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 The growing need to supply quality electrical energy to end-users has given 

rise to various studies and research on the technical parameters that this 

energy should possess. In addition, many users perceive that many of the 

problems in the operation of their household appliances are related to the 

quality of the electrical energy that reaches their homes. One of the 

fundamental problems affecting the quality of electrical power is the so-

called voltage dips, which are nothing more than disturbances of great 

relevance due to their direct consequences, secondary effects, and frequency 

of occurrence. In this research, a study is conducted to evaluate the 

occurrence of three-phase voltage dips in a simplified electrical network in 

Santiago de Cuba, Cuba. As a result, the Santiago Norte substation presents 

the most detrimental behavior. In addition, 50% of the simulations 

performed on the behavior of the Santiago East Substation, which handles a 

voltage of 13.8 kV, showed that it is the substation where the deepest 

voltage dips occur. Based on the results obtained, it has been decided to 

change the transformer tapping of the affected substations to reduce the 

occurrence of voltage dips and ensure stable operation in the event of three-

phase faults in the power system under analysis. 
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1. INTRODUCTION 

With the advancement, diversification, and proliferation of electronic devices and appliances 

connected to industrial electrical systems, an increasing number of pieces of equipment are becoming 

sensitive to voltage dips. These devices include computer equipment, command and control elements, speed 

control devices, and frequency inverters, all of which play a crucial role in production processes. Therefore, 

their proper functioning is vital for achieving an efficient and uninterrupted operation [1], [2]. 

Electric power is a service that must meet specific quality criteria. However, determining the 

parameters corresponding to the quality criteria for electric power is a complex task. This is so much so that, 

even though this issue has been formally addressed for several decades, there is no universal consensus on 

how to quantify the quality of electrical energy [3], [4]. However, within the electricity sector, some theories 

https://creativecommons.org/licenses/by-sa/4.0/
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have become more widespread than others. For example, some theories have been used to describe the 

quality of electricity service, which is divided into the continuity of supply and the quality of the product. 

The first is associated with interruptions, and the second is with the voltage waveform [5]–[9]. 

The growing need to supply users with quality electrical energy has led to extensive research and 

debate on the technical aspects that should be determined. In addition, users of electrical energy have a 

growing perception that part of the problems with their electrical appliances' operation has to do with the 

electrical network to which they are connected [10], [11]. 

One of the problems that affects the quality of the electrical product is voltage dips, which are also 

highly relevant disturbances due to their direct consequences, secondary effects, and frequency of appearance 

[12], [13]. According to Alvarez and Gómez [14], a voltage dip is a transient voltage reduction to magnitudes 

between 90% and 10% of the nominal value. The equipment disconnected from the electrical service due to 

these voltage reductions is called sensitive equipment. Today, in power systems, the incidence of voltage dips 

is high, being considered by some authors as responsible for about 80% of users' claims to electricity 

companies due to transient disturbances that have led to damage to household appliances. In addition, 

Alvarez and Gómez [14], it is stated that due to the high sensitivity of electronic equipment with digital 

clocks, there is an increasing tendency for instantaneous reconnection of the protections that clear the faults, 

which generally have a response time between 0.3 and 0.5 seconds. 

Sometimes, the electrical protections can produce an unwanted trip that isolates elements of the power 

system, leading to more problems than solutions. This is particularly true in the case of the disconnection of 

small, dispersed generators connected in parallel with the electrical network, known as distributed generation 

(DG). According to the definition of the Institute of Electrical and Electronics Engineers (IEEE), which is one 

of the best known, DG "is the generation of electricity through facilities that are sufficiently small compared to 

large generation plants, so that they can be connected almost anywhere in an electrical system" [15]. 

In this sense, it is essential to consider that in the introduction of DG in electrical distribution 

systems, in addition to the economic benefit, the reliability, security, and quality of supply in the distribution 

system must be ensured, which must comply with the technical restrictions of the operational criteria. In 

some DG sites with non-conventional sources as their primary source, which are variable and uncontrolled, 

such as wind or solar energy, there is no guarantee that the operational criteria will be met [16]–[20]. 

The present investigation presents a study to determine the triphasic voltage gaps in the nine load 

nodes of the simplified electrical network of Santiago de Cuba, Cuba, and proposes measures to correct these 

voltage gaps. These analyses are performed with the professional Power System Xplorer (PSX). 

 

 

2. METHOD 

2.1.  Conceptualization of voltage dips 

Voltage dips are the most frequent disturbances in the electrical network. Generally, several voltage 

dips per year can be expected at the grid connection point of a typical industrial site. Usually, the voltage of 

the electrical network oscillates around its nominal value with variations included in a maximum range of 

±10% of said value. According to Rauf and Khadkikar [21], Al-Ammar et al. [22], a voltage dip is the 

sudden reduction of the voltage value in one or more phases of the transmission lines, followed by a rapid 

restoration to its nominal value after some time between half a period of the signal and 1 minute. 

According to IEC TR [23], for the voltage reduction to be considered a dip, the value must be 

between 1% and 90% of its nominal value. A value below 1% is usually a short interruption. Voltage dips are 

typically characterized by their depth and duration, as shown in Figure 1(a). Depth measures relative voltage 

reduction and is measured at the deepest point of the dip. In the example of Figure 1(b), the voltage decreases 

to 70% of its nominal value, considering that the hole has a depth of 30%. 
 

 

  
(a) (b) 

 

Figure 1. Characteristic parameters of a voltage dip; (a) depth and duration; (b) example of a 30% voltage dip [13] 
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The voltage is usually measured by its practical value calculated for each half period, RMS1/2, so 

the minimum duration for a voltage dip is set at half a period. The duration is when the voltage is less than 

90% of the nominal value. In Figure 1(b), the gap lasts 140 ms. 

 

2.2.  Origin of voltage dips 

Electrical networks connect electrical energy generation with its consumption through conductors 

that are inductive by their very nature. Any increase in the electric current that circulates through them causes 

a decrease in the voltage value. Typically, these dips are small enough for the voltage to stay within its 

standard operating range. Sometimes, however, a large current can cause the voltage to go out of tolerance, 

causing a voltage dip to appear [24], [25]. 

According to Tu et al. [13], the most frequent causes of voltage dips in electrical networks are short 

circuits caused by faults in the ground or between two conductors of said networks. These faults represent 

70% of the voltage dips and short-term interruptions in power lines. They are mainly due to lightning strikes, 

contacts caused by animals or tree branches, and meteorological phenomena such as strong winds, heavy 

rains, or snow. These faults produce voltage drops whose depth decreases depending on the distance from the 

fault. The actuation of resettable circuit breakers or main fuses prevents them from lasting long-term. Other 

causes of the appearance of voltage dips are given by the connection of large transformers, which at the time 

of start-up can absorb a reactive current more significant than ten times their nominal current, and, very 

rarely, failures of the voltage regulators installed in the transformers of the transmission and distribution 

networks. 

As can be seen, practically all the voltage dips are due to the circulation of large currents through the 

electrical network, which causes voltage drops in the network's impedance. Although the causes of these 

currents are very diverse, from the point of view of the electrical network, the effect produced by all of them 

is the same, and they are characterized by a decrease in voltage whose depth depends on the current 

magnitude and phase, and on the network impedance. In three-phase networks, voltage dips can be divided 

into two large categories, symmetrical and asymmetrical, corresponding with the type of fault that originates 

them [13], Figures 2(a)-(c). 
 

 

  
(a) (b) 

 

 
(c) 

 

Figure 2. Voltage signal waveforms; (a) waveform of the voltage signal when asymmetric dips occur in three-

phase networks, (b) a single-phase asymmetrical dip occurs in phase A, and (c) during a two-phase 

asymmetrical dip occurs in phases B and C 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 27-38 

30 

As shown in Figure 2(a), when symmetrical dips occur in three-phase networks, the voltages of the 

three phases decrease in the same proportion. Asymmetric dips happen when the voltage drops of the three 

phases are unequal and unbalanced. The most common asymmetric sags are usually single-phase sags that 

only affect one phase (Figure 2(b)), and bi-phase voltage sags where two phases are affected (Figure 2(c)). 

Most electrical network faults are caused by short circuits between a phase and the ground. A 

lightning discharge, for example, often produces an overvoltage value sufficient to cause an electric arc 

between the line and the metal support that supports it. As the towers are connected to the ground for their 

protection, the ignition causes a short circuit between the line and the ground, called a single-phase ground 

fault [26]-[28]. 

Two-phase faults usually consist of short circuits between two phases that can be caused, for 

example, by an electric arc between two phases of a line when they are brought too close together due to a gust 

of wind [29], [30]. Finally, symmetrical faults occur when large currents flow through the three phases of a 

line. These currents can be caused by large load starts or accidents involving the same line's phases [31]-[34]. 

 

2.3.  Voltage dip parameters 

Research by Bagheri and Bollen [35] states that several parameters must be considered when 

describing what characterizes a voltage dip and what differentiates it from other phenomena that occur in the 

voltage wave. One of the main parameters that characterizes voltage dips is the difference between the voltage 

value during the voltage dip and a reference value, commonly the nominal voltage (Un) or the declared voltage 

(Uc). The different existing regulations consider that the voltage must fall below 90% of the voltage taken as a 

reference for it to be hollow. If this is not the case, there would be voltage variations or fluctuations [15], [16]. 

It is also essential to specify the maximum depth of the dip to establish the border between the 

voltage dip and the interruption (voltage zero). According to EN 50160:2010 [36], a voltage that drops below 

1% of the reference voltage is considered an interruption and, otherwise, a dip. Set the limit to 10% [37].  

Another important parameter that characterizes voltage dips is when the voltage falls below 90% of 

the reference voltage value. In references [23], [36], the lower limit is defined as half a cycle, which is the 

minimum duration over which the practical value of the voltage can be assessed. According to IEC TR [23], a 

voltage dip is described as lasting "a few seconds," while in [36], it is specified to last for 1 minute. The 

difference in dip duration between the two standards is associated with the causes of the dips and the trip 

times of the protection devices, as noted in reference [38].  

It is important to note that most standards categorize voltage dips based on their duration, 

particularly those lasting less than one second. For instance, standard [36] defines the duration as less than  

1 second, while [23] specifies it to be between 100 milliseconds and 1500 milliseconds, and [38] also sets it 

at 1 second. IEC 61000-4-11:2020 [39], voltage dips are classified according to their duration: instantaneous 

dips, which last between 0.5 and 30 cycles (approximately 8.3 milliseconds to 0.5 seconds); momentary dips, 

which occur within a range of 30 cycles to 3 seconds (from 0.5 seconds to 3 seconds), and temporary dips, 

lasting from 3 seconds up to 1 minute. This classification helps in understanding the different types of 

voltage dips.  

The reference value (Uref) allows voltage drops to be expressed in percentage values to compare 

different points and voltages [40]. According to EN 50160:2010 [36], applying the following definitions to 

the reference voltage is possible. The supply voltage is the practical value of the voltage at a given instant at 

the supply point. The nominal voltage (Un) is the voltage value that characterizes or identifies a network and 

references specific operating characteristics.  

The declared voltage (Uc) corresponds to the network's nominal voltage (Un). If, by agreement 

between the distributor and the customer, the applied supply voltage differs from the rated voltage, this 

corresponds to the declared supply voltage. The depth of the hole is defined according to (1): 

 

∆𝑈(%) =
𝑈𝑟𝑒𝑓−𝑈𝑚𝑖𝑛

𝑈𝑟𝑒𝑓
× 100 (1) 

 

Uref is the reference voltage, Umin is the minimum voltage, and ∆𝑈 is the depth of the hole.  

When significant disturbances occur in an electrical power system (EPS), such as symmetrical and 

asymmetrical faults in lines and bars, voltage dips occur in the nodes during the transitory process from the 

fault until it is eliminated [41], [42]. 

 

 

3. RESULTS AND DISCUSSION 

The case study developed to evaluate voltage dips analyzes a simplified electrical network of the 

Santiago de Cuba province that presents high (110 kV and 220 kV) and medium voltage (34.5 kV and  
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13.8 kV) levels. This network receives electrical energy from the rest of the interconnected national system 

(INS) through the Cueto link node, the reference node of the analyzed system. 

Other generating plants of different natures are also connected to the analyzed electrical network, 

including Diesel and fuel-il generator sets and photovoltaic plants, constituting the DG of this simplified 

system [43]-[46]. Table 1 shows the operating data of the load nodes during hours of maximum demand, with 

an average power factor in the load of 0.91. These nodes will be used to study the possibility of voltage dips 

and their classification. 

 

 

Table 1. Data of the nine load nodes of the simplified network of the province of Santiago de Cuba 
Electrical substation Vop (kV) P (MW) Q (MVAr) S (MVA) PF 

1. Stgo industrial 34.8 6 3.73 7.06 0.84 

2. Palma 14 8.22 3.48 8.93 0.92 
3. Stgo Oeste 13.7 12.14 4.4 12.91 0.93 

4. Stgo Norte 13.4 17.39 6.65 18.62 0.93 

5. San Luis 34.5 21.71 12.04 24.82 0.87 
6. Pavón 14 25.17 11.7 27.76 0.91 

7. Stgo Este 13.8 14.3 19.81 7.74 21.27 0.93 

8. Stgo Este 34.5 34.5 6.86 2.79 7.04 0.97 
9. Contramaestre 33.8 27.06 10.59 29.06 0.93 

 

 

Various dynamic simulations were conducted to investigate the presence of triphasic gaps in the 

nine load nodes of the simplified network in Santiago de Cuba. First, a three-phase fault was simulated at the 

bus of one of the substations or load nodes. The voltage behavior during the transient process in the 

remaining load nodes was then observed to identify which nodes experienced gaps under tension. This 

analysis will help in proposing corrective measures for these issues. 

The technical standards referred to in [26], [36] consider whether the voltage drop is classified as a 

voltage dip since they contemplate the occurrence of a voltage dip when the voltage value is between 1 and 

90 % of the face value. A value below 1% is considered a short interruption and above 90% is within the 

normal operating range. Using the professional software PSX, a run of the system's power flow was carried 

out with all the transformers in the neutral position of the tap changer. Under these operating conditions, the 

Santiago Industrial and San Luis substations had overvoltages of 1.05 p.u. and 1.04 p.u., respectively. The 

taps of the transformers were adjusted until they reached values of 1 p.u.  

Once the voltages in these substations were adjusted, a three-phase fault was simulated in each of 

the substations separately, and the voltage deviation in the rest of the substations was observed. The results 

obtained from the simulation are shown in Table 2. 

 

 

Table 2. Data of the voltage deviation in the nine load nodes in relation to the three-phase fault in a substation 

Sub station 
Triphasic fault (Vop/Vgap) (p.u.) 

1 2 3 4 5 6 7 8 9 

1 0 0.83 0.96 0.97 0.91/0.87 0.7 0.96 0.96 0.92/0.9 

2 0.96 0 0.96 0.96 0.91/0.91 0.69 0.96 0.96 0.92/0.91 

3 0.94 0.82 0 0.95 0.9/0.89 0.68 0.94 0.94 0.93/0.9 
4 0.92 0.8 0.92 0 0.88/0.87 0.66 0.92 0.92 0.89/0.88 

5 0.96 0.83 0.96 0.96 0 0.7 0.96 0.96 0.92/0.89 

6 0.96 0.83 0.96 0.97 0.92/0.9 0 0.96 0.97 0.93/0.92 
7 0.94 0.83 0.94 0.95 0.92/0.85 0.69 0 0.94 0.91/0.88 

8 0.95 0.82 0.95 0.95 0.9/0.91 0.68 0.95 0 0.91/0.92 

9 0.95 0.82 0.95 0.95 0.91/0.9 0.7 0.95 0.95 0 

 

 

Table 2 shows the simulation results of the three-phase fault in each of the substations, observing 

that voltage dips occurred in the substations of 1-Santiago Industrial, 3-Stgo Oeste, 4-Stgo Norte, 7-Stgo East 

13.8 kV, and 8-Stgo East 34.5 kV. There were no voltage dips in the rest of the substations since the voltage 

decrease in each was above 90%. 

The Stgo Norte substation has the most significant dynamic instability due to three-phase faults in 

each load node, since the most considerable voltage deviations occur, having four scenarios where voltage 

dips occur. Table 2 shows that voltage dips also happen at all nodes when a three-phase fault is simulated at 

the Palma substation because there is a decrease of 0.8 p.u. 

In this study, the worst scenario is obtained when a three-phase fault occurs in the 13.8 kV bus of the 

Pavón substation; since voltage dips below 90% of the rated voltage (Vn), the operation of the protection 

network in the post-fault regime does not exist, since all the protections must trip due to low voltage, as 
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shown in Figure 3. Figure 4(a) shows the voltage dips occurring in the remaining nodes when a three-phase 

fault is simulated in the San Luis substation. Figure 4(b) shows the voltage dips occurring in the remaining 

nodes when a three-phase fault is simulated in the Contramaestre substation. 
 

 

 
 

Figure 3. Voltage dips occurred in the nine nodes due to the failure of the Pavón substation 
 

 

  
(a) (b) 

 

Figure 4. Voltage behavior at the load nodes; (a) in the event of a three-phase fault at the San Luis substation 

and (b) in the event of a three-phase fault at the Contramaestre substation 
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Table 3 shows the data obtained when a three-phase fault is simulated in the San Luis substation, 

which brings about voltage dips in the 1-Santiago Industrial, 3-Stgo Oeste, 4-Stgo Norte, and 7-Stgo Este 

substations. The fault simulation causes the voltage at the Santiago Industrial substation to drop to 0.869 p.u. 

and the system to be restored to 0.91 p.u. At the 3-Stgo Oeste substation, there was a decrease of up to 0.891 

p.u., which was converted to 0.9 p.u. In addition, at the 7-Stgo Este 13.8 kV substation, a reduction of up to 

0.854 p.u. occurs, restored when it reaches 0.92 p.u. Lastly, we have the 4-Stgo Norte substation, which has 

the least favorable behavior with a decrease of up to 0.872 p.u. Under these conditions, the system is not 

restored because the voltage for which it stabilizes is 0.88 p.u. and is below 0.9 p.u., which is required by the 

standard. 
 

 

Table 3. Data of the voltage deviation in the load nodes about a three-phase fault in the San Luis and 

Contramaestre substations 

Substation name 
Transformer voltage Triphasic fault (Vop/Vgap) (p.u.) 

Vop (kV) Vop (p.u.) 5 9 

1. Stgo Industrial 34.8 1.01 0.91/0.869 0.92/0.903 

2. Palma 14 1.01 0.91/0.908 0.92/0.913 
3. Stgo Oeste 13.7 0.99 0.9/0.891 0.93/0.904 

4. Stgo Norte 13.4 0.97 0.88/0.872 0.89/0.882 

5. San Luis 34.5 1 0 0.92/0.892 

6. Pavón 14 1.01 0.92/0.902 0.93/0.918 

7. Stgo Este 13.8 13.6 0.99 0.92/0.854 0.91/0.878 
8. Stgo Este 34.5 34.5 1 0.9/0.906 0.91/0.918 

9. Contramaestre 33.8 0.97 0.91/0.903 0 

 

 

Table 3 also collects the data obtained when a three-phase fault is simulated in the Contramaestre 

substation; due to the fault, voltage dips occur in the San Luis, Stgo Este 13.8 kV, and Stgo Norte substations. 

The simulation of the three-phase fault causes the voltage at the San Luis substation to drop to 0.892 p.u. and 

the system to be restored to 0.92 p.u. In the Stgo Este 13.8 kV substation, a decrease of up to 0.878 p.u. 

occurs, restored when it reaches 0.91 p.u. The Stgo Norte substation has the least favorable behavior, with a 

reduction of up to 0.882 p.u. Under these conditions, the system is not restored because the voltage at which 

it stabilizes is 0.89 p.u., a value below 0.9 p.u. required by the standard. 

In both scenarios, when the three-phase fault is simulated in each of the San Luis and Contramaestre 

substations, the most significant decrease in voltage occurs at the Stgo Este 13.8 kV substation, recovering 

later until reaching a favorable post-failure state. Figure 5(a) shows that the depth of the voltage dip at the 

Stgo Este 13.8 kV Substation in the event of a three-phase fault at the San Luis substation is 13.3% and lasts 

0.93 seconds. According to the IEEE 1159 standard, which classifies voltage dips according to their duration, 

this dip is momentary. Figure 5(b) shows that the depth of the voltage dip at the Stgo Este 13.8 kV substation 

in the event of a three-phase fault at the Contramestre substation is 11.2% with a duration time of  

0.728 seconds, so it is also classified as a momentary gap. 
 
 

  
(a) (b) 

  

Figure 5. Voltage drops parameters occurring at the Stgo Este 13.8 kV substation; (a) in the event of a three-

phase fault at the San Luis substation and (b) in the event of a three-phase fault at the Contramaestre 

substation 
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3.1.  Measures to correct voltage dips 

To reduce the occurrence of voltage dips in the event of simulated three-phase faults, the operating 

voltage level (Vop) at the nodes where these phenomena occur is raised. This higher level of operating 

voltage is achieved by changing the tap position of the transformers in the corresponding substations. 

Table 4 shows the values obtained with the tap change in the transformers found in the nodes of the 

substations of 1-Santiago Industrial, 3-Stgo Oeste, 4-Stgo Norte, 5-San Luis, and 7-Stgo Este 13.8 kV, where 

it is observed that voltage dips are eliminated. There is only one voltage dip at the Santiago Industrial 

substation in a three-phase fault at the San Luis substation. Increasing the transformer voltage further is 

impossible because it exceeds 5% of the NC standard's nominal voltage 365:11 [38]. 

 

  

Table 4. Data of the voltage deviation in the load nodes with tap change of the transformers of five 

substations in relation to a three-phase fault in the San Luis and Contramaestre substations 

Substation 
Triphasic fault (Vop/Vgap) (p.u.) 

1 2 3 4 5 6 7 8 9 

1 0 0.83 0.96 0.97 0.93/0.89 0.7 0.96 0.96 0.94/0.91 

2 0.96 0 0.96 0.96 0.91/0.91 0.69 0.96 0.96 0.92/0.91 

3 0.94 0.82 0 0.95 0.92/0.92 0.68 0.94 0.94 0.93/0.9 
4 0.92 0.8 0.92 0 0.92/0.9 0.66 0.92 0.92 0.93/0.92 

5 0.96 0.83 0.96 0.96 0 0.7 0.96 0.96 0.93/0.9 

6 0.96 0.83 0.96 0.97 0.92/0.9 0 0.96 0.97 0.93/0.92 
7 0.94 0.82 0.94 0.95 0.94/0.9 0.69 0 0.94 0.95/0.92 

8 0.95 0.82 0.95 0.95 0.9/0.91 0.68 0.95 0 0.91/0.92 

9 0.95 0.82 0.95 0.96 0.91/0.9 0.7 0.95 0.95 0 

 

 

Figure 6(a) shows the behavior of the voltage values in the nine load nodes of the simplified 

network of the province of Santiago de Cuba before the simulated three-phase fault in the San Luis substation 

when the tap change of the transformers was carried out, connected to the load nodes. Figure 6(b) shows the 

behavior of the voltage values in the nine load nodes of the simplified network of the province of Santiago de 

Cuba before the simulated three-phase fault in the Contramaestre substation when the tap change of the 

transformers was carried out, connected to the load nodes. Figure 7 shows the voltage dip at the Santiago 

Industrial substation. It is classified as instantaneous since its duration was 0.444 seconds, less than the  

0.5 seconds required by the IEEE 1159 standard. In addition, the depth of the voltage dip was 13.1%. 

  

 

  
(a) (b) 

 

Figure 6. Behavior of the voltage values in the nodes; (a) before the simulated three-phase fault in the San 

Luis substation and (b) before the simulated three-phase fault in the Contramaestre substation 
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Figure 7. Voltage dip in the Santiago Industrial substation due to the three-phase fault in the San Luis 

substation 

 

 

Finally, Table 5 shows the behavior of the voltage values in the nine nodes, simulating the minimum 

demand regime, and where the transformer taps were varied in five substations. Table 5 shows that the 

voltages of the nine nodes in the minimum demand regime do not exceed 5% of the nominal voltage of the 

node, complying with the NC 365:11 standard. Hence, compliance with the measures taken is feasible from 

the technical point of view and does not entail additional expenses for the system's stable operation under 

study. 

 

 

Table 5. Value of the voltage in the load nodes in the minimum demand regime and with a change in the tap 

of the transformers in five substations 

Electrical substation 
With transformer tap change 

Vop (kV) Vop (p.u.) 

1. Stgo Industrial 35.8 1.04 

2. Palma 14 1.02 
3. Stgo Oeste 14.3 1.04 

4. Stgo Norte 14.3 1.04 
5. San Luis 35.1 1.02 

6. Pavón 14.1 1.02 

7. Stgo Este 13.8 14.5 1.05 
8. Stgo Este 34.5 34.8 1.01 

9. Contramaestre 34.8 1.01 

 

 

4. CONCLUSION 

With the study of a simplified electrical network of the province of Santiago de Cuba, Cuba, for the 

evaluation of the voltage dips in the event of three-phase faults in the load nodes, it was obtained that the 

worst scenarios occur when there is a fault in the node of the Pavón substation. In addition, when there is a 

fault in the node of the Palma substation, all the nodes present voltage dips, and the voltages do not recover 

to the expected values, so there will be no post-fault operation of the network. 

The Stgo Norte substation presents the most damaging behavior, with voltage dips due to three-

phase faults in 50% of the simulations. On the other hand, the Stgo Este 13.8 kV substation is where the 

deepest voltage dips occur and are classified as momentary dips due to simulated three-phase faults at the 

San Luis and Contramaestre substations. With the analysis of these results, the measure of adjusting the tap 

settings of the transformers at the affected substations is implemented, thereby eliminating the occurrence of 

voltage dips and ensuring stable operation in the event of three-phase faults in the analyzed electrical system. 
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