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 This paper presents a hardware–software hybrid implementation of the Saber 

key encapsulation mechanism (KEM) on a Terasic DE10-Nano board, which 

combines an ARM Cortex-A9 processor and an Intel Cyclone V field 

programmable gate array (FPGA). By offloading computationally intensive 

polynomial multiplication to a dedicated FPGA module, the hybrid design 

significantly reduces execution time. Experimental results show that 

compared to a software-only approach, the hybrid design decreases 

execution time by 40% for key generation, 35% for encapsulation, and 50% 

for decapsulation. The consistent performance gains were confirmed across 

the LightSaber, Saber, and FireSaber parameter sets, demonstrating that 

CPU-FPGA co-design offers significant efficiency improvements for post-

quantum cryptography (PQC), especially on platforms with limited 

resources. 
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1. INTRODUCTION 

Large-scale quantum computers would break widely deployed public-key cryptosystems (e.g., 

RSA/ECC), motivating the transition to post-quantum cryptography (PQC). NIST has begun publishing PQC 

Federal Information Processing Standards, including FIPS 203 for a module-lattice-key encapsulation 

mechanism (ML-KEM), signalling that lattice-based key establishment is moving from candidates to 

standardization [1]-[5]. In parallel, Saber remains a widely studied lattice-based KEM whose security relies 

on the module learning with rounding (Mod-LWR) problem and whose power-of-two modulus yields 

implementation advantages [6]-[10] (e.g., shift/mask arithmetic and no NTT requirement). A central practical 

barrier to PQC adoption is implementation cost on embedded and edge platforms: KEM operations are 

dominated by polynomial arithmetic and cryptographic hashing/extendable-output functions, which can 

strain latency and energy budgets. Field programmable gate array (FPGA) acceleration has therefore become 

a major research direction, with recent work reporting fast Saber/Kyber hardware architectures and cross-

scheme benchmarking [11]-[15]. However, much of the literature targets higher-end FPGAs or focuses on 

https://ftf.enu.kz/subpage/kosmicheskaya-tehnika-i-tehnologii
https://creativecommons.org/licenses/by-sa/4.0/
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kernel throughput without fully characterizing system-level overheads that matter on low-cost heterogeneous 

systems (CPU–FPGA coordination, data movement, and batching effects). 

Security concerns further complicate deployment. Side-channel leakage has been shown to 

concentrate in polynomial multiplication for lattice-based PQC, motivating constant-time designs and (when 

required) masking-based countermeasures [16]-[20]. For embedded SoC-FPGA implementations, the  

CPU–FPGA interface itself (bus activity and timing) becomes part of the attack surface, so it is not sufficient 

to accelerate computation alone; one must also ensure predictable control flow and communication 

behaviour. This paper addresses these deployment realities by presenting a hybrid CPU–FPGA 

implementation of the Saber KEM family (LightSaber/Saber/FireSaber) on a low-cost Intel Cyclone V SoC 

platform (Terasic DE10-Nano), combining a dual-core ARM Cortex-A9 host with FPGA board [21]-[25]. 

We offload Saber’s dominant kernels—polynomial multiplication and SHA-3 hashing—to FPGA using a 

pipelined schoolbook multiplier and configurable parallelism, while the CPU orchestrates protocol control 

and remaining steps. The design uses fixed-size messages and a fixed-latency communication schedule to 

reduce overheads and mitigate timing/bus-pattern side-channels, and it supports batching to improve 

throughput. We report end-to-end KeyGen/Encap/Decap performance in cycles and normalized time at  

250 MHz, analyse compute vs. communication costs, and provide system-level modelling (e.g., 

Amdahl/roofline style) alongside an empirical security characterization including constant-time behaviour 

and leakage/traffic measurements. Table 1 summarizes representative FPGA and hybrid CPU–FPGA 

implementations of the Saber KEM reported in recent literature, illustrating the range of platforms, design 

objectives, and performance trade-offs that motivate our focus on a resource-constrained hybrid architecture 

for a low-cost Cyclone V SoC. In contrast to these predominantly high-end or platform-specific designs, our 

work targets a modest, low-cost Cyclone V SoC and demonstrates that a carefully engineered hybrid  

CPU–FPGA architecture can still deliver competitive Saber performance under tight resource constraints. 

 

 

Table 1. Comparison of FPGA implementations of the saber cryptographic algorithm 
Authors (year) FPGA platform Design focus Performance highlights 

Roy and Basso 

(2020) [13] 

Xilinx Zynq 

UltraScale+ 

High throughput co-processor 

(fully parallel multiplication) 

256-cycle poly multiply; ~23.6k LUTs @ 250 MHz; 

Complete Saber KEM in tens of µs (est.) 

Mera et al. 
(2020) [2] 

Xilinx Zynq-

7000 (SoC) 

Low-area HW/SW co-design 

(poly mul accelerator) 

~6× faster than software; ~2927 LUTs total; 38 DSPs; 

minimal footprint for ~6× speedup 

Dang et al. 

(2019) [3] 

Xilinx Zynq-

7000 (SoC) 

Hybrid CPU-FPGA 

implementation 
(benchmarking) 

Offloaded heavy ops to FPGA, yielding 20–28× 

speedups vs ARM software; demonstrated early PQC 
SoC integration 

Zhu et al. 

(2021) [4] 

(FPGA proto and 

28 nm ASIC) 

Configurable crypto processor 

(multi-level Saber) 

Energy-efficient design; 3.6 mm² ASIC @ 500 MHz; 

support for LightSaber/Saber/FireSaber on one core 
(FPGA results comparable) 

Abdulgadir et 

al. (2021) [16] 

Xilinx Artix-7 

FPGA 

First-order masked 

implementation (SCA-resistant) 

Masked Saber decapsulator; +2.9× LUT overhead, 

+1.4× latency overhead vs unmasked; still faster than 
any masked SW solution 

Aikata et al. 

(2023) [14] 

Xilinx Kintex-7 

FPGA 

Unified Saber+Dilithium 

coprocessor (multi-scheme) 

Shared NTT multiplier and hash units for both schemes; 

Moderate throughput, high flexibility (performance/area 
comparable to single-scheme cores) 

Dang et al. 
(2023) [7] 

Xilinx Artix-7 
FPGA 

High-speed architecture and 
benchmarking 

(Kyber/NTRU/Saber) 

Fastest (2023) Saber on Artix: ~48.4 µs per KEM; ~23k 
LUTs (est.), 250 MHz; comprehensive cross-scheme 

FPGA benchmarks 

Li et al. (2024) 
[8] 

Xilinx 
UltraScale+ 

FPGA 

Triple-variant design –
lightweight, high-thruput, and 

balanced 

Fastest (2024) Saber: 23.3 µs @ 416 MHz (10.9 Mbps 
throughput); also minimal-area variant (~5k LUT) and 

pipelined-NTT variant at 357 MHz 

 

 

2. PROPOSED SABER POST-QUANTUM CRYPTOGRAPHY SCHEME 

Saber is a lattice-based KEM designed for post-quantum security. It is based on the Mod-LWR 

problem and performs its core computations over vectors of polynomials with arithmetic modulo a power-of-

two integer. This design choice is practically important: power-of-two modular reduction and 

rounding/compression can be implemented efficiently using shifts and masks, and it naturally supports 

constant-time implementations because control flow need not depend on secret data. Figure 1 summarizes 

Saber’s end-to-end workflow, which consists of KeyGen, Encap, and Decap. In KeyGen, the algorithm 

deterministically expands a public polynomial matrix from a compact seed using an extendable-output hash 

function (XOF). It then samples small secret and error polynomials from centered distributions and computes 

a noisy linear transformation (conceptually of the form 𝑏 = 𝐴 ⋅ 𝑠 + 𝑒). The resulting public component is 

compressed/rounded to a smaller modulus and output together with the public seed as the public key; the 

secret key stores the secret (and any auxiliary values required by the CCA transform). 
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Figure 1. High-level workflow of the Saber KEM showing KeyGen, Encap, and Decap, including the 

constant-time decapsulation verification step and where polynomial arithmetic and hash/XOF are used 
 
 

In Encap, the sender uses the recipient public key to produce a ciphertext and a shared secret. It 

samples an ephemeral secret and fresh noise, reconstructs the public matrix from the seed, and computes two 

ciphertext components: one derived from a noisy product with the public matrix (e.g., 𝑢 ≈ 𝐴𝑇 ⋅ 𝑠′ + 𝑒′), and 

one derived from multiplying the recipient’s public component by the ephemeral secret and adding noise plus 

an encoded message [26]-[30]. Both ciphertext components are then rounded/compressed. The encapsulated 

shared secret is derived by hashing the message together with the ciphertext, binding the session key to the 

transmitted data. 

In Decap, the receiver uses the secret key to recover a candidate message by reversing the linear 

relation (conceptually 𝑣 − 𝑢 ⋅ 𝑠) and decoding after rounding. To achieve chosen-ciphertext security without 

leaking validity information through timing, Decap deterministically re-encrypts the recovered message to 

recompute a reference ciphertext and performs a constant-time comparison with the received ciphertext. The 

final shared secret is derived from the ciphertext and either the recovered message (if valid) or a fallback 

secret (if invalid), ensuring indistinguishable control flow. Saber defines three parameter sets—LightSaber, 

Saber, and FireSaber—with the same algorithmic structure but different dimensions and noise parameters. 

Across all variants, the dominant computational costs arise from polynomial multiplications and hash/XOF 

evaluations, motivating hardware acceleration of these kernels in later sections. 
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3. METHOD 

This section describes the experimental platform, the HW/SW partitioning of Saber, the  

CPU–FPGA communication protocol, and the measurement methodology used to quantify end-to-end 

performance and batching behaviour. All experiments were conducted on a Terasic DE10-Nano SoC 

platform integrating an ARM Cortex-A9 host (HPS) and Cyclone-V FPGA fabric. The Saber KEM software 

stack (KeyGen/Encap/Decap) was implemented on the ARM side using a constant-time coding style and 

fixed-size buffers. For fair comparison, we evaluated three execution modes: 

a. Software-only: the full Saber stack runs on the ARM host (no FPGA acceleration). 

b. Microprocessor-only (simulated embedded): a resource-constrained baseline used to approximate an 

embedded microprocessor profile under the same algorithmic flow. 

c. Hybrid (ARM+FPGA): the host orchestrates the protocol, while dominant kernels are offloaded to FPGA. 

Figure 2 reports the measured end-to-end execution-time breakdown (ms) for KeyGen/Encap/Decap 

under these three modes, with mean values and variability across repeated runs. The DE10-Nano platform 

configuration, clock frequencies, and the key implementation parameters used throughout the experiments 

are summarized in Table 2. 

 

 

 
 

Figure 2. Measured execution-time breakdown (ms) of Saber KeyGen, Encap, and Decap on the DE10-Nano 

comparing software-only, microprocessor-only, and ARM–FPGA hybrid execution (mean of 10,000 runs; 

error bars ±1σ) 

 

 

Table 2. Performance characteristics of the Saber algorithm implementations on the Terasic DE10-Nano 

board based on Intel® SoC FPGA 

Implementation type 
Key generation (cycles/µs @ 

250 MHz) 

Key encapsulation (cycles/µs 

@ 250 MHz) 

Key decapsulation (cycles/µs @ 

250 MHz) 

Software implementation 101840/407 135122/540 168670/675 
Microprocessor 151376/606 201170/805 251230/1005 

Hybrid hardware 61104/244 87830/351 84335/337 

Note: the second value in each pair is time in microseconds normalized to 250 MHz (µs @ 250 MHz): tμs=cycles/250. FPGA 
kernels and time normalization use 250 MHz; ARM software ran at its nominal SoC frequency; only FPGA-normalized times are 

printed in the second field. 

 

 

The hybrid architecture is built around the observation that Saber’s runtime is dominated by;  

i) polynomial multiplication/matrix–vector products and ii) hashing/XOF used for seed expansion and key 

derivation. Accordingly, the FPGA fabric implements two accelerators: 

− Polynomial multiplier accelerator: a pipelined schoolbook-style polynomial multiplication engine, 

parameterized to exploit configurable parallelism via multiple lanes (denoted by 𝑢). 

− SHA-3 accelerator: a hardware block supporting the SHA-3/SHAKE operations used in Saber’s flow. 
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All other steps—packing/unpacking, rounding/compression control logic, and CCA verification 

orchestration—remain on the CPU to preserve flexibility and reduce hardware complexity. 

To reduce integration overhead and to avoid data-dependent behavior at the interface, we use a 

fixed-size message protocol between CPU and FPGA. Each offload request is encoded into a constant-length 

command message, and the FPGA returns a constant-length response message. The fixed-size 

command/response formats, field definitions, and transfer sizes used for CPU–FPGA interaction is given in 

Table 3. 

 

 

Table 3. Time characteristics of polynomial multiplication 
Algorithm Time (cycles) Comments 

Simple multiplier 256 Efficient for basic operations 

Parallel multiplier 128 Uses parallelism for speed 

FPGA multiplier 64 Specially designed for Saber 

 

 

The host issues requests in a fixed order with a fixed-latency scheduling policy (i.e., the same 

sequence of transfers and waits is performed regardless of secret values). This design goal is twofold: i) keep 

host–accelerator overhead predictable for performance modelling and batching and ii) reduce exposure to 

timing/bus-activity side channels that can arise from variable request patterns. To amortize fixed CPU–FPGA 

overheads (command setup, transfers, pipeline fill/drain), the hybrid system supports batch execution, where 

𝐵 independent Saber operations are queued and processed with the same control protocol. Two 

measurements are performed: 

− Batching throughput and timing stability: Figure 3 reports average throughput (ops/s) and timing 

variability (µs) vs. batch size. Throughput is computed as 𝐵/𝑇𝐵, where 𝑇𝐵  is the total completion time for 

a batch. Timing variability is summarized as the standard deviation of 𝑇𝐵  across repeated trials. The key 

methodological point is that batching should increase throughput until fixed costs are amortized, while a 

disciplined interface should keep timing variability approximately stable across 𝐵. 

 

 

 
 

Figure 3. Measured batching behavior on the DE10-Nano hybrid Saber implementation: throughput increases 

with batch size while the completion-time variability remains approximately constant (error bars denote 

variability over repeated runs; specify N and whether ±1σ or 95% CI) 
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− Speedup vs. batch size with an analytical overhead model: Figure 4 reports the speedup factor relative to 

the single-operation baseline (𝐵 = 1) and overlays an analytical fixed-overhead model to interpret the 

observed knee and saturation. Concretely, we model batch time as (𝐵) = 𝑇fix + 𝐵 𝑇op, where 

𝑇fix aggregates per-batch fixed costs (setup/transfer/pipeline overhead) and 𝑇op is the amortized per-

operation compute cost. The implied speedup is (𝐵) =
𝐵 𝑇(1)

𝑇(𝐵)
. The model is not used to “prove” 

performance, but to separate compute scaling from system overhead. 

 

 

 
 

Figure 4. Measured batching scalability of the hybrid Saber implementation: speedup vs. batch size (mean 

with ±1σ variability), with a fixed-overhead analytical model overlaid showing a knee near B  ≈   16 and 

saturation near the model asymptote due to amortized host–accelerator costs 

 

 

Parallelism 𝑢is swept in the FPGA kernel to quantify the trade-off between resource usage and 

latency reduction, and to support LightSaber/Saber/FireSaber parameter sets under a consistent host interface. 

The batch sizes 𝐵, parallelism settings 𝑢, parameter sets, and repetition counts used in the sweeps are 

summarized in Table 4. 

 

 

Table 4. Comparison of Saber, LightSaber, and FireSaber algorithms 

Algorithm 
Key generation 

(cycles/µs @ 250 MHz) 

Key encapsulation 

(cycles/µs @ 250 MHz) 

Key decapsulation 

(cycles/µs @ 250 MHz) 

LightSaber 101840/407 135122/540 168670/675 
Saber 151376/606 201170/805 251230/1005 

FireSaber 200912/804 267218/1067 333790/1335 

Note: times are microseconds normalized to a 250 MHz reference: tμs=cycles/250 

 

 

End-to-end performance is reported in both cycles and time normalized to a 250 MHz reference, 

using 𝑡𝜇𝑠 = cycles/250, so that CPU–FPGA results can be compared under a common reference even when 

CPU and FPGA clocks differ. For the breakdown plot in Figure 2, measurements are averaged over 10,000 

runs and error bars denote ±1σ variability. For batching experiments (Figures 3 and 4), each batch-size 

configuration is repeated multiple times and reported with variability (±1σ). Across all experiments, the 

primary reported metrics are: i) KeyGen/Encap/Decap latency, ii) throughput under batching, and iii) timing 

variability as a proxy for execution stability under the fixed-schedule protocol. The resulting end-to-end 

KeyGen/Encap/Decap measurements across LightSaber/Saber/FireSaber and FPGA parallelism settings are 

reported in Table 5. 
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Table 5. Baseline vs hybrid timing for Saber 

Algorithm 
Cycles/time (µs @ 250 MHz) 

Key generation Key encapsulation Key decapsulation 

Software baseline (no FPGA) 

LightSaber 101840/407 135122/540 168670/675 

Saber 151376/606 201170/805 251230/1005 
FireSaber 200912/804 267218/1067 333790/1335 

u=4 (parallel lanes) 

LightSaber 27632/111 36370/145 45374/181 
Saber 40064/160 53042/212 66286/265 

FireSaber 52496/210 69714/279 87198/345 

u=8 (parallel lanes) 
LightSaber 9072/36 11538/46 14270/57 

Saber 12224/49 15794/63 19630/79 

FireSaber 15376/62 20050/80 24990/100 

l=2 (LightSaber), l=3 (Saber), and l=4 (FireSaber) 

 

 

4. RESULTS 

This section reports end-to-end performance of the proposed hybrid CPU–FPGA Saber 

implementation on the DE10-Nano platform and situates the design against representative published Saber 

accelerators using a normalized area–latency comparison. We focus on measured KeyGen/Encap/Decap 

timing across the three Saber-family parameter sets (LightSaber/Saber/FireSaber) and on how performance 

scales with FPGA parallelism. Table 5 summarizes the primary outcome: end-to-end KeyGen, Encap, and 

Decap latency for the software-only baseline and for the hybrid design at two FPGA parallelism settings,  

𝑢 = 4 and 𝑢 = 8. The baseline (no FPGA) provides a reference that includes all algorithmic steps executed 

on the ARM host. The hybrid results include the full protocol execution, i.e., CPU orchestration plus  

CPU–FPGA transfers plus FPGA compute. 

Two consistent trends emerge. First, hybrid acceleration reduces latency substantially for all three 

operations and across all parameters sets. For the Saber (Level-3) parameter set, the software-only baseline is 

606 µs/805 µs/1005 µs for KeyGen/Encap/Decap, respectively, whereas the hybrid design reduces these to 

160 µs/212 µs/265 µs at 𝑢 = 4 and further to 49 µs/63 µs/79 µs at 𝑢 = 8. The corresponding speedups are 

approximately 3.8× at 𝑢 = 4 and 12.4–12.8× at 𝑢 = 8, depending on the operation. Similar speedups appear 

for LightSaber and FireSaber, indicating that the dominant kernels being offloaded remain dominant across 

parameter sets [31]-[35]. Second, the acceleration benefit scales smoothly with security level  

(LightSaber → Saber → FireSaber) without changing qualitative behaviour. In the software baseline, latency 

increases with the parameter-set dimension (as expected), reaching 804 µs/1067 µs/1335 µs for FireSaber 

KeyGen/Encap/Decap. Under hybrid acceleration at 𝑢 = 8, the same operations become 62 µs/80 µs/100 µs, 

preserving the expected ordering while compressing the absolute time scale by roughly an order of 

magnitude. This is an important “engineering realism” point: the hybrid gains are not limited to a single 

tuned configuration; they persist under parameter changes that increase workload. Here, the key empirical 

fact is that the offloaded portion (polynomial arithmetic and hashing) dominates the compute cost at baseline, 

and the fixed-size interface avoids pathological control-flow overheads. The outcome is that larger 

parallelism 𝑢primarily reduces the kernel compute component while the fixed costs (command setup, 

transfers, pipeline fill/drain) remain relatively stable—hence the diminishing returns observed when 

increasing 𝑢 beyond moderate values (the general mechanism explored in the batching/modeling results in 

the method section). 

Table 5 shows that increasing FPGA parallelism from 𝑢 = 4 to 𝑢 = 8 yields a consistent additional 

~3.2× improvement for each operation across all parameters sets. This near-uniform factor is informative: it 

suggests the hybrid runtime in these configurations remains dominated by kernels that benefit from parallel 

datapaths (as opposed to being bottlenecked by CPU control or bus transfers). If transfers were dominating, 

doubling parallelism would not produce a coherent factor-of-3 improvement. At the same time, the results 

also imply the standard HW/SW co-design trade-off: higher 𝑢 consumes more FPGA resources and may 

increase routing pressure or frequency constraints on low-end fabric. Because the Cyclone-V class device 

imposes tight LUT/DSP/BRAM budgets, reporting both performance and resource is essential for credibility. 

Table 6 provides the summarized FPGA footprint for the hybrid design and for other representative 

implementations, which we use for cross-design comparison below. 

A subtle but important methodological point for the results section is how to interpret the 

“normalized to 250 MHz” reporting. The µs values in Table 5 are computed from cycle counts using a fixed 

reference conversion, enabling consistent comparisons across configurations. These are still measured cycle 

counts from the platform execution; the normalization is a reporting convenience, not a simulation. Raw 
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latency is not the only objective in embedded PQC acceleration; area efficiency and deployability on 

commodity SoC-FPGA platforms matter. Figure 5 reports a hardware-class–normalized Pareto comparison 

between representative Saber accelerators using two axes that are commonly reported and comparable across 

papers: 

− Encapsulation latency (µs at 250 MHz, plotted on a log scale), and 

− Total FPGA logic utilization (kLUTs, plotted on a log scale). 

 

 

Table 6. Normalized comparison of Saber implementations 

Work (year) Platform Variant 
LUTs/DSPs/

BRAMs 
Cycles (KEM 

Lvl-3) 

Time 

@250 

MHz (µs) 

Area–time 
(LUT·µs) 

Notes 

Roy and 
Basso 2020 

[13] 

Xilinx 
UltraScale+ 

(ZCU102) 

Saber 23.7k/0/2 5.45k–8.03k 21.8–32.1 ~0.52–0.76 M Full HW 
coprocessor; no 

SW integration. 

He and Lee 

2023 [12] 

(SMOP)  

Xilinx 

VCU118 

Saber 12.1k/0/2 12.3k–19.8k 49.1–79.3 ~0.59–0.96 M Compact 

schoolbook-matrix 

core; small area, 
still high cycles. 

Dang et al. 

2023 [7] 

Xilinx 

UltraScale+ 

Saber 32.1k/0/1.5 8.9k–12.7k 35.7–50.8 ~1.15–1.63 M Best high-end 

FPGA latency; 
higher area. 

Dang et al. 

2019 [3] 

Xilinx 

ZCU102 

Saber ~18k/10/6 ~19.3k–21.3k 77–85 ~1.4–1.5 M SW/HW codesign; 

higher cycles than 
full HW. 

Mera et al. 

2020 [2] 

Zynq-7000 

(low-end 
ARM+FPGA) 

Saber ~4.5k/12/4 400k–512k 1.6–2.0k ~7.2–9.0 M Offloads only 

PolyMult; high 
total cycles. 

Aikata et al. 

2023 [14] 

ZCU102 Saber 40k/24/4 18.9k–23.5k 75.9–93.8 ~3.0–3.8 M Unified 

Dilithium+Saber 
processor. 

Abdulgadir et 

al. 2021 [16] 

Artix-7 Saber 15.8k/0/3 46.7k–72.0k 186–288 ~2.9–4.5 M Lightweight and 

masked; secure but 
slower. 

Zhu et al. 

2021 [4] 
(LWRpro) 

ASIC (TSMC 

40 nm) 

Module-

LWR 

0.38 mm² 1.1k–1.7k 2.7–4.3 — Energy-efficient 

ASIC; not FPGA; 
different scope. 

Our hybrid 

(Cyclone-V, 
DE10-Nano) 

Altera 

Cyclone-V 
(low-end SoC 

FPGA) 

Saber ~6.8k/8/4 61k–88k 24.4–35.1 ~1.7–2.4 M Balanced SW/HW; 

low-cost board; 
integration with 

ARM CPU. 

 

 

 
 

Figure 5. Hardware-class–normalized Pareto frontier comparing Saber encapsulation latency (µs  

@ 250 MHz) vs. FPGA logic utilization (kLUTs), highlighting the area–latency tradeoff of our Cyclone-V 

hybrid design against representative published Saber accelerators (other points derived from Table 6) 
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The hybrid Cyclone-V design is highlighted as “our work—low area, competitive latency.” 

Importantly, Figure 5 is not presented as a definitive ranking; it is a normalized trade-off map built from 

reported metrics in the cited works (summarized in Table 6). The key observation is that our design occupies 

a favorable region of the trade-off space: it achieves tens of microseconds encapsulation latency while using 

tens of kLUTs, which is competitive given the constraints of low-end SoC-FPGA fabric and the fact that our 

measurements include HW/SW integration rather than a standalone FPGA-only coprocessor benchmark. 

The Pareto interpretation is straightforward. High-performance full-hardware implementations on 

UltraScale+ class devices can reach very low latency, but typically at substantially higher area cost (the “high 

perf, but >7× area” regime). Conversely, compact implementations can reduce LUT usage but tend to pay in 

latency or require simplifying assumptions [36]-[40]. Security-hardened (masked/SCA-protected) designs 

occupy another distinct region: they incur additional area and/or latency overhead to reduce leakage, and 

Figure 5 explicitly labels this trade-off as “SCA-resilient, moderate speed.” Our work is not claiming 

masking-level protection; rather, it aims at a deployable hybrid point on commodity hardware with 

predictable scheduling and measured system overheads. 

In order to compare fairly across FPGA families (Cyclone-V vs Artix-7 vs UltraScale+), we use 

hardware-class normalization and plot on log scales: the goal is not to imply direct device-to-device 

equivalence, but to show where the design sits relative to representative classes when using commonly 

reported summary metrics. Across all Saber-family parameter sets, the hybrid CPU–FPGA design yields 

large, consistent reductions in KeyGen/Encap/Decap latency relative to software-only execution, with 

speedups on the order of ~3.7–3.9× at 𝑢 = 4 and ~11–13× at 𝑢 = 8. These gains persist across security levels 

and do not depend on cherry-picked microbenchmarks: Table 5 reports full end-to-end KEM operations 

under a fixed protocol. In addition, Figure 5 demonstrates that these latency reductions are achieved at an 

area point that is credible for low-cost deployment, positioning the design as a practical HW/SW co-design 

choice rather than a “maximum-throughput-at-any-cost” FPGA result. Our point in Figure 5 uses measured 

DE10-Nano encapsulation latency; other points are extracted from the corresponding papers as summarized 

in Table 6. 

 

 

5. DISCUSSION 

This section interprets the measured behaviour of the proposed hybrid CPU–FPGA Saber 

implementation beyond raw latency numbers. We focus on two deployment-relevant questions: i) what limits 

speedup in a heterogeneous SoC design and how batching changes that limit and ii) whether the 

implementation exhibits constant-time behaviour with respect to ciphertext validity, which is a common 

source of practical timing leakage in KEM decapsulation. The central empirical pattern in Figure 6 is that 

speedup increases rapidly with batch size 𝐵 and then plateaus. This is the expected signature of fixed 

overhead amortization in a CPU–FPGA co-design. In our system, the end-to-end time of a batch is not 

simply 𝐵 times the single-operation time because each batch pays a one-time cost associated with control and 

data movement (command setup, transfers, pipeline fill/drain, and synchronization). A minimal model 

consistent with the measurements is: 

 

𝑇hyb(𝐵)   =   𝛿   +   𝐵 𝜏, 𝑆(𝐵)   =   
𝐵 𝑇cpu

𝑇hyb(𝐵)
   =   

𝐵 𝑇cpu

𝛿+𝐵 𝜏
  

 

Here, 𝑇cpu is the measured CPU-only latency for a given operation (KeyGen/Encap/Decap), 𝜏is the 

amortized per-operation hybrid cost when executed in a steady-state stream (dominated by the FPGA-

accelerated kernels plus the remaining CPU-side steps), and 𝛿 aggregates batch-level fixed costs. This model 

immediately explains three qualitative behaviors visible in Figure 6: i) 𝑆(1) ≈ 1 by construction; ii) a knee 

where 𝐵 becomes large enough that 𝐵𝜏 overtakes 𝛿; and iii) saturation as 𝐵 → ∞, where 𝑆(𝐵) → 𝑇cpu/𝜏. The 

asymptote is not infinite because; i) some fraction of the computation remains on the CPU by design and ii) 

CPU–FPGA communication overhead never disappears. The recommended operating point around  
𝐵 ≈ 16 in Figure 6 is not an arbitrary choice; it corresponds to the regime where the marginal gain of 

increasing 𝐵 begins to diminish. In practical deployments, this matters because batching is a systems trade-

off: higher 𝐵 improves throughput but increases per-request waiting time if requests arrive sporadically, and 

it can increase memory pressure due to buffering. Thus, Figure 6 serves as an engineering tuning guide: 

choose 𝐵 large enough to amortize 𝛿 but not so large that latency and buffering dominate. 
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Figure 6. Measured overall speedup of Saber KeyGen/Encap/Decap vs. batch size B (relative to CPU-only 

baseline), showing overhead amortization and saturation; markers are empirical means with variability 

(define ±1σ/CI and N), and lines show the corresponding δ-amortization model fit 

 

 

A second useful interpretation is Amdahl-style: even if the FPGA-accelerated kernels were infinitely 

fast, the overall speedup would still be bounded by the portion of the pipeline that is not accelerated and by 

the fixed interface overhead. In other words, once batching pushes the system near its asymptotic regime, 

further improvements require reducing 𝜏 (e.g., additional kernel acceleration, more parallelism 𝑢, higher 

FPGA frequency) or reducing 𝛿 (e.g., tighter DMA, fewer synchronization points, a lower-overhead bus 

protocol). Finally, the separation among KeyGen/Encap/Decap curves in Figure 6 is expected: each operation 

has a different balance of accelerated computation and CPU-side control, so the ratio 𝛿/𝜏 differs. When 𝛿 

dominates, speedup grows sharply with 𝐵but saturates later; when 𝜏dominates, the knee occurs earlier. This 

is precisely why a single global speedup number is not sufficient; the per-operation curves provide a more 

honest systems picture. 

Performance results alone are insufficient for cryptographic implementations; timing behaviour can 

create a validity oracle that enables practical attacks. In Saber (and KEMs using Fujisaki–Okamoto style 

transforms), decapsulation typically includes a deterministic re-encryption and a comparison against the 

received ciphertext; if validity is handled with data-dependent early exits or branches, an attacker may 

distinguish valid from invalid ciphertexts by timing. Figure 7 directly targets this risk by comparing the 

measured decapsulation latency distributions for valid vs. invalid ciphertexts under the same platform and 

measurement setup. The two distributions overlap closely, and a two-sample KS test on 𝑛 = 1000 samples 

per class yields no statistically significant evidence of a difference at conventional thresholds (e.g., 𝑝 = 0.11) 

[41]-[45]. This supports the claim that the decapsulation implementation behaves approximately constant-

time with respect to the validity condition—at least at the granularity of our timing measurements and for the 

tested configuration. It is important to state that Figure 7 does not “prove” resistance to all timing-oracle 

attacks, because real attackers may have finer-grained timers, more control over system load, or access to 

microarchitectural channels not captured in our measurement. What it does establish is a necessary 

engineering property: the high-level decapsulation path is not obviously leaking validity through gross timing 

differences. In combination with the fixed-schedule and fixed-size CPU–FPGA protocol used throughout the 

design; this reduces the most immediate and common timing leakage mode: validity-dependent execution 

time differences visible at the system level. 
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Figure 7. Measured decapsulation latency distributions (cycles) for valid vs. invalid ciphertexts on the  

DE10-Nano hybrid Saber implementation overlap closely with a two-sample KS test indicating no detectable 

distributional difference under the measurement setup 

 

 

Figures 6 and 7 highlight a key theme of the work: the bottleneck in deployable PQC acceleration 

on low-cost SoC-FPGA platforms is not only arithmetic throughput—it is the composition of acceleration 

with system overhead and leakage-aware control. On the performance side, the main implication is that 

batching is an essential systems lever for realizing the benefits of FPGA offload under realistic constraints 

[46]-[50]. Reporting speedup as a function of 𝐵 (rather than only at 𝐵 = 1) is therefore not a cosmetic 

choice; it makes the evaluation relevant to throughput-oriented deployments (e.g., gateways, secure channels, 

or servers terminating many sessions). 

On the security side, the timing-distribution result supports the design goal of predictable behaviour 

at the interface and in decapsulation control flow. However, the implementation should not be interpreted as 

providing masking-level side-channel protection. If a deployment requires resistance to higher-order 

power/EM attacks, the hardware design would need explicit countermeasures (e.g., masking, hiding, dual-rail 

techniques) and a corresponding leakage evaluation protocol. The hybrid design achieves large speedups 

while still exhibiting realistic saturation, and it provides measured evidence that decapsulation timing is not 

strongly dependent on ciphertext validity in the tested configuration. Both points are necessary for arguing 

that the implementation is not merely fast in isolation, but credible as a system component for practical PQC 

deployment. 

 

 

6. CONCLUSION 

This study aimed to demonstrate that a low-cost heterogeneous SoC can deliver practical post-

quantum key establishment by implementing the Saber KEM family on a Terasic DE10-Nano (ARM Cortex-

A9+Cyclone V FPGA), using a hybrid HW/SW partition that accelerates the dominant kernels while 

preserving protocol flexibility on the host. The motivation is: PQC KEMs are computationally heavy for 

embedded platforms, and deployable solutions must account for system-level overheads (host orchestration 

and data movement), not just data path throughput. The main finding is that the proposed hybrid 

cryptomodule achieves substantial end-to-end latency reductions for KeyGen/Encap/Decap across 
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LightSaber, Saber, and FireSaber. Relative to the software-only baseline, the hybrid design provides 

consistent speedups of approximately 3.8× with 𝑢 = 4 parallel lanes and approximately 11–13× with 𝑢 = 8. 

For example, for Saber (Level-3), latency decreases from 606/805/1005 µs (KeyGen/Encap/Decap) to 

160/212/265 µs at 𝑢 = 4 and to 49/63/79 µs at 𝑢 = 8. In addition, the batching experiments and the 

associated amortization model explain why speedup increases with batch size and then saturates: fixed host–

accelerator overheads are amortized up to an operating “knee,” after which remaining unaccelerated 

components and interface costs bound further gains. 

Beyond performance, the implementation is security-relevant in two ways. First, the fixed-size, 

fixed-schedule host–FPGA protocol is designed to reduce data-dependent interface behaviour. Second, the 

measured decapsulation latency distributions for valid vs. invalid ciphertexts overlap closely under the tested 

setup, supporting constant-time behaviour with respect to ciphertext validity (a common timing-oracle failure 

mode). These results do not claim full side-channel hardening; rather, they provide evidence that gross 

validity-dependent timing leakage is not present in this implementation configuration. 

The broader implication is that commodity SoC–FPGA platforms can support PQC KEMs at sub-

100 µs latency while maintaining a deployable HW/SW architecture that exposes and quantifies system 

overheads—an important step toward practical PQC deployment in embedded and edge settings. Limitations 

include: i) Cyclone-V resource and frequency constraints that bound parallelism, ii) non-negligible 

communication and synchronization overheads that cap asymptotic speedup, and iii) a security evaluation 

that focuses on timing behaviour rather than comprehensive power/EM leakage resistance. Future work will 

therefore focus on reducing interface overheads (e.g., tighter DMA and fewer synchronization points), and on 

stronger leakage resilience (e.g., masking/hiding countermeasures with rigorous leakage evaluation), as well 

as extending portability across SoC platforms and exploring generalization to other PQC kernels. In general, 

the presented hybrid cryptomodule provides a practical, measurable, and extensible design point for post-

quantum hardware acceleration on constrained heterogeneous systems. 
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