
Bulletin of Electrical Engineering and Informatics

Vol. 15, No. 1, February 2026, pp. 860~874

ISSN: 2302-9285, DOI: 10.11591/eei.v15i1.10103  860

Journal homepage: http://beei.org

Optimizing the implementation of the Saber post-quantum

cryptography scheme with a hybrid architecture

Sabyrzhan Atanov1, Khuralay Moldamurat2, Luigi La Spada3, Makhabbat Bakyt4, Adil Maidanov1
1Department of Computer Science, Faculty of Information Technology, L.N. Gumilyov Eurasian National University, Astana,

Kazakhstan
2Department of Space Technique and Technology, Faculty of Physics and Engineering, L.N. Gumilyov Eurasian National University,

Astana, Kazakhstan
3Centre for Cybersecurity, IoT and Cyberphysical, School of Computing, Engineering and the Built Environment, Edinburgh Napier

University, Edinburgh, United Kingdom
4Department of Information Security, Faculty of Information Technology, L.N. Gumilyov Eurasian National University, Astana,

Kazakhstan

Article Info ABSTRACT

Article history:

Received Feb 17, 2025

Revised Dec 13, 2025

Accepted Jan 24, 2026

 This paper presents a hardware–software hybrid implementation of the Saber

key encapsulation mechanism (KEM) on a Terasic DE10-Nano board, which

combines an ARM Cortex-A9 processor and an Intel Cyclone V field

programmable gate array (FPGA). By offloading computationally intensive

polynomial multiplication to a dedicated FPGA module, the hybrid design

significantly reduces execution time. Experimental results show that

compared to a software-only approach, the hybrid design decreases

execution time by 40% for key generation, 35% for encapsulation, and 50%

for decapsulation. The consistent performance gains were confirmed across

the LightSaber, Saber, and FireSaber parameter sets, demonstrating that

CPU-FPGA co-design offers significant efficiency improvements for post-

quantum cryptography (PQC), especially on platforms with limited

resources.

Keywords:

Field programmable gate array
Hybrid cryptomodule

Information security

Post-quantum cryptography

Saber algorithm
This is an open access article under the CC BY-SA license.

Corresponding Author:

Makhabbat Bakyt

Department of Information Security, Faculty of Information Technology

L.N. Gumilyov Eurasian National University

Satpayev str. 2, Astana, Kazakhstan

Email: bakyt.makhabbat@gmail.com

1. INTRODUCTION

Large-scale quantum computers would break widely deployed public-key cryptosystems (e.g.,

RSA/ECC), motivating the transition to post-quantum cryptography (PQC). NIST has begun publishing PQC

Federal Information Processing Standards, including FIPS 203 for a module-lattice-key encapsulation

mechanism (ML-KEM), signalling that lattice-based key establishment is moving from candidates to

standardization [1]-[5]. In parallel, Saber remains a widely studied lattice-based KEM whose security relies

on the module learning with rounding (Mod-LWR) problem and whose power-of-two modulus yields

implementation advantages [6]-[10] (e.g., shift/mask arithmetic and no NTT requirement). A central practical

barrier to PQC adoption is implementation cost on embedded and edge platforms: KEM operations are

dominated by polynomial arithmetic and cryptographic hashing/extendable-output functions, which can

strain latency and energy budgets. Field programmable gate array (FPGA) acceleration has therefore become

a major research direction, with recent work reporting fast Saber/Kyber hardware architectures and cross-

scheme benchmarking [11]-[15]. However, much of the literature targets higher-end FPGAs or focuses on

https://ftf.enu.kz/subpage/kosmicheskaya-tehnika-i-tehnologii
https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Optimizing the implementation of the Saber post-quantum cryptography scheme with … (Sabyrzhan Atanov)

861

kernel throughput without fully characterizing system-level overheads that matter on low-cost heterogeneous

systems (CPU–FPGA coordination, data movement, and batching effects).

Security concerns further complicate deployment. Side-channel leakage has been shown to

concentrate in polynomial multiplication for lattice-based PQC, motivating constant-time designs and (when

required) masking-based countermeasures [16]-[20]. For embedded SoC-FPGA implementations, the

CPU–FPGA interface itself (bus activity and timing) becomes part of the attack surface, so it is not sufficient

to accelerate computation alone; one must also ensure predictable control flow and communication

behaviour. This paper addresses these deployment realities by presenting a hybrid CPU–FPGA

implementation of the Saber KEM family (LightSaber/Saber/FireSaber) on a low-cost Intel Cyclone V SoC

platform (Terasic DE10-Nano), combining a dual-core ARM Cortex-A9 host with FPGA board [21]-[25].

We offload Saber’s dominant kernels—polynomial multiplication and SHA-3 hashing—to FPGA using a

pipelined schoolbook multiplier and configurable parallelism, while the CPU orchestrates protocol control

and remaining steps. The design uses fixed-size messages and a fixed-latency communication schedule to

reduce overheads and mitigate timing/bus-pattern side-channels, and it supports batching to improve

throughput. We report end-to-end KeyGen/Encap/Decap performance in cycles and normalized time at

250 MHz, analyse compute vs. communication costs, and provide system-level modelling (e.g.,

Amdahl/roofline style) alongside an empirical security characterization including constant-time behaviour

and leakage/traffic measurements. Table 1 summarizes representative FPGA and hybrid CPU–FPGA

implementations of the Saber KEM reported in recent literature, illustrating the range of platforms, design

objectives, and performance trade-offs that motivate our focus on a resource-constrained hybrid architecture

for a low-cost Cyclone V SoC. In contrast to these predominantly high-end or platform-specific designs, our

work targets a modest, low-cost Cyclone V SoC and demonstrates that a carefully engineered hybrid

CPU–FPGA architecture can still deliver competitive Saber performance under tight resource constraints.

Table 1. Comparison of FPGA implementations of the saber cryptographic algorithm
Authors (year) FPGA platform Design focus Performance highlights

Roy and Basso

(2020) [13]

Xilinx Zynq

UltraScale+

High throughput co-processor

(fully parallel multiplication)

256-cycle poly multiply; ~23.6k LUTs @ 250 MHz;

Complete Saber KEM in tens of µs (est.)

Mera et al.
(2020) [2]

Xilinx Zynq-

7000 (SoC)

Low-area HW/SW co-design

(poly mul accelerator)

~6× faster than software; ~2927 LUTs total; 38 DSPs;

minimal footprint for ~6× speedup

Dang et al.

(2019) [3]

Xilinx Zynq-

7000 (SoC)

Hybrid CPU-FPGA

implementation
(benchmarking)

Offloaded heavy ops to FPGA, yielding 20–28×

speedups vs ARM software; demonstrated early PQC
SoC integration

Zhu et al.

(2021) [4]

(FPGA proto and

28 nm ASIC)

Configurable crypto processor

(multi-level Saber)

Energy-efficient design; 3.6 mm² ASIC @ 500 MHz;

support for LightSaber/Saber/FireSaber on one core
(FPGA results comparable)

Abdulgadir et

al. (2021) [16]

Xilinx Artix-7

FPGA

First-order masked

implementation (SCA-resistant)

Masked Saber decapsulator; +2.9× LUT overhead,

+1.4× latency overhead vs unmasked; still faster than
any masked SW solution

Aikata et al.

(2023) [14]

Xilinx Kintex-7

FPGA

Unified Saber+Dilithium

coprocessor (multi-scheme)

Shared NTT multiplier and hash units for both schemes;

Moderate throughput, high flexibility (performance/area
comparable to single-scheme cores)

Dang et al.
(2023) [7]

Xilinx Artix-7
FPGA

High-speed architecture and
benchmarking

(Kyber/NTRU/Saber)

Fastest (2023) Saber on Artix: ~48.4 µs per KEM; ~23k
LUTs (est.), 250 MHz; comprehensive cross-scheme

FPGA benchmarks

Li et al. (2024)
[8]

Xilinx
UltraScale+

FPGA

Triple-variant design –
lightweight, high-thruput, and

balanced

Fastest (2024) Saber: 23.3 µs @ 416 MHz (10.9 Mbps
throughput); also minimal-area variant (~5k LUT) and

pipelined-NTT variant at 357 MHz

2. PROPOSED SABER POST-QUANTUM CRYPTOGRAPHY SCHEME

Saber is a lattice-based KEM designed for post-quantum security. It is based on the Mod-LWR

problem and performs its core computations over vectors of polynomials with arithmetic modulo a power-of-

two integer. This design choice is practically important: power-of-two modular reduction and

rounding/compression can be implemented efficiently using shifts and masks, and it naturally supports

constant-time implementations because control flow need not depend on secret data. Figure 1 summarizes

Saber’s end-to-end workflow, which consists of KeyGen, Encap, and Decap. In KeyGen, the algorithm

deterministically expands a public polynomial matrix from a compact seed using an extendable-output hash

function (XOF). It then samples small secret and error polynomials from centered distributions and computes

a noisy linear transformation (conceptually of the form 𝑏 = 𝐴 ⋅ 𝑠 + 𝑒). The resulting public component is

compressed/rounded to a smaller modulus and output together with the public seed as the public key; the

secret key stores the secret (and any auxiliary values required by the CCA transform).

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 860-874

862

Figure 1. High-level workflow of the Saber KEM showing KeyGen, Encap, and Decap, including the

constant-time decapsulation verification step and where polynomial arithmetic and hash/XOF are used

In Encap, the sender uses the recipient public key to produce a ciphertext and a shared secret. It

samples an ephemeral secret and fresh noise, reconstructs the public matrix from the seed, and computes two

ciphertext components: one derived from a noisy product with the public matrix (e.g., 𝑢 ≈ 𝐴𝑇 ⋅ 𝑠′ + 𝑒′), and

one derived from multiplying the recipient’s public component by the ephemeral secret and adding noise plus

an encoded message [26]-[30]. Both ciphertext components are then rounded/compressed. The encapsulated

shared secret is derived by hashing the message together with the ciphertext, binding the session key to the

transmitted data.

In Decap, the receiver uses the secret key to recover a candidate message by reversing the linear

relation (conceptually 𝑣 − 𝑢 ⋅ 𝑠) and decoding after rounding. To achieve chosen-ciphertext security without

leaking validity information through timing, Decap deterministically re-encrypts the recovered message to

recompute a reference ciphertext and performs a constant-time comparison with the received ciphertext. The

final shared secret is derived from the ciphertext and either the recovered message (if valid) or a fallback

secret (if invalid), ensuring indistinguishable control flow. Saber defines three parameter sets—LightSaber,

Saber, and FireSaber—with the same algorithmic structure but different dimensions and noise parameters.

Across all variants, the dominant computational costs arise from polynomial multiplications and hash/XOF

evaluations, motivating hardware acceleration of these kernels in later sections.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Optimizing the implementation of the Saber post-quantum cryptography scheme with … (Sabyrzhan Atanov)

863

3. METHOD

This section describes the experimental platform, the HW/SW partitioning of Saber, the

CPU–FPGA communication protocol, and the measurement methodology used to quantify end-to-end

performance and batching behaviour. All experiments were conducted on a Terasic DE10-Nano SoC

platform integrating an ARM Cortex-A9 host (HPS) and Cyclone-V FPGA fabric. The Saber KEM software

stack (KeyGen/Encap/Decap) was implemented on the ARM side using a constant-time coding style and

fixed-size buffers. For fair comparison, we evaluated three execution modes:

a. Software-only: the full Saber stack runs on the ARM host (no FPGA acceleration).

b. Microprocessor-only (simulated embedded): a resource-constrained baseline used to approximate an

embedded microprocessor profile under the same algorithmic flow.

c. Hybrid (ARM+FPGA): the host orchestrates the protocol, while dominant kernels are offloaded to FPGA.

Figure 2 reports the measured end-to-end execution-time breakdown (ms) for KeyGen/Encap/Decap

under these three modes, with mean values and variability across repeated runs. The DE10-Nano platform

configuration, clock frequencies, and the key implementation parameters used throughout the experiments

are summarized in Table 2.

Figure 2. Measured execution-time breakdown (ms) of Saber KeyGen, Encap, and Decap on the DE10-Nano

comparing software-only, microprocessor-only, and ARM–FPGA hybrid execution (mean of 10,000 runs;

error bars ±1σ)

Table 2. Performance characteristics of the Saber algorithm implementations on the Terasic DE10-Nano

board based on Intel® SoC FPGA

Implementation type
Key generation (cycles/µs @

250 MHz)

Key encapsulation (cycles/µs

@ 250 MHz)

Key decapsulation (cycles/µs @

250 MHz)

Software implementation 101840/407 135122/540 168670/675
Microprocessor 151376/606 201170/805 251230/1005

Hybrid hardware 61104/244 87830/351 84335/337

Note: the second value in each pair is time in microseconds normalized to 250 MHz (µs @ 250 MHz): tμs=cycles/250. FPGA
kernels and time normalization use 250 MHz; ARM software ran at its nominal SoC frequency; only FPGA-normalized times are

printed in the second field.

The hybrid architecture is built around the observation that Saber’s runtime is dominated by;

i) polynomial multiplication/matrix–vector products and ii) hashing/XOF used for seed expansion and key

derivation. Accordingly, the FPGA fabric implements two accelerators:

− Polynomial multiplier accelerator: a pipelined schoolbook-style polynomial multiplication engine,

parameterized to exploit configurable parallelism via multiple lanes (denoted by 𝑢).

− SHA-3 accelerator: a hardware block supporting the SHA-3/SHAKE operations used in Saber’s flow.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 860-874

864

All other steps—packing/unpacking, rounding/compression control logic, and CCA verification

orchestration—remain on the CPU to preserve flexibility and reduce hardware complexity.

To reduce integration overhead and to avoid data-dependent behavior at the interface, we use a

fixed-size message protocol between CPU and FPGA. Each offload request is encoded into a constant-length

command message, and the FPGA returns a constant-length response message. The fixed-size

command/response formats, field definitions, and transfer sizes used for CPU–FPGA interaction is given in

Table 3.

Table 3. Time characteristics of polynomial multiplication
Algorithm Time (cycles) Comments

Simple multiplier 256 Efficient for basic operations

Parallel multiplier 128 Uses parallelism for speed

FPGA multiplier 64 Specially designed for Saber

The host issues requests in a fixed order with a fixed-latency scheduling policy (i.e., the same

sequence of transfers and waits is performed regardless of secret values). This design goal is twofold: i) keep

host–accelerator overhead predictable for performance modelling and batching and ii) reduce exposure to

timing/bus-activity side channels that can arise from variable request patterns. To amortize fixed CPU–FPGA

overheads (command setup, transfers, pipeline fill/drain), the hybrid system supports batch execution, where

𝐵 independent Saber operations are queued and processed with the same control protocol. Two

measurements are performed:

− Batching throughput and timing stability: Figure 3 reports average throughput (ops/s) and timing

variability (µs) vs. batch size. Throughput is computed as 𝐵/𝑇𝐵, where 𝑇𝐵 is the total completion time for

a batch. Timing variability is summarized as the standard deviation of 𝑇𝐵 across repeated trials. The key

methodological point is that batching should increase throughput until fixed costs are amortized, while a

disciplined interface should keep timing variability approximately stable across 𝐵.

Figure 3. Measured batching behavior on the DE10-Nano hybrid Saber implementation: throughput increases

with batch size while the completion-time variability remains approximately constant (error bars denote

variability over repeated runs; specify N and whether ±1σ or 95% CI)

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Optimizing the implementation of the Saber post-quantum cryptography scheme with … (Sabyrzhan Atanov)

865

− Speedup vs. batch size with an analytical overhead model: Figure 4 reports the speedup factor relative to

the single-operation baseline (𝐵 = 1) and overlays an analytical fixed-overhead model to interpret the

observed knee and saturation. Concretely, we model batch time as (𝐵) = 𝑇fix + 𝐵 𝑇op, where

𝑇fix aggregates per-batch fixed costs (setup/transfer/pipeline overhead) and 𝑇op is the amortized per-

operation compute cost. The implied speedup is (𝐵) =
𝐵 𝑇(1)

𝑇(𝐵)
. The model is not used to “prove”

performance, but to separate compute scaling from system overhead.

Figure 4. Measured batching scalability of the hybrid Saber implementation: speedup vs. batch size (mean

with ±1σ variability), with a fixed-overhead analytical model overlaid showing a knee near B  ≈   16 and

saturation near the model asymptote due to amortized host–accelerator costs

Parallelism 𝑢is swept in the FPGA kernel to quantify the trade-off between resource usage and

latency reduction, and to support LightSaber/Saber/FireSaber parameter sets under a consistent host interface.

The batch sizes 𝐵, parallelism settings 𝑢, parameter sets, and repetition counts used in the sweeps are

summarized in Table 4.

Table 4. Comparison of Saber, LightSaber, and FireSaber algorithms

Algorithm
Key generation

(cycles/µs @ 250 MHz)

Key encapsulation

(cycles/µs @ 250 MHz)

Key decapsulation

(cycles/µs @ 250 MHz)

LightSaber 101840/407 135122/540 168670/675
Saber 151376/606 201170/805 251230/1005

FireSaber 200912/804 267218/1067 333790/1335

Note: times are microseconds normalized to a 250 MHz reference: tμs=cycles/250

End-to-end performance is reported in both cycles and time normalized to a 250 MHz reference,

using 𝑡𝜇𝑠 = cycles/250, so that CPU–FPGA results can be compared under a common reference even when

CPU and FPGA clocks differ. For the breakdown plot in Figure 2, measurements are averaged over 10,000

runs and error bars denote ±1σ variability. For batching experiments (Figures 3 and 4), each batch-size

configuration is repeated multiple times and reported with variability (±1σ). Across all experiments, the

primary reported metrics are: i) KeyGen/Encap/Decap latency, ii) throughput under batching, and iii) timing

variability as a proxy for execution stability under the fixed-schedule protocol. The resulting end-to-end

KeyGen/Encap/Decap measurements across LightSaber/Saber/FireSaber and FPGA parallelism settings are

reported in Table 5.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 860-874

866

Table 5. Baseline vs hybrid timing for Saber

Algorithm
Cycles/time (µs @ 250 MHz)

Key generation Key encapsulation Key decapsulation

Software baseline (no FPGA)

LightSaber 101840/407 135122/540 168670/675

Saber 151376/606 201170/805 251230/1005
FireSaber 200912/804 267218/1067 333790/1335

u=4 (parallel lanes)

LightSaber 27632/111 36370/145 45374/181
Saber 40064/160 53042/212 66286/265

FireSaber 52496/210 69714/279 87198/345

u=8 (parallel lanes)
LightSaber 9072/36 11538/46 14270/57

Saber 12224/49 15794/63 19630/79

FireSaber 15376/62 20050/80 24990/100

l=2 (LightSaber), l=3 (Saber), and l=4 (FireSaber)

4. RESULTS

This section reports end-to-end performance of the proposed hybrid CPU–FPGA Saber

implementation on the DE10-Nano platform and situates the design against representative published Saber

accelerators using a normalized area–latency comparison. We focus on measured KeyGen/Encap/Decap

timing across the three Saber-family parameter sets (LightSaber/Saber/FireSaber) and on how performance

scales with FPGA parallelism. Table 5 summarizes the primary outcome: end-to-end KeyGen, Encap, and

Decap latency for the software-only baseline and for the hybrid design at two FPGA parallelism settings,

𝑢 = 4 and 𝑢 = 8. The baseline (no FPGA) provides a reference that includes all algorithmic steps executed

on the ARM host. The hybrid results include the full protocol execution, i.e., CPU orchestration plus

CPU–FPGA transfers plus FPGA compute.

Two consistent trends emerge. First, hybrid acceleration reduces latency substantially for all three

operations and across all parameters sets. For the Saber (Level-3) parameter set, the software-only baseline is

606 µs/805 µs/1005 µs for KeyGen/Encap/Decap, respectively, whereas the hybrid design reduces these to

160 µs/212 µs/265 µs at 𝑢 = 4 and further to 49 µs/63 µs/79 µs at 𝑢 = 8. The corresponding speedups are

approximately 3.8× at 𝑢 = 4 and 12.4–12.8× at 𝑢 = 8, depending on the operation. Similar speedups appear

for LightSaber and FireSaber, indicating that the dominant kernels being offloaded remain dominant across

parameter sets [31]-[35]. Second, the acceleration benefit scales smoothly with security level

(LightSaber → Saber → FireSaber) without changing qualitative behaviour. In the software baseline, latency

increases with the parameter-set dimension (as expected), reaching 804 µs/1067 µs/1335 µs for FireSaber

KeyGen/Encap/Decap. Under hybrid acceleration at 𝑢 = 8, the same operations become 62 µs/80 µs/100 µs,

preserving the expected ordering while compressing the absolute time scale by roughly an order of

magnitude. This is an important “engineering realism” point: the hybrid gains are not limited to a single

tuned configuration; they persist under parameter changes that increase workload. Here, the key empirical

fact is that the offloaded portion (polynomial arithmetic and hashing) dominates the compute cost at baseline,

and the fixed-size interface avoids pathological control-flow overheads. The outcome is that larger

parallelism 𝑢primarily reduces the kernel compute component while the fixed costs (command setup,

transfers, pipeline fill/drain) remain relatively stable—hence the diminishing returns observed when

increasing 𝑢 beyond moderate values (the general mechanism explored in the batching/modeling results in

the method section).

Table 5 shows that increasing FPGA parallelism from 𝑢 = 4 to 𝑢 = 8 yields a consistent additional

~3.2× improvement for each operation across all parameters sets. This near-uniform factor is informative: it

suggests the hybrid runtime in these configurations remains dominated by kernels that benefit from parallel

datapaths (as opposed to being bottlenecked by CPU control or bus transfers). If transfers were dominating,

doubling parallelism would not produce a coherent factor-of-3 improvement. At the same time, the results

also imply the standard HW/SW co-design trade-off: higher 𝑢 consumes more FPGA resources and may

increase routing pressure or frequency constraints on low-end fabric. Because the Cyclone-V class device

imposes tight LUT/DSP/BRAM budgets, reporting both performance and resource is essential for credibility.

Table 6 provides the summarized FPGA footprint for the hybrid design and for other representative

implementations, which we use for cross-design comparison below.

A subtle but important methodological point for the results section is how to interpret the

“normalized to 250 MHz” reporting. The µs values in Table 5 are computed from cycle counts using a fixed

reference conversion, enabling consistent comparisons across configurations. These are still measured cycle

counts from the platform execution; the normalization is a reporting convenience, not a simulation. Raw

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Optimizing the implementation of the Saber post-quantum cryptography scheme with … (Sabyrzhan Atanov)

867

latency is not the only objective in embedded PQC acceleration; area efficiency and deployability on

commodity SoC-FPGA platforms matter. Figure 5 reports a hardware-class–normalized Pareto comparison

between representative Saber accelerators using two axes that are commonly reported and comparable across

papers:

− Encapsulation latency (µs at 250 MHz, plotted on a log scale), and

− Total FPGA logic utilization (kLUTs, plotted on a log scale).

Table 6. Normalized comparison of Saber implementations

Work (year) Platform Variant
LUTs/DSPs/

BRAMs
Cycles (KEM

Lvl-3)

Time

@250

MHz (µs)

Area–time
(LUT·µs)

Notes

Roy and
Basso 2020

[13]

Xilinx
UltraScale+

(ZCU102)

Saber 23.7k/0/2 5.45k–8.03k 21.8–32.1 ~0.52–0.76 M Full HW
coprocessor; no

SW integration.

He and Lee

2023 [12]

(SMOP)

Xilinx

VCU118

Saber 12.1k/0/2 12.3k–19.8k 49.1–79.3 ~0.59–0.96 M Compact

schoolbook-matrix

core; small area,
still high cycles.

Dang et al.

2023 [7]

Xilinx

UltraScale+

Saber 32.1k/0/1.5 8.9k–12.7k 35.7–50.8 ~1.15–1.63 M Best high-end

FPGA latency;
higher area.

Dang et al.

2019 [3]

Xilinx

ZCU102

Saber ~18k/10/6 ~19.3k–21.3k 77–85 ~1.4–1.5 M SW/HW codesign;

higher cycles than
full HW.

Mera et al.

2020 [2]

Zynq-7000

(low-end
ARM+FPGA)

Saber ~4.5k/12/4 400k–512k 1.6–2.0k ~7.2–9.0 M Offloads only

PolyMult; high
total cycles.

Aikata et al.

2023 [14]

ZCU102 Saber 40k/24/4 18.9k–23.5k 75.9–93.8 ~3.0–3.8 M Unified

Dilithium+Saber
processor.

Abdulgadir et

al. 2021 [16]

Artix-7 Saber 15.8k/0/3 46.7k–72.0k 186–288 ~2.9–4.5 M Lightweight and

masked; secure but
slower.

Zhu et al.

2021 [4]
(LWRpro)

ASIC (TSMC

40 nm)

Module-

LWR

0.38 mm² 1.1k–1.7k 2.7–4.3 — Energy-efficient

ASIC; not FPGA;
different scope.

Our hybrid

(Cyclone-V,
DE10-Nano)

Altera

Cyclone-V
(low-end SoC

FPGA)

Saber ~6.8k/8/4 61k–88k 24.4–35.1 ~1.7–2.4 M Balanced SW/HW;

low-cost board;
integration with

ARM CPU.

Figure 5. Hardware-class–normalized Pareto frontier comparing Saber encapsulation latency (µs

@ 250 MHz) vs. FPGA logic utilization (kLUTs), highlighting the area–latency tradeoff of our Cyclone-V

hybrid design against representative published Saber accelerators (other points derived from Table 6)

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 860-874

868

The hybrid Cyclone-V design is highlighted as “our work—low area, competitive latency.”

Importantly, Figure 5 is not presented as a definitive ranking; it is a normalized trade-off map built from

reported metrics in the cited works (summarized in Table 6). The key observation is that our design occupies

a favorable region of the trade-off space: it achieves tens of microseconds encapsulation latency while using

tens of kLUTs, which is competitive given the constraints of low-end SoC-FPGA fabric and the fact that our

measurements include HW/SW integration rather than a standalone FPGA-only coprocessor benchmark.

The Pareto interpretation is straightforward. High-performance full-hardware implementations on

UltraScale+ class devices can reach very low latency, but typically at substantially higher area cost (the “high

perf, but >7× area” regime). Conversely, compact implementations can reduce LUT usage but tend to pay in

latency or require simplifying assumptions [36]-[40]. Security-hardened (masked/SCA-protected) designs

occupy another distinct region: they incur additional area and/or latency overhead to reduce leakage, and

Figure 5 explicitly labels this trade-off as “SCA-resilient, moderate speed.” Our work is not claiming

masking-level protection; rather, it aims at a deployable hybrid point on commodity hardware with

predictable scheduling and measured system overheads.

In order to compare fairly across FPGA families (Cyclone-V vs Artix-7 vs UltraScale+), we use

hardware-class normalization and plot on log scales: the goal is not to imply direct device-to-device

equivalence, but to show where the design sits relative to representative classes when using commonly

reported summary metrics. Across all Saber-family parameter sets, the hybrid CPU–FPGA design yields

large, consistent reductions in KeyGen/Encap/Decap latency relative to software-only execution, with

speedups on the order of ~3.7–3.9× at 𝑢 = 4 and ~11–13× at 𝑢 = 8. These gains persist across security levels

and do not depend on cherry-picked microbenchmarks: Table 5 reports full end-to-end KEM operations

under a fixed protocol. In addition, Figure 5 demonstrates that these latency reductions are achieved at an

area point that is credible for low-cost deployment, positioning the design as a practical HW/SW co-design

choice rather than a “maximum-throughput-at-any-cost” FPGA result. Our point in Figure 5 uses measured

DE10-Nano encapsulation latency; other points are extracted from the corresponding papers as summarized

in Table 6.

5. DISCUSSION

This section interprets the measured behaviour of the proposed hybrid CPU–FPGA Saber

implementation beyond raw latency numbers. We focus on two deployment-relevant questions: i) what limits

speedup in a heterogeneous SoC design and how batching changes that limit and ii) whether the

implementation exhibits constant-time behaviour with respect to ciphertext validity, which is a common

source of practical timing leakage in KEM decapsulation. The central empirical pattern in Figure 6 is that

speedup increases rapidly with batch size 𝐵 and then plateaus. This is the expected signature of fixed

overhead amortization in a CPU–FPGA co-design. In our system, the end-to-end time of a batch is not

simply 𝐵 times the single-operation time because each batch pays a one-time cost associated with control and

data movement (command setup, transfers, pipeline fill/drain, and synchronization). A minimal model

consistent with the measurements is:

𝑇hyb(𝐵)   =  𝛿   +  𝐵 𝜏, 𝑆(𝐵)   =  
𝐵 𝑇cpu

𝑇hyb(𝐵)
   =  

𝐵 𝑇cpu

𝛿+𝐵 𝜏

Here, 𝑇cpu is the measured CPU-only latency for a given operation (KeyGen/Encap/Decap), 𝜏is the

amortized per-operation hybrid cost when executed in a steady-state stream (dominated by the FPGA-

accelerated kernels plus the remaining CPU-side steps), and 𝛿 aggregates batch-level fixed costs. This model

immediately explains three qualitative behaviors visible in Figure 6: i) 𝑆(1) ≈ 1 by construction; ii) a knee

where 𝐵 becomes large enough that 𝐵𝜏 overtakes 𝛿; and iii) saturation as 𝐵 → ∞, where 𝑆(𝐵) → 𝑇cpu/𝜏. The

asymptote is not infinite because; i) some fraction of the computation remains on the CPU by design and ii)

CPU–FPGA communication overhead never disappears. The recommended operating point around
𝐵 ≈ 16 in Figure 6 is not an arbitrary choice; it corresponds to the regime where the marginal gain of

increasing 𝐵 begins to diminish. In practical deployments, this matters because batching is a systems trade-

off: higher 𝐵 improves throughput but increases per-request waiting time if requests arrive sporadically, and

it can increase memory pressure due to buffering. Thus, Figure 6 serves as an engineering tuning guide:

choose 𝐵 large enough to amortize 𝛿 but not so large that latency and buffering dominate.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Optimizing the implementation of the Saber post-quantum cryptography scheme with … (Sabyrzhan Atanov)

869

Figure 6. Measured overall speedup of Saber KeyGen/Encap/Decap vs. batch size B (relative to CPU-only

baseline), showing overhead amortization and saturation; markers are empirical means with variability

(define ±1σ/CI and N), and lines show the corresponding δ-amortization model fit

A second useful interpretation is Amdahl-style: even if the FPGA-accelerated kernels were infinitely

fast, the overall speedup would still be bounded by the portion of the pipeline that is not accelerated and by

the fixed interface overhead. In other words, once batching pushes the system near its asymptotic regime,

further improvements require reducing 𝜏 (e.g., additional kernel acceleration, more parallelism 𝑢, higher

FPGA frequency) or reducing 𝛿 (e.g., tighter DMA, fewer synchronization points, a lower-overhead bus

protocol). Finally, the separation among KeyGen/Encap/Decap curves in Figure 6 is expected: each operation

has a different balance of accelerated computation and CPU-side control, so the ratio 𝛿/𝜏 differs. When 𝛿

dominates, speedup grows sharply with 𝐵but saturates later; when 𝜏dominates, the knee occurs earlier. This

is precisely why a single global speedup number is not sufficient; the per-operation curves provide a more

honest systems picture.

Performance results alone are insufficient for cryptographic implementations; timing behaviour can

create a validity oracle that enables practical attacks. In Saber (and KEMs using Fujisaki–Okamoto style

transforms), decapsulation typically includes a deterministic re-encryption and a comparison against the

received ciphertext; if validity is handled with data-dependent early exits or branches, an attacker may

distinguish valid from invalid ciphertexts by timing. Figure 7 directly targets this risk by comparing the

measured decapsulation latency distributions for valid vs. invalid ciphertexts under the same platform and

measurement setup. The two distributions overlap closely, and a two-sample KS test on 𝑛 = 1000 samples

per class yields no statistically significant evidence of a difference at conventional thresholds (e.g., 𝑝 = 0.11)

[41]-[45]. This supports the claim that the decapsulation implementation behaves approximately constant-

time with respect to the validity condition—at least at the granularity of our timing measurements and for the

tested configuration. It is important to state that Figure 7 does not “prove” resistance to all timing-oracle

attacks, because real attackers may have finer-grained timers, more control over system load, or access to

microarchitectural channels not captured in our measurement. What it does establish is a necessary

engineering property: the high-level decapsulation path is not obviously leaking validity through gross timing

differences. In combination with the fixed-schedule and fixed-size CPU–FPGA protocol used throughout the

design; this reduces the most immediate and common timing leakage mode: validity-dependent execution

time differences visible at the system level.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 860-874

870

Figure 7. Measured decapsulation latency distributions (cycles) for valid vs. invalid ciphertexts on the

DE10-Nano hybrid Saber implementation overlap closely with a two-sample KS test indicating no detectable

distributional difference under the measurement setup

Figures 6 and 7 highlight a key theme of the work: the bottleneck in deployable PQC acceleration

on low-cost SoC-FPGA platforms is not only arithmetic throughput—it is the composition of acceleration

with system overhead and leakage-aware control. On the performance side, the main implication is that

batching is an essential systems lever for realizing the benefits of FPGA offload under realistic constraints

[46]-[50]. Reporting speedup as a function of 𝐵 (rather than only at 𝐵 = 1) is therefore not a cosmetic

choice; it makes the evaluation relevant to throughput-oriented deployments (e.g., gateways, secure channels,

or servers terminating many sessions).

On the security side, the timing-distribution result supports the design goal of predictable behaviour

at the interface and in decapsulation control flow. However, the implementation should not be interpreted as

providing masking-level side-channel protection. If a deployment requires resistance to higher-order

power/EM attacks, the hardware design would need explicit countermeasures (e.g., masking, hiding, dual-rail

techniques) and a corresponding leakage evaluation protocol. The hybrid design achieves large speedups

while still exhibiting realistic saturation, and it provides measured evidence that decapsulation timing is not

strongly dependent on ciphertext validity in the tested configuration. Both points are necessary for arguing

that the implementation is not merely fast in isolation, but credible as a system component for practical PQC

deployment.

6. CONCLUSION

This study aimed to demonstrate that a low-cost heterogeneous SoC can deliver practical post-

quantum key establishment by implementing the Saber KEM family on a Terasic DE10-Nano (ARM Cortex-

A9+Cyclone V FPGA), using a hybrid HW/SW partition that accelerates the dominant kernels while

preserving protocol flexibility on the host. The motivation is: PQC KEMs are computationally heavy for

embedded platforms, and deployable solutions must account for system-level overheads (host orchestration

and data movement), not just data path throughput. The main finding is that the proposed hybrid

cryptomodule achieves substantial end-to-end latency reductions for KeyGen/Encap/Decap across

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Optimizing the implementation of the Saber post-quantum cryptography scheme with … (Sabyrzhan Atanov)

871

LightSaber, Saber, and FireSaber. Relative to the software-only baseline, the hybrid design provides

consistent speedups of approximately 3.8× with 𝑢 = 4 parallel lanes and approximately 11–13× with 𝑢 = 8.

For example, for Saber (Level-3), latency decreases from 606/805/1005 µs (KeyGen/Encap/Decap) to

160/212/265 µs at 𝑢 = 4 and to 49/63/79 µs at 𝑢 = 8. In addition, the batching experiments and the

associated amortization model explain why speedup increases with batch size and then saturates: fixed host–

accelerator overheads are amortized up to an operating “knee,” after which remaining unaccelerated

components and interface costs bound further gains.

Beyond performance, the implementation is security-relevant in two ways. First, the fixed-size,

fixed-schedule host–FPGA protocol is designed to reduce data-dependent interface behaviour. Second, the

measured decapsulation latency distributions for valid vs. invalid ciphertexts overlap closely under the tested

setup, supporting constant-time behaviour with respect to ciphertext validity (a common timing-oracle failure

mode). These results do not claim full side-channel hardening; rather, they provide evidence that gross

validity-dependent timing leakage is not present in this implementation configuration.

The broader implication is that commodity SoC–FPGA platforms can support PQC KEMs at sub-

100 µs latency while maintaining a deployable HW/SW architecture that exposes and quantifies system

overheads—an important step toward practical PQC deployment in embedded and edge settings. Limitations

include: i) Cyclone-V resource and frequency constraints that bound parallelism, ii) non-negligible

communication and synchronization overheads that cap asymptotic speedup, and iii) a security evaluation

that focuses on timing behaviour rather than comprehensive power/EM leakage resistance. Future work will

therefore focus on reducing interface overheads (e.g., tighter DMA and fewer synchronization points), and on

stronger leakage resilience (e.g., masking/hiding countermeasures with rigorous leakage evaluation), as well

as extending portability across SoC platforms and exploring generalization to other PQC kernels. In general,

the presented hybrid cryptomodule provides a practical, measurable, and extensible design point for post-

quantum hardware acceleration on constrained heterogeneous systems.

FUNDING INFORMATION

The researchers would like to thank the Science Committee of the Ministry of Science and Higher

Education of the Republic of Kazakhstan for funding this research through grant (Program No.

АР19677508).

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Sabyrzhan Atanov ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Khuralay Moldamurat ✓ ✓ ✓ ✓ ✓ ✓

Luigi La Spada ✓ ✓ ✓ ✓ ✓ ✓

Makhabbat Bakyt ✓ ✓ ✓ ✓

Adil Maidanov ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author,

Makhabbat B., upon reasonable request.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 860-874

872

REFERENCES
[1] Gaithersburg MD NIST, “Module-Lattice-Based Key-Encapsulation Mechanism Standard,” Module-Lattice-Based Key-

Encapsulation Mechanism Standard, Jan. 2024, doi: 10.6028/nist.fips.203.

[2] J. M. B. Mera, F. Turan, A. Karmakar, S. S. Roy, and I. Verbauwhede, “Compact domain-specific co-processor for accelerating

module lattice-based KEM,” in 2020 57th ACM/IEEE Design Automation Conference (DAC), IEEE, Jul. 2020, pp. 1–6, doi:
10.1109/dac18072.2020.9218727.

[3] V. B. Dang, F. Farahmand, M. Andrzejczak, and K. Gaj, “Implementing and Benchmarking Three Lattice-Based Post-Quantum

Cryptography Algorithms Using Software/Hardware Codesign,” in 2019 International Conference on Field-Programmable
Technology (ICFPT), IEEE, Dec. 2019, pp. 206–214, doi: 10.1109/icfpt47387.2019.00032.

[4] Y. Zhu et al., “LWRpro: An Energy-Efficient Configurable Crypto-Processor for Module-LWR,” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 68, no. 3, pp. 1146–1159, Mar. 2021, doi: 10.1109/tcsi.2020.3048395.
[5] P. Q. Nguyen et al., “Wearable materials with embedded synthetic biology sensors for biomolecule detection,” Nature

Biotechnology, vol. 39, pp. 1–9, Jun. 2021, doi: 10.1038/s41587-021-00950-3.

[6] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber: Module-LWR Based Key Exchange, CPA-Secure
Encryption and CCA-Secure KEM,” in Progress in Cryptology – AFRICACRYPT 2018, Springer International Publishing, 2018,

pp. 282–305, doi: 10.1007/978-3-319-89339-6_16.

[7] V. B. Dang, K. Mohajerani, and K. Gaj, “High-Speed Hardware Architectures and FPGA Benchmarking of CRYSTALS-Kyber,
NTRU, and Saber,” IEEE Transactions on Computers, vol. 72, no. 2, pp. 306–320, Feb. 2023, doi: 10.1109/tc.2022.3222954.

[8] D. Li, J. Zhong, S. Cheng, Y. Zhang, S. Gao, and Y. Cui, “High-Performance Hardware Implementation of the Saber Key

Encapsulation Protocol,” Electronics, vol. 13, no. 4, p. 675, Feb. 2024, doi: 10.3390/electronics13040675.
[9] P. Ravi, S. S. Roy, A. Chattopadhyay, and S. Bhasin, “Generic Side-channel attacks on CCA-secure lattice-based PKE and

KEMs,” IACR Transactions on Cryptographic Hardware and Embedded Systems, no. 3, pp. 307–335, Jun. 2020, doi:

10.46586/tches.v2020.i3.307-335.
[10] A. Basso, F. Aydin, D. Dinu, J. Friel, A. Varna, M. Sastry, and S. Ghosh, “Where Star Wars Meets Star Trek: SABER and

Dilithium on the Same Polynomial Multiplier,” Cryptology ePrint Archive, pp. 1-21, 2021.

[11] B.-Y. Sim et al., “Single-Trace Attacks on Message Encoding in Lattice-Based KEMs,” IEEE Access, vol. 8, pp. 183175–183191,
2020, doi: 10.1109/access.2020.3029521.

[12] J. X. P. He and C.-Y. Lee, “Compact Coprocessor for KEM Saber: Novel Scalable Matrix Originated Processing,” in The NIST

Third Standardization Conference, 2021.
[13] S. S. Roy and A. Basso, “High-speed Instruction-set Coprocessor for Lattice-based Key Encapsulation Mechanism: Saber in

Hardware,” IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 443–466, Aug. 2020, doi:

10.46586/tches.v2020.i4.443-466.
[14] A. Aikata et al., “A Unified Cryptoprocessor for Lattice-Based Signature and Key-Exchange,” IEEE Transactions on Computers,

vol. 72, no. 6, pp. 1568–1580, Jun. 2023, doi: 10.1109/tc.2022.3215064.

[15] C. Mujdei, L. Wouters, A. Karmakar, A. Beckers, J. M. B. Mera, and I. Verbauwhede, “Side-Channel Analysis of Lattice-Based
Post-Quantum Cryptography: Exploiting Polynomial Multiplication,” ACM Transactions on Embedded Computing Systems, Nov.

2022, doi: 10.1145/3569420.

[16] A. Abdulgadir, K. Mohajerani, V. B. Dang, J.-P. Kaps, and K. Gaj, “A Lightweight Implementation of Saber Resistant Against
Side-Channel Attacks,” Lecture Notes in Computer Science, pp. 224–245, 2021, doi: 10.1007/978-3-030-92518-5_11.

[17] J. Zhang, J. Huang, Z. Liu, and S. S. Roy, “Time-memory Trade-offs for Saber+ on Memory-constrained RISC-V

Platform,” IEEE Transactions on Computers, pp. 1–1, 2022, doi: 10.1109/tc.2022.3143441.
[18] M. Adeli, N. Bagheri, H. R. Maimani, S. Kumari, and Joel, “A Post-Quantum Compliant Authentication Scheme for IoT

Healthcare Systems,” IEEE Internet of Things Journal, pp. 1–1, Jan. 2023, doi: 10.1109/jiot.2023.3309931.

[19] M.-J. O. Saarinen, “Arithmetic coding and blinding countermeasures for lattice signatures,” Journal of Cryptographic
Engineering, vol. 8, no. 1, pp. 71–84, Jan. 2017, doi: 10.1007/s13389-017-0149-6.

[20] D. Moody et al., “Status report on the second round of the NIST post-quantum cryptography standardization process,” Jul. 2020,

doi: 10.6028/nist.ir.8309.
[21] Terasic Technologies, “Terasic - SoC Platform - Cyclone - DE10-Nano Development and Education Board,” Terasic.com.tw,

2025. https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046&PartNo=3. (Accessed Dec. 12, 2025).
[22] Y. Zhang, Y. Cui, Z. Ni, D.-E.-S. Kundi, D. Liu, and W. Liu, “A Lightweight and Efficient Schoolbook Polynomial Multiplier for

Saber,” in 2022 IEEE International Symposium on Circuits and Systems (ISCAS), May 2022, pp. 2251–2255, doi:

10.1109/iscas48785.2022.9937496.
[23] Y. Zhu et al., “A 28nm 48KOPS 3.4µJ/Op Agile Crypto-Processor for Post-Quantum Cryptography on Multi-Mathematical

Problems,” in 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, pp. 514-516,

doi: 10.1109/ISSCC42614.2022.9731783.
[24] L. Malina et al., “Post-quantum era privacy protection for intelligent infrastructures,” IEEE Access, vol. 9, pp. 36038–36077,

2021, doi: 10.1109/ACCESS.2021.3062201.

[25] Y. Zhang, C. Wang, D. E. S. Kundi, A. Khalid, M. O’Neill, and W. Liu, “An Efficient and Parallel R-LWE
Cryptoprocessor,” IEEE Transactions on Circuits and Systems. II, Express Briefs, vol. 67, no. 5, pp. 886–890, May 2020, doi:

10.1109/tcsii.2020.2980387.

[26] P. Nannipieri, S. Di Matteo, L. Zulberti, F. Albicocchi, S. Saponara, and L. Fanucci, “A RISC-V Post Quantum Cryptography
Instruction Set Extension for Number Theoretic Transform to Speed-Up CRYSTALS Algorithms,” IEEE Access, vol. 9, pp.

150798–150808, 2021, doi: 10.1109/access.2021.3126208.

[27] A. Abdulrahman, J.-P. Chen, Y.-J. Chen, V. Hwang, M. J. Kannwischer, and B.-Y. Yang, “Multi-Moduli NTTs for Saber on
Cortex-M3 and Cortex-M4,” IACR Transactions on Cryptographic Hardware and Embedded Systems, no. 1, pp. 127–151, 2021,

doi: 10.46586/tches.v2022.i1.127-151.

[28] Kh. Moldamurat, M. Bakyt, Y. Marat, O. Abdirashev, S. Brimzhanova, A. Sapabekov, and A. Atyzova, "Radio relay station with
a communication channel protection unit for an unmanned aerial vehicle (in Russian: Радиорелейная станция с блоком

защиты канала связи для беспилотного летательного аппарата)," Рatent for utility model No. 2025/0342.2 dated

05/16/2025, https://gosreestr.kazpatent.kz/Utilitymodel/Details?docNumber=420319. (Accessed 26 Jan. 2026).
[29] “Lattice -based homomorphic encryption of vector spaces,” IEEE, 2008. [Online]. Available:

https://patentimages.storage.googleapis.com/fa/8f/1f/a4ab721c940e65/US10581604.pdf. (Accessed: Feb. 15, 2025).

[30] G. Alagic et al., “Status report on the first round of the NIST post-quantum cryptography standardization process,” National

https://doi.org/10.1109/iscas48785.2022.9937496
https://gosreestr.kazpatent.kz/Utilitymodel/Details?docNumber=420319

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Optimizing the implementation of the Saber post-quantum cryptography scheme with … (Sabyrzhan Atanov)

873

Institute of Standards and Technology Internal Report 8240, Jan. 2019, doi: 10.6028/nist.ir.8240.
[31] R. Asif, “Post-Quantum Cryptosystems for Internet-of-Things: A Survey on Lattice-Based Algorithms,” IoT, vol. 2, no. 1, pp. 71–

91, Feb. 2021, doi: 10.3390/iot2010005.

[32] J. P. Lewis, M. Passovoy, S. A. Conti, P. A. McFate, and F. E. Trobaugh, “The Effect of Cooling Regimens on the
Transplantation Potential of Marrow,” Transfusion, vol. 7, no. 1, pp. 17–32, Jan. 1967, doi: 10.1111/j.1537-2995.1967.tb04826.x.

[33] M. Turnel “BC / public / Postquantumcryptoengine ·GitLab,” GitLab, 2025, [Online]. Available:

https://gitlab.linphone.org/BC/public/postquantumcryptoengine. (Accessed Feb. 15, 2025).
[34] M. Á. G. de la Torre, L. H. Encinas, and A. Queiruga-Dios, “Analysis of the FO Transformation in the Lattice-Based Post-

Quantum Algorithms,” Mathematics, vol. 10, no. 16, p. 2967, Aug. 2022, doi: 10.3390/math10162967.

[35] B. Makhabbat, M. Khuralay, K. Assem, M. Adil, and S. Dina, “Integration of Cryptography and Navigation Systems in
Unmanned Military Mobile Robots: A Review of Current Trends and Perspectives” in DTESI 2023: Proceedings of the 8th

International Conference on Digital Technologies in Education, Science and Industry, 2023.

[36] M. Azouaoui, Y. Kuzovkova, T. Schneider, and C. Van Vredendaal, “Post-Quantum Authenticated Encryption against Chosen-
Ciphertext Side-Channel Attacks,” IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 372–396, Aug.

2022, doi: 10.46586/tches.v2022.i4.372-396.

[37] P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of
materials,” Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502, Sep. 2009, doi: 10.1088/0953-8984/21/39/395502.

[38] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of

Modern Physics, vol. 81, no. 1, pp. 109–162, 2009, doi: 10.1103/revmodphys.81.109.
[39] A. Park and D. Han, “Chosen ciphertext Simple Power Analysis on software 8-bit implementation of ring-LWE encryption,” in

2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST), Yilan, Taiwan, 2016, pp. 1-6, doi:

10.1109/AsianHOST.2016.7835555.
[40] Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma, “Multiple-Valued Plaintext-Checking Side-Channel

Attacks on Post-Quantum KEMs,” IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 473–503, Jun.

2023, doi: 10.46586/tches.v2023.i3.473-503.
[41] A. Akhmadiya, N. Nabiyev, K. Moldamurat, K. Dyussekeyev, and S. Atanov, “Use of Sentinel-1 Dual Polarization Multi-

Temporal Data with Gray Level Co-Occurrence Matrix Textural Parameters for Building Damage Assessment,” Pattern

Recognition and Image Analysis, vol. 31, no. 2, pp. 240–250, Apr. 2021, doi: 10.1134/s1054661821020036.
[42] J. Howe, A. Khalid, M. Martinoli, F. Regazzoni, and E. Oswald, “Fault Attack Countermeasures for Error Samplers in Lattice-

Based Cryptography,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), May 2019, doi:

10.1109/iscas.2019.8702794.
[43] T. Kamucheka, A. Nelson, D. L. Andrews, and M. Huang, “A Masked Pure-Hardware Implementation of Kyber Cryptographic

Algorithm,” 2022 International Conference on Field-Programmable Technology (ICFPT), Hong Kong, 2022, pp. 1-1, doi:

10.1109/ICFPT56656.2022.9974404.
[44] C. Zhang, Z. Liu, Y. Chen, J. Lu, and D. Liu, “A Flexible and Generic Gaussian Sampler With Power Side-Channel

Countermeasures for Quantum-Secure Internet of Things,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8167–8177, Mar.

2020, doi: 10.1109/jiot.2020.2981133.
[45] M. Guerreau, A. Martinelli, T. Ricosset, and M. Rossi, “The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on

Falcon,” IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 141–164, Jun. 2022, doi:

10.46586/tches.v2022.i3.141-164.
[46] A. Khalid, J. Howe, C. Rafferty, and M. O'Neill, “Time-independent discrete Gaussian sampling for post-quantum

cryptography,” Research Portal (Queen’s University Belfast), Dec. 2016, doi: 10.1109/fpt.2016.7929543.

[47] F. Bache, C. Paglialonga, T. Oder, T. Schneider, and T. Güneysu, “High-Speed Masking for Polynomial Comparison in Lattice-
based KEMs,” IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 483–507, Jun. 2020, doi:

10.46586/tches.v2020.i3.483-507.

[48] A. Abdulrahman, V. Hwang, M. J. Kannwischer, and A. Sprenkels, “Faster Kyber and Dilithium on the Cortex-M4,” Lecture
Notes in Computer Science, pp. 853–871, Jan. 2022, doi: 10.1007/978-3-031-09234-3_42.

[49] B. -Y. Sim, A. Park and D. -G. Han, “Chosen-Ciphertext Clustering Attack on CRYSTALS-KYBER Using the Side-Channel
Leakage of Barrett Reduction.” IEEE Internet of Things Journal, vol. 9, no. 21, 1 Nov. 2022, pp. 21382–21397, doi:

10.1109/jiot.2022.3179683.

[50] J.-P. D’Anvers, Q. Guo, T. Johansson, A. Nilsson, F. Vercauteren, and I. Verbauwhede, “Decryption Failure Attacks on IND-
CCA Secure Lattice-Based Schemes,” Lecture Notes in Computer Science, pp. 565–598, Jan. 2019, doi: 10.1007/978-3-030-

17259-6_19.

BIOGRAPHIES OF AUTHORS

Sabyrzhan Atanov is a doctor of technical sciences, a professor at the

Department of Computer Science of the L.N. Gumilyov Eurasian National University, Astana,

Kazakhstan, head of a number of projects under the grant of the Ministry of Education and

Science of the Republic of Kazakhstan. His research is focused on system design with

artificial intelligence and design and programming of microcontroller embedded systems. He

can be contacted at email: atanov5@mail.ru.

mailto:atanov5@mail.ru
https://orcid.org/0000-0003-2115-7130
https://scholar.google.ru/citations?user=VwkHBekAAAAJ&hl=ru
https://www.scopus.com/authid/detail.uri?authorId=56369798600
https://www.webofscience.com/wos/author/record/321387

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 860-874

874

Khuralay Moldamurat was educated at the I. Zhansugurova Zhetysu State

University, Specialist: "Physics and Informatics", Academy of Economics and Law named

after academician U.A. Dzholdasbekov, Bachelor of the specialty "Finance", Turkish State

University, Ankara, 2008, 2010 Candidate of Technical Sciences at the NSA at the Institute of

Mathematics. Currently, she is Associate Professor of the Department of Space technique and

technology of the L.N. Gumilyov Eurasian National University, Astana, Kazakhstan. Her

research interests include IT technologies, radio engineering, programming of microcontrollers

and automation systems, and modern technologies for designing space nanosatellites. She can

be contacted at e-mail: moldamurat@yandex.kz.

Luigi La Spada received his bachelor’s and master’s degree (summa cum laude)

in Electronics Engineering from University of RomaTre in 2008 and 2010, respectively. From

November 2018 he is in the School of Engineering and the Built Environment at Edinburgh

Napier University as Lecturer in Electrical and Electronic Engineering. His research received

international scientific recognition and high distinction on several media press (i.e., CNN,

CBS, Times, Aspen Institute). He can be contacted at email: L.LaSpada@napier.ac.uk.

Makhabbat Bakyt received her Bachelor of Engineering and Technology and

Master of Engineering from the L. N. Gumilyov Eurasian National University, Astana,

Kazakhstan. She is currently a Doctoral student of the Department Information Security

Department of the L. N. Gumilyov Eurasian National University. Her research interests

include aircraft data encryption, cryptographic protection, and information security. She can

be contacted at email: bakyt.makhabbat@gmail.com.

Adil Maidanov received his Master of Science in Interdisciplinary Studies from

the UTRGV, Brownsville, USA, and his Master of Computer Science from the L. N.

Gumilyov Eurasian National University, Astana, Kazakhstan. He is currently a Doctoral

student in the Computer and Software Engineering Department at the L. N. Gumilyov

Eurasian National University. His research interests include IT technologies, cryptographic

protection, programming of microcontrollers, and automation systems. He can be contacted at

email: makeadil@mail.ru.

https://ftf.enu.kz/subpage/kosmicheskaya-tehnika-i-tehnologii
https://ftf.enu.kz/subpage/kosmicheskaya-tehnika-i-tehnologii
https://orcid.org/0000-0002-3691-6948
https://scholar.google.com/citations?view_op=list_works&hl=ru&authuser=4&user=IxBmu7AAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57209971029
https://www.webofscience.com/wos/author/record/IWM-2085-2023
https://orcid.org/0000-0003-4923-1320
https://scholar.google.com/citations?user=6TfV50AAAAAJ&hl=ru&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=54397335200
https://orcid.org/0000-0002-1246-9696
https://scholar.google.com/citations?view_op=list_works&hl=ru&user=a0O5T4wAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58250097200&origin=recordPage
https://www.webofscience.com/wos/author/record/GZM-1321-2022
https://orcid.org/0000-0003-2392-5164
https://www.scopus.com/authid/detail.uri?authorId=57460155600
https://www.webofscience.com/wos/author/record/3793192

