆

2
∗

𝛾̅

𝑚+𝛾̅
)𝑑−1

𝑛=1 ] (20) 

 

The confluent hypergeometric function is denoted by F1(:, :,.) [33], and (21) and (22) provide the 

representations of β and the solution of G1 [34]. 
 

𝛽 = 𝛤(𝑚)(
2𝛾̅

𝑚+𝛾̅
)𝑚𝑒−𝜆

2⁄  (21) 

 

𝐺1 = ∫ 𝑥2𝑚−1 exp (−
𝑚𝑥2

2𝛾̅
)

∞

0
𝑄(𝑥, √𝜆)𝑑𝑥 (22) 

 

2.2.  Simulation 

The ED is evaluated through simulation considering various fading channels in MATLAB© 

platform. Primary user signals are randomly generated using rand function. Fading channel effects are 

obtained using Rayleigh Chan and Rician Chan for Rayleigh and Rician channels respectively. Nakagami-m 

fading is implemented with gamma distributed random variables. The hist function approximates the signals 

probability distribution for entropy calculation. A bandwidth of 12 kHz and a carrier frequency of 40 kHz are 

considered in our work based on existing literature [12]. These parameters are chosen to represent typical 

narrowband communication scenarios commonly used in CR applications with low SNR. A single user SS is 

considered to evaluate the fundamental performance of the EDE for improving PU detection, without 

involving multiple users [13], [18], [28]. Pd is evaluated for both binary phase shift keying (BPSK) and 

quadrature phase shift keying (QPSK) modulated signals with varying SNR levels. Monte Carlo simulations 

with 10,000 runs are done to get statistically robust results. The parameters and the assumptions made for the 

simulation is listed in Table 2.  



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 361-372 

366 

Table 2. Simulation parameters 
Simulation parameters Type and value 

Cognitive user One user 
Primary signal type Random 

Sensing method ED with Shannon, Kapur, and Renyi entropy 

Pf 0.1 to 1 
Modulation type BPSK and QPSK 

Channel AWGN, Rayleigh, Rician, and Nakagami 

Number of samples and number of Monte Carlo simulations 1,000 and 10,000 
Bandwidth 12 kHz 

Carrier frequency 40 kHz 

SNR in dB -25 dB to 5 dB 
Fading coefficient for Nakagami, m 3  

Entropy order (Kapur, Renyi), 𝛼 2 

 

 

The receiver operating characteristics (ROC) for both theoretical and simulation results are 

compared and found to be close. As an example, ROC curve for the Rician fading channel is shown in  

Figure 2. The simulated results are closely matches with the results obtained through theoretical evaluations 

with the deviation ranging 0 to 1.1%.  
 

 

 
 

Figure 2. Simulated and theoretical Pd comparison for Rician channel at SNR=-25 dB 
 

 

The computational complexity analysis for the Shannon, Renyi, and Kapur methods are shown in 

Figure 3. Shannon and Renyi entropies have linear computational complexity O(k) and takes a single pass-

through k bin, executing one logarithm and a few multiplications offers efficient and robust performance for 

SS. While Kapur entropy involves higher complexity O(k2) with fixed threshold for SS [37].  
 

 

 
 

Figure 3. Computational complexity of entropy methods 
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3. RESULTS AND DISCUSSION 

The performance of the method proposed in terms of Pd and SNR is analyzed, with results presented 

in Figures 4(a) to (d) for various channel fading environments using BPSK modulation. The detection 

capabilities of SU are evaluated by limiting the Pf to the lowest level, i.e., 0.1, in line with the IEEE 802.22 

standard [13], [14], [21], [28]. The results indicate that Pd increases with rising SNR values across all 

scenarios. Among the channels, the Nakagami channel yields the lowest Pd, followed by the Rayleigh 

channel, while the AWGN and Rician channels shows better detection performance as 0.9149 and 0.9085 

respectively for ED with Renyi entropy.  

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 4. SNR vs Pd at Pf=0.1; (a) ED, (b) ED+Shannon, (c) ED+Kapur, and (d) ED+Renyi 

 

 

The Pd values at a selected low SNR of –25 dB are summarized in Table 3. It is observed that ED 

with Renyi entropy consistently achieves the highest Pd across all SNR levels and channel conditions, 

followed by Kapur entropy, Shannon entropy, and ED. Renyi entropy performs better than Kapur entropy 

due to its tunable parameter alpha, which enhances adaptability to diverse statistical distributions and 

improves noise robustness. It also benefits from faster computation, as it has only power-law and logarithmic 

operations. The Nakagami channel causes the greatest degradation because it models severe multipath fading 

with higher fading depth than Rayleigh or Rician channels, leading to greater signal fluctuations and reduced 

detection performance in all the entropy methods. 

 

 

Table 3. Performance of Pd for various ED+entropy method 

Channel 
Probability of detection (Pd) at Pf=0.1, SNR=-25dB 

AWGN Rayleigh Rician Nakagami 

ED 0.6118 0.0336 0.6177 0.0178 

ED+Shannon entropy 0.7493 0.1035 0.7569 0.0309 

ED+Kapur entropy 0.8121 0.1508 0.8028 0.0943 
ED+Renyi entropy 0.9149 0.2957 0.9085 0.2592 
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The performance of the EDE method considering both BPSK and QPSK modulation is analyzed in 

terms of Pf vs Pd at the fixed lower SNR of -25 dB in this section and shown in Figures 5(a) to (d) and 

Figures 6(a) to (d) respectively. The results indicate that a correlation exists among Pd and Pf. The probability 

of signal detection rises in proportion to Pf. The Pd is higher when the Pf increases. However, the spectrum 

quality gets worse when there is a high rate of false alarms affecting the system’s overall performance.  

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 5. Performance of the detection methods under fading channels; (SNR=-25 dB, BPSK modulation); 

(a) AWGN channel, (b) Rayleigh channel, (c) Rician channel, and (d) Nakagami channel 

 

 

3.1.  Binary phase shift keying modulation 

Figures 5(a) to (d) depicts the performance of the ED under various channel environments at a lower 

SNR of -25 dB considering BPSK modulated signals. The results obtained for the fixed Pf=0.1 are tabulated 

in Table 4. The results show that the proposed ED with Kapur and ED with Renyi techniques perform better 

than the conventional ED and the existing ED with Shannon method. The greatest improvement is observed 

in ED with Renyi method with gains of approximately 15-fold and 8-fold, compared to conventional ED 

under severely faded Nakagami and Rayleigh channels respectively. The BPSK modulation scheme, due to 

simpler constellation, is more robust to noise and fading compared and obviously provides higher Pd 

compared to QPSK. 

 

3.2.  Quadrature phase shift keying modulation 

Figures 6(a) to (d) depicts the performance of the EDE under various channel environments at a 

lower SNR of -25 dB considering QPSK modulated signals. The results obtained for the fixed Pf=0.1 are 

tabulated in Table 5. As expected, Pd is lower than with BPSK, due to the denser constellation in QPSK 

which is more sensitive to noise and fading. However, QPSK provides better bandwidth efficiency. In all 

fading environments, Renyi entropy consistently outperforms Kapur and Shannon entropies because its 

greater sensitivity to the behavior of the probability distribution helps it better distinguish signals from noise, 

even under severe fading, resulting in significantly higher Pd. 
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(a) (b) 

  

  
(c) (d) 

 

Figure 6. Performance of the detection methods under fading channels; (SNR=-25 dB, QPSK modulation); 

(a) AWGN channel, (b) Rayleigh channel, (c) Rician channel, and (d) Nakagami channel 

 

 

Table 4. Pd Performance of the proposed EDE method (SNR=-25 dB, BPSK) 

Channel 
Probability of detection (Pd) at Pf=0.1 

ED ED+Shannon entropy ED+Kapur entropy ED+renyi entropy 

AWGN 0.6284 0.7576 0.8136 0.9197 
Rayleigh 0.0376 0.1024 0.1529 0.2994 

Rician 0.6299 0.7610 0.8089 0.9120 

Nakagami 0.0186 0.0316 0.0958 0.2604 

 

 

Table 5. Pd Performance of the proposed EDE method (SNR=-25 dB, QPSK) 

Channel 
Probability of detection (Pd) at Pf=0.1 

ED ED+Shannon entropy ED+Kapur entropy ED+Renyi entropy 

AWGN 0.5234 0.7021 0.7563 0.8000 
Rayleigh 0.0275 0.0952 0.1321 0.2534 

Rician 0.5521 0.6521 0.7065 0.8021 

Nakagami 0.0165 0.0295 0.0934 0.2314 

 

 

It is obvious that the ED method with QPSK modulation results in lower Pd compared to the BPSK 

modulation as the noise and fading level affects the signal constellation. However, it provides the benefit of 

higher bandwidth efficiency compared to the BPSK. 

 

 

4. CONCLUSION 

In this work, ED methods incorporating various entropy-based SS techniques are proposed to 

improve Pd of PUs. The effectiveness of the proposed approaches is evaluated across diverse channel 

environments. At an SNR of −25 dB, ED integrated with Kapur and Renyi entropy shows the Pd as 0.8089 
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and 0.9120, respectively, for BPSK modulation, 0.7065 and 0.8021 respectively, for QPSK modulation, 

under Rician fading channel. These results indicate that both Kapur and Renyi entropy-based ED methods 

significantly outperform the conventional ED and the Shannon entropy-based ED in terms of Pd. Among the 

two, ED with Renyi entropy exhibits superior performance. Furthermore, Pd is strongly influenced by the 

channel environment. The Nakagami channel exhibits the most significant degradation in Pd, followed by the 

Rayleigh channel. The effects of AWGN and Rician channels are comparatively less. The analysis of the 

present work is limited to single user environment. 

The EDE approach can be further investigated by incorporating dynamically adaptive thresholds to 

enhance robustness in fluctuating signal conditions. Integration of ML and DL techniques presents a 

promising direction for future exploration. The practical deployment of the proposed methods can be 

evaluated using software-defined radios (SDRs). The current framework aligns with IEEE 802.22 standard 

requirements (Pf=0.1), ensuring reliable SS under low SNR conditions. Future work will focus on robustness 

analysis under noise uncertainty, hardware prototyping, and experimental validation to enhance real-world 

applicability. 
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