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 High-quality Papanicolaou (Pap) smear images are essential for reliable 

early detection of cervical cancer, yet low contrast and noise often hinder 

accurate interpretation. This study introduces spider monkey optimization 

(SMO)-contrast-limited adaptive histogram equalization (CLAHE), an 

optimized CLAHE framework guided by the SMO algorithm. A novel signal 

contrast (SC) objective function is proposed, combining perceptual 

enhancement contrast enhancement-based image quality (CEIQ) with 

fidelity preservation peak signal-to-noise ratio (PSNR) to adaptively tune 

CLAHE parameters. Experiments on the publicly available SIPaKMeD and 

Mendeley LBC datasets demonstrate that SMO-CLAHE consistently 

outperforms manual settings and flower pollination algorithm (FPA)-based 

optimization, and achieves performance comparable to pelican optimization 

algorithm (POA) across key quality metrics including entropy, structural 

similarity index (SSIM), PSNR, enhancement measure estimation (EME), 

root mean square contrast (RMSC), standard deviation (STD-DEV), and 

CEIQ. Furthermore, downstream evaluation using a MobileNetV3-S 

classifier shows that the enhanced images lead to improved cervical cancer 

classification performance. These results highlight SMO-CLAHE as a robust 

and clinically relevant preprocessing framework, offering a new perspective 

for Pap smear image enhancement and diagnostic support. 
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1. INTRODUCTION 

Cervical cancer is still a leading cause of female cancer mortality worldwide, especially in low- and 

middle-income regions lacking early screening [1], [2]. The Papanicolaou (Pap) smear test is a standard early 

detection method, but its accuracy depends on the quality of the images [3]. In practice, Pap smear images 

often suffer from low contrast and imaging noise caused by variations in staining, illumination, and 

acquisition devices, making it difficult for cytologists to identify subtle morphological features [4]. 

To mitigate these limitations, contrast enhancement is commonly applied as a preprocessing step in 

medical image analysis [5]. Histogram equalization (HE) and its local variant, adaptive histogram 

equalization (AHE), are classical methods [6], but AHE can cause excessive enhancement and increase noise 

in uniform regions. Contrast-limited adaptive histogram equalization (CLAHE) addresses this issue by 

introducing a clip limit to control contrast amplification [7]. CLAHE has been successfully applied in diverse 

https://creativecommons.org/licenses/by-sa/4.0/
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tasks, including cervical cancer classification [8], object detection in low-light conditions [9], deep learning-

based medical image analysis [10], and segmentation of CT and underwater images [11], [12]. However, the 

performance of CLAHE depends strongly on two parameters—clip limit and tile grid size. Fixed parameter 

settings, such as the configuration proposed by Qassim et al. [13] (clip limit=0.01, tile size=8×8), may work 

for specific datasets but often fail to generalize across imaging conditions. 

To overcome this sensitivity, many studies have employed metaheuristic optimization to automate 

the selection of CLAHE parameters. Multi-objective particle swarm optimization (MOPSO) [14], whale 

optimization algorithm (WOA) [15], cuckoo search algorithm (CSA) [16], flower pollination algorithm 

(FPA) [17], adaptive sailfish optimization (ASFO) [18], cat swarm optimization (CSO) [19], and the pelican 

optimization algorithm (POA) [20] have all shown improvements when evaluated with metrics such as 

entropy, structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and standard deviation (STD-

DEV). Although effective, these methods still leave room for alternative optimizers with stronger global 

search capability, higher efficiency, and more robust convergence. 

Spider monkey optimization (SMO) is a relatively recent swarm-intelligence algorithm inspired by 

the fission–fusion foraging behavior of spider monkeys. Its adaptive leader–follower mechanism has proven 

effective for complex optimization tasks [21], [22]. Building on these strengths, this study introduces a new 

framework, SMO-CLAHE, to adaptively determine the optimal clip limit and tile grid size for enhancing Pap 

smear images. A key innovation is the use of signal contrast (SC) as the optimization objective SC combines 

contrast enhancement-based image quality (CEIQ) with PSNR through a multiplicative formulation, 

encouraging simultaneous improvement of perceptual contrast and noise suppression. CEIQ itself integrates 

cross-entropy, entropy, and SSIM to evaluate enhancement quality while preserving structural fidelity  

[23], [24]. Including PSNR ensures that contrast improvements do not come at the cost of excessive noise. 

The main contribution of this work is the development of a novel SMO-CLAHE framework that 

introduces SC as a new optimization goal to balance contrast enhancement and structural preservation. 

Unlike previous methods that rely solely on traditional metrics or fixed parameter choices, the proposed 

approach jointly optimizes CLAHE parameters using a metaheuristic search to improve both perceptual 

quality and noise control. The framework is thoroughly evaluated on SIPaKMeD and Mendeley LBC 

datasets using a broad range of image quality metrics—including entropy, SSIM, PSNR, enhancement 

measure estimation (EME), root mean square contrast (RMSC), STD-DEV, and CEIQ. It is further validated 

through a downstream classification task with a MobileNetV3-S model to demonstrate its practical value in 

cervical cancer detection. By combining an effective metaheuristic search strategy with a clinically relevant 

image quality metric, this study advances automated preprocessing for cervical cancer screening beyond 

basic parameter tuning, providing empirical evidence of its benefits for real diagnostic applications. 

 

 

2. METHOD 

2.1.  Image contrast enhancement 

Image contrast enhancement is a method that amplifies the brightness difference between objects 

and backgrounds, making objects more noticeable [25]. HE, AHE, and CLAHE are widely used for 

enhancing image contrast, including in medical images. HE redistributes pixel intensities to produce a 

uniform histogram [26]. The probability 𝑃(𝑟𝑖) of each intensity 𝑖 is (1): 

 

𝑃(𝑟𝑖) =
𝑛𝑖

𝑁
 (1) 

 

where 𝑛𝑖 is the number of pixels with intensity 𝑖 and 𝑁 is the total number of pixels. The cumulative 

distribution function (CDF) is (2): 

 

𝐶𝐷𝐹(𝑟𝑖) = ∑ 𝑃(𝑟𝑖)
𝑖
𝑗=0  (2) 

 

and the new intensity is (3): 

 

𝑖new = round (𝐶𝐷𝐹(𝑟𝑖) × (𝐿 − 1)) (3) 

 

with 𝐿 as the number of intensity levels (e.g., 256). HE works well globally but can create artefacts with 

skewed histograms. AHE applies HE to smaller image regions (tiles) to improve local contrast [26]: 

 

𝑖new(𝑝) = round (𝐶𝐷𝐹tile(𝑟𝑖) × (𝐿 − 1)) (4) 
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where 𝐶𝐷𝐹tile(𝑖) is the CDF within a tile. AHE handles uneven lighting but may amplify noise in uniform 

areas. CLAHE prevents over-enhancement by limiting the histogram count with a clip limit 𝛽 [27]: 
 

ℎ𝑡̂(𝑖) = 𝑚𝑖𝑛(ℎ𝑡(𝑖), 𝛽), 𝐸𝑡 = ∑ 𝑚𝑎𝑥𝐿−1
𝑖=0 (0,  ℎ𝑡(𝑖) − 𝛽) (5) 

 

ℎ𝑡̃(𝑖) = ℎ𝑡̂(𝑖) +
𝐸𝑡

𝐿
, 𝑠𝑘

(𝑡)
= (𝐿 − 1) 𝑇𝑡̃(𝑟𝑘) (6) 

 

where 𝑇𝑡̃ is the CDF of ℎ𝑡̃. Neighboring tiles are blended by bilinear interpolation. The CLAHE has two 

parameters that can be fine-tuned to optimize its performance. Each technique has its strengths and 

weaknesses. HE is computationally efficient and suitable for global enhancement, whereas AHE and CLAHE 

are better for localized contrast improvement, with CLAHE being the most noise-robust [28]. 

 

2.2.  Spider monkey optimization 

The foraging and social behavior exhibited by spider monkeys serves as a model for the 

development of the SMO algorithm. The goal is to find the best solution for complex optimization problems 

by copying the collaborating and adaptable behaviors of spider monkeys [21]. In SMO, each candidate 

(monkey) 𝑆𝑀𝑘 = [𝑆𝑀𝑘1, … , 𝑆𝑀𝑘𝐷] in 𝐷 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 space is initialized using by (7): 
 

𝑆𝑀𝑘𝑗 = 𝑆𝑀𝑚𝑖𝑛 𝑗 + 𝑅 (𝑆𝑀𝑚𝑎𝑥 𝑗 − 𝑆𝑀𝑚𝑖𝑛 𝑗) (7) 
 

Local leader (LL) update: each monkey updates its position based on its local leader 𝐿𝑒𝑎𝑑𝑒𝑟𝑘𝑗 , and a random 

peer 𝑆𝑀𝑟𝑗: 
 

𝑆𝑀𝑖𝑗
𝑛𝑒𝑤 = 𝑆𝑀𝑖𝑗 + 𝑅 (𝐿𝑒𝑎𝑑𝑒𝑟𝑘𝑗 − 𝑆𝑀𝑖𝑗) + 𝑈 (𝑆𝑀𝑟𝑗 − 𝑆𝑀𝑖𝑗) (8) 

 

Global leader (GL) selection: the probability of a solution being updated using (9): 
 

𝑝𝑟𝑜𝑏𝑖 = 0.9 ×
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

𝑚𝑎𝑥𝑓𝑖𝑡𝑛𝑒𝑠𝑠
+ 0.1 (9) 

 

where 𝑅 and 𝑈 are uniformly sampled from [0,1] and [−1,1], respectively; after each update, we clamp 𝑆𝑀𝑖𝑗 

to its bounds to prevent invalid parameters: 
 

𝑆𝑀𝑖𝑗 = 𝑚𝑖𝑛 (𝑚𝑎𝑥(𝑆𝑀𝑖𝑗 , 𝑆𝑀𝑚𝑖𝑛 𝑗) ,  𝑆𝑀𝑚𝑎𝑥 𝑗) (10) 
 

The best solution becomes the global leader, while subgroup leaders act as local leaders. Suppose no progress 

is made for a set number of steps. In that case, the local leader decision (LLD) reinitializes solutions, and the 

global leader decision (GLD) splits or merges groups to encourage exploration. SMO has been successfully 

used to optimize neural networks for intrusion detection systems and solve complex problems like optimizing 

redundant units for CoRAP in water treatment plants [29], [30]. 

 

2.3.  Contrast enhancement-based image quality 

The CEIQ method is designed to evaluate the quality of an image by analyzing how effectively its 

contrast has been improved. The procedure, as illustrated in Figure 1, begins with decolorization, where the 

original color image is converted into a grayscale version to simplify intensity-based analysis. Next, HE is 

applied to the grayscale image, enhancing its contrast by redistributing pixel intensities across the available 

range. Both the original and enhanced grayscale images undergo histogram computation, which generates 

intensity distributions for further evaluation. 
 

 

 
 

Figure 1. CEIQ evaluation model 
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The quality assessment is based on three main components: 

a. Image similarity: this step measures how closely the enhanced image retains the structural content of the 

original image. The SSIM is used for this purpose, producing a similarity score 𝑆𝑠𝑐 that reflects 

luminance, contrast, and structural preservation. SSIM is defined as (11): 

 

𝑆𝑆𝐼𝑀(𝐼, 𝐼) =
(2𝜇𝐼𝜇𝐼̂+𝐶1)(2𝜎𝐼𝐼̂+𝐶2)

(μ𝐼
2+μ

𝐼̂
2+𝐶1)(σ𝐼

2+σ
𝐼̂
2+𝐶2)

 (11) 

 

where 𝜇𝐼 , 𝜇𝐼 are mean intensity of I and 𝐼, 𝜎𝐼
2, 𝜎𝐼

2 is variance of I and 𝐼. σ𝐼 , σ𝐼 are covariance between I and 𝐼. 

𝐶1, 𝐶2 are small constants to stabilize the division. 

b. Entropy: this measures the amount of information or detail in the image by evaluating how uniformly 

brightness values are distributed. A higher entropy value generally indicates richer image details and 

improved contrast. 

 

Entropy = − ∑ 𝑝𝑖
𝐿−1
𝑖=0 𝑙𝑜𝑔2(𝑝𝑖) (12) 

 

where 𝑝𝑖  is the probability of occurrence of the intensity level 𝑖. Higher entropy values suggest more detailed 

and complex images, while lower values imply a uniform or less informative image. 

c. Cross-entropy: this quantifies the difference between the intensity histograms of the original and 

enhanced images. It is computed as (13): 

 

𝐸𝑥,𝑦 = − ∑ ℎ𝑥(𝑖)𝑏
𝑖=0 log (ℎ𝑦(𝑖)) (13) 

 

where ℎ𝑥(𝑖) and ℎ𝑦(𝑖) represent the normalized histogram values of the enhanced and original images, 

respectively, 𝑏 is the total number of histogram bins. The CEIQ score is computed by combining the SSIM, 

entropy, and cross-entropy metrics. This composite score reflects both the preservation of structural 

similarity and the enhancement of image contrast, making it a robust measure for evaluating contrast 

enhancement quality [31]. 

 

2.4.  Image quality assessment 

IQA is used to evaluate the quality of digital images. There are three main types of IQA models: no-

reference image quality assessment (NR-IQA), reduced-reference image quality assessment (RR-IQA), and 

full-reference image quality assessment (FR-IQA) [32]. In this study, several IQA metrics were used to 

evaluate the effectiveness of the proposed image enhancement method [33]. 

− EME is defined as (14): 

 

EME =
1

𝑀×𝑁
∑ ∑ [20 𝑙𝑜𝑔 (

𝐼max(𝑖,𝑗)

𝐼min(𝑖,𝑗)
)]𝑁

𝑗=1
𝑀
𝑖=1  (14) 

 

where 𝑀 and 𝑁 are the image height and width. 𝐼min(𝑖, 𝑗) and 𝐼max(𝑖, 𝑗) are the minimum and maximum pixel 

intensities in a block at position (𝑖, 𝑗). Higher EME values indicate better local contrast and sharper details in 

the image. 

− RMSC quantifies the overall contrast of the image by calculating the deviation of each pixel's intensity 

from the average intensity 𝐼.̅ It is calculated as (15): 

 

RMSC = √
1

𝑀×𝑁
∑ ∑ (𝐼(𝑖, 𝑗) − 𝐼)̅2𝑁

𝑗=1
𝑀
𝑖=1  (15) 

 

where 𝐼(𝑖, 𝑗) represents the intensity of the pixel at (𝑖, 𝑗) position, and 𝐼 ̅is the average intensity of all pixels. 

A higher RMSC reflects more distinct separation between features in the image. 

− Standard deviation (STD-DEV) measures the variation in pixel intensities, calculated as (16): 

 

STD DEV = √
1

𝑁
∑ (𝐼𝑖 − 𝜇)2𝑁

𝑖=1  (16) 

 

where 𝐼𝑖  is the intensity of pixel 𝑖, and 𝜇 is the mean intensity of the image. A higher standard deviation 

indicates greater contrast and image variation, contributing to improved image clarity and detail preservation. 
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2.5.  Experimental setup 

Figure 2 illustrates the workflow of the proposed CLAHE optimization using SMO. We used the 

SIPaKMeD dataset (five cervical cell classes) [34]. RGB images were converted to CIELAB; the L channel 

(luminance) was enhanced while preserving a/b (chromaticity) [35]. SMO optimized clip limit and tile grid 

size with 30 iterations and population size 50 [16]. The search ranges for the clip Limit were from 0.01 to 3, 

and for the tile grid size, from 2 × 2 to 16 × 16. These ranges were selected to incorporate the widely used 

defaults in medical imag (𝐶𝑙𝑖𝑝 𝐿𝑖𝑚𝑖𝑡 ≈  2.0, 𝑇𝑖𝑙𝑒 𝑆𝑖𝑧𝑒 = 8 × 8), allowing both conservative and aggressive 

enhancement while avoiding noise amplification [15]. The objective was to maximize the SC. After 

optimization, the enhanced L channel was recombined with the a/b channels and converted back to RGB. 

One hundred images were selected via stratified random sampling (twenty images per class). The 

experiments were conducted on a system with Windows 11, an AMD Ryzen 5500 CPU, an Nvidia RTX 

3060 12 GB GPU, 32 GB of RAM, and Python 3.11/OpenCV 4.9 (random seed=42). The performance was 

assessed through qualitative visual inspection by an anatomical pathologist, statistical analysis, and 

quantitative metrics: entropy, SSIM, PSNR, EME, RMSC, STD-DEV, and time process. A sensitivity 

analysis was conducted. Results indicated that minimal clip limits resulted in low-contrast images, while 

extremely high values increased noise and artifacts. Similarly, small tile grid sizes caused local over-

enhancement, whereas huge grid sizes reduced local contrast. In addition, MobileNetV3-S was employed to 

evaluate Pap smear images enhanced through different optimization approaches (manual setting, FPA, and 

POA). The pretrained MobileNetV3-S model from TorchVision was utilized to classify the optimized 

SIPaKMeD images, thereby assessing the impact of contrast enhancement on downstream classification 

performance. The model was trained using the Adamax optimizer with a learning rate of 0.001 over 30 

epochs, with the dataset split into 70% for training, 15% for validation, and 15% for testing. 
 
 
 

 
 

Figure 2. Simulation flowchart for SMO-CLAHE 

 

 

2.6.  Objective function (signal contrast) 

In this study, we define SC as a combined measure of perceptual enhancement and fidelity. Let 𝐼𝑜𝑟𝑖𝑔 

be the original image and 𝐼𝑒𝑛ℎ. The CLAHE-enhanced image. We compute CEIQ(𝐼𝑒𝑛ℎ) and PSNR 

(𝐼𝑒𝑛ℎ , 𝐼𝑜𝑟𝑖𝑔) (in dB). Because PSNR is expressed in decibels, we first normalize both metrics to the unit 

interval: 
 

𝐶𝐸𝐼𝑄̃ =
𝐶𝐸𝐼𝑄−𝐶𝐸𝐼𝑄𝑚𝑖𝑛

𝐶𝐸𝐼𝑄𝑚𝑎𝑥−𝐶𝐸𝐼𝑄𝑚𝑖𝑛
, 𝑃𝑆𝑁𝑅̃ =

𝑃𝑆𝑁𝑅−𝑃𝑆𝑁𝑅𝑚𝑖𝑛

𝑃𝑆𝑁𝑅𝑚𝑎𝑥−𝑃𝑆𝑁𝑅𝑚𝑖𝑛
 (17) 

 

The SC objective is then defined as the geometric mean (18): 
 

𝑆𝐶 = √𝐶𝐸𝐼𝑄̃ × 𝑃𝑆𝑁𝑅̃ (18) 
 

We maximize SC with respect to CLAHE parameters (clip limit ∈ [0.01,3.0], tile grid size  

∈ {2,…,16}). Normalization bounds (min/max) are computed from the current dataset range. This choice 

balances contrast enhancement (CEIQ) and noise suppression (PSNR) and avoids unit mismatch. 
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3. RESULTS AND DISCUSSION 

This section presents the results of the SMO-CLAHE method through both visual inspection and 

quantitative analysis. A pathology specialist evaluated the images for clarity, contrast, and preservation of 

cellular structures across different enhancement techniques. For the quantitative assessment, various metrics 

were used, including entropy, EME, RMSC, STD-DEV, and CEIQ. The performance of the proposed method 

was compared to other optimization techniques, and statistical significance was assessed using a paired t-test. 

This statistical analysis helps confirm the improvements brought by the SMO-CLAHE method in terms of 

image quality and structural preservation. 

 

3.1.  Qualitative visual inspection 

Pap-smear image analysis primarily focuses on accurately visualizing the nucleus and cytoplasm, as 

these structures are key to recognizing abnormal cell shapes and features, such as changes in nuclear size and 

shape, chromatin patterns, and the nucleus–to–cytoplasm (N/C) ratio [36]. To ensure clinical interpretability, 

the qualitative review by a specialist in anatomical pathology followed cytology-oriented quality criteria:  

i) nuclear contours are delineated with discernible chromatin texture; ii) cytoplasm is distinctly identifiable 

and uniformly visible, with intact boundaries and textural cues (vacuolation, perinuclear halo) preserved;  

iii) boundaries between nucleus–cytoplasm–background are well separated, minimizing artifacts such as 

haloing, ringing, blockiness, or stain-amplified speckle; iv) background cleanliness is adequate (suppression 

of debris and stain precipitates without erasing low-contrast actual structures); and v) in partially overlapping 

or crowded cells, intercellular interfaces remain discernible to support reliable estimation of nuclear size and 

N/C ratio [37]. These criteria directly reflect what cytologists require to judge pleomorphism, membrane 

irregularity, nucleolar prominence, and cytoplasmic changes during routine screening. 

Figure 3 contrasts enhancement strategies on a SIPaKMeD sample. The original image (Figure 3(a)) 

exhibits low contrast and soft edges, obscuring nuclear rims and fine chromatin granules. The cytoplasmic 

boundaries blend with the background, and subtle perinuclear clearing is not reliably discernible. With 

Qassim's manual CLAHE (Figure 3(b)), global contrast and edge sharpness improve modestly; however, 

subtle nuclear texture and thin cytoplasmic margins remain partially veiled, and boundary transitions are not 

consistently crisp. FPA-optimized CLAHE (Figure 3(c)) sharpens nuclear rims and reveals more chromatin 

detail, better meeting the criteria than manual tuning, though localized haloing appears at some high-contrast 

interfaces. POA-optimized CLAHE (Figure 3(d)) further strengthens local contrast and boundary separation, 

improving differentiation of nucleus from cytoplasm in crowded fields; minor over-enhancement at 

peripheral cytoplasm may occur but generally remains controlled. The proposed SMO-CLAHE (Figure 3(e)) 

provides the most balanced outcome: nuclear edges are crisp, chromatin granularity is visible without 

clipping, cytoplasm is uniformly rendered with preserved texture, and interfaces with background are cleanly 

separated while artifacts (halo/ringing) are minimized. This balance is crucial: over-enhancement can create 

false edges or saturate chromatin, whereas under-enhancement can conceal diagnostically relevant details. 

 

 

     
(a) (b) (c) (d) (e) 

 

Figure 3. Comparative enhancement results on SIPaKMeD and Mendeley Pap smear dataset; (a) original, 

(b) Qassim manual setting CLAHE, (c) FPA-CLAHE, (d) POA-CLAHE, and (e) SMO-CLAHE 

 

 

3.2.  Statistical analysis 

The paired t-test results provide strong evidence of SMO’s effectiveness compared to manual and 

FPA, while showing comparable performance to POA in most metrics. For entropy, SMO does not differ 

significantly from POA (SIPaKMeD: p=0.588; Mendeley LBC: p=1.0), indicating both methods maintain 

information content at similar levels. However, significant differences against manual and FPA (p<0.001) 
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demonstrate SMO’s ability to enhance entropy more effectively. Similarly, for SSIM, SMO achieves 

substantially higher values than manual and FPA across both datasets (p<0.001), confirming superior 

structural preservation, while remaining statistically indistinguishable from POA (p>0.3). PSNR results 

reinforce this trend: SMO is equivalent to POA (p>0.09) but significantly outperforms manual and FPA 

(p<0.001), which highlights its robustness in suppressing noise and reducing distortion. In contrast-related 

metrics (EME, RMSC, and STD-DEV), SMO and POA exhibit no significant differences (p=1.0), yet SMO 

consistently outperforms manual and FPA (p<0.001), underscoring its capacity for balanced contrast 

enhancement. The CEIQ metric further confirms these findings: SMO is comparable to POA but significantly 

superior to manual and FPA (p<0.001), reflecting its overall advantage in enhancing perceptual image quality. 

Analysis of the fitness function also reveals SMO’s superiority over manual and FPA (p<0.001), 

while maintaining parity with POA (p>0.09). Importantly, processing time results highlight SMO’s 

efficiency, showing significantly faster execution than manual and FPA (p<0.001). Although differences with 

POA are dataset-dependent—non-significant for SIPaKMeD (p=0.0879) but significant for Mendeley 

(p=7.79E-05)—SMO generally maintains competitive runtime performance. These findings suggest that 

while POA and SMO achieve comparable outcomes in most image quality metrics, SMO demonstrates a 

clear and consistent advantage over manual and FPA methods. The results emphasize SMO’s strength in 

balancing structural fidelity, contrast enhancement, and computational efficiency, making it a robust and 

reliable optimization strategy for Pap smear image enhancement. From a practical perspective, this implies 

that SMO can be adopted in real-world diagnostic workflows where high-quality images are critical for 

accurate classification, offering both quality improvement and reduced processing time compared to 

traditional and less advanced optimization approaches. 

Figure 4 compares the relationship between processing time (Runtime) and reconstruction quality 

(PSNR) for four optimization methods across the SIPaKMeD see Figure 4(a) and Mendeley LBC see  

Figure 4(b) datasets. Each point represents a single optimized image. A desirable solution is located toward the 

upper-left corner, where PSNR is high and runtime is low. On both datasets, the manual settings form a tight 

cluster near the origin, indicating very short runtimes but consistently low PSNR. This confirms that manually 

chosen parameters cannot match the quality achieved by the automated optimizers. The FPA method displays a 

broad vertical spread of PSNR values but maintains relatively moderate runtimes (around 7–10 seconds). This 

suggests that FPA can occasionally reach higher PSNR, but its results are less stable and sometimes converge to 

sub-optimal quality. POA and SMO consistently achieve the highest PSNR values (approximately 45–50 dB) 

but require longer processing times (about 15–20 seconds). Between these two, SMO tends to form a slightly 

tighter cluster at the upper end of PSNR, indicating more reliable convergence to high-quality solutions. POA 

shows a slightly wider range of runtimes, reflecting more variability in computational cost. These results 

highlight a clear trade-off between image quality and computational effort. For practical applications, the choice 

of method should depend on operational constraints. In settings where high diagnostic accuracy is critical and 

computation time is less important, SMO is preferable. In time-sensitive clinical environments, FPA could be 

considered when a small loss in PSNR is acceptable to achieve faster turnaround. 
 

 

  
(a) (b) 

 

Figure 4. Trade-off runtime vs PSNR; (a) SIPaKMeD and (b) Mendeley LBC dataset 

 

 

3.3.  Quantitative evaluation 

The quantitative results presented in Tables 1 and 2 provide insights into the comparative 

performance of different optimization strategies—POA, FPA, SMO, and manual CLAHE parameter 
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settings—when applied to cervical cell image enhancement. Across both datasets, several consistent patterns 

can be observed in terms of entropy, SSIM, PSNR, local contrast measures (EME and RMSC), as well as 

perceptual quality indices (CEIQ and Finess), which together provide a comprehensive picture of image 

enhancement quality. 

 

 

Table 1. Paired t-test on SIPaKMeD and Mendeley LBC datasets 
SipakMed dataset Mendeley LBC dataset 

Metrics SMO vs POA SMO vs manual SMO vs POA SMO vs OA SMO vs manual SMO vs FPA 

Entropy (t,p) -5.44E+01   

5.88E−01 

-1.54E+01   

4.59E−28 

-6.23E+00   

1.14E−08 

0.00E+00   

1.00E+00 

-1.46E+01   

2.46E−26 

-6.13E+00   

1.79E−08 

SSIM (t,p) 8.63E−01   
3.90E−01 

4.12E+01   
3.71E−64 

6.23E+00   
1.17E−08 

1.00E+00   
3.20E−01 

3.57E+01   
2.60E−58 

6.42E+00   
4.64E−09 

PSNR (t,p) 8.30E−01   

4.09E−01 

7.97E+01   

1.33E−91 

1.67E+01   

1.39E−30 

1.70E+00   

9.30E−02 

1.19E+02   

1.68E+08 

1.99E+01   

2.68E−36 
EME (t,p) 1.51E+00   

1.34E−01 

-3.67E+01   

1.82E−59 

-9.29E+00   

3.85E−15 

0.00E+00   

1.00E+00 

-4.10E+01   

6.48E−64 

-1.03E+01   

2.18E−17 

RM SC (t,p) -2.77E−01   
7.83E−01 

-1.40E+01   
2.93E−25 

-6.92E+00   
4.60E−10 

0.00E+00   
1.00E+00 

-2.84E+01   
2.04E−49 

-1.14E+01   
1.13E−19 

STD-DEV 

(t,p) 

-5.26E−01   

6.00E−01 

-1.28E+01   

8.66E−23 

-5.98E+00   

3.60E−08 

0.00E+00   

1.00E+00 

-2.85E+01   

1.52E−49 

-1.12E+01   

2.42E−19 
CEIQ (t,p) 1.18E+00   

2.40E−01 

-1.50E+01   

2.47E−27 

-6.42E+00   

4.84E−09 

0.00E+00   

1.00E+00 

-2.06E+01   

1.24E−37 

-6.58E+00   

2.22E−09 

Fitnes (t,p) 9.39E−01   
3.50E−01 

5.84E+01   
1.51E−78 

1.62E+01   
1.37E−29 

1.70E+00   
9.16E−02 

6.00E+01   
1.11E−79 

1.97E+01   
3.48E−36 

Time (t,p) -1.72E+00   

8.79E−02 

6.57E+01   

1.77E−83 

5.58E+01   

1.37E−76   

-4.12E+00   

7.97E−05 

1.19E+02   

9.44E−109 

7.54E+01   

2.78E−89 

 

 

Table 2. Mean ± SD over 100 images for the metrics evaluation score on the SIPaKMeD dataset 
Method Entropy SSIM PSNR EME RMSC STD_DEV CEIQ Fitness Time (s) 

POA 5.4688 0.9949 47.8379 0.8993 28.0784 36.0646 3.4517 0.6598 16.2019 

FPA 5.5025 0.9880 40.3875 0.9931 28.6075 36.4409 3.4786 0.5464 9.3081 

SMO 5.4686 0.9950 47.9696 0.9027 28.0176 36.0632 3.5323 0.6621 16.0380 

Manual 5.6389 0.9427 29.4642 1.3255 30.3599 37.7466 3.4644 0.2828 - 

 

 

On SIPaKMeD, both SMO and POA achieved nearly identical outcomes in most metrics, with SMO 

showing a slight edge in PSNR (47.97 vs. 47.83) and CEIQ (3.53 vs. 3.45). This suggests that SMO was 

more effective in preserving image quality while improving perceptual contrast. FPA, although competitive 

in entropy (5.50) and RMS contrast (28.60), exhibited a notably lower SSIM (0.9880) and PSNR (40.38), 

indicating that images enhanced by FPA suffered some structural distortions and reduced noise suppression 

compared to SMO and POA. The manual CLAHE setting, while producing the highest entropy (5.64) and 

RMS contrast (30.36), demonstrated a clear decline in SSIM (0.9427) and PSNR (29.46). These results 

indicate that manual parameter tuning tends to over-amplify contrast at the cost of image fidelity, introducing 

excessive noise and structural distortions. Furthermore, the Finess score for the manual method (60.5464) 

was substantially lower than that of SMO and POA (>6590), reflecting weaker enhancement consistency. In 

terms of processing time, FPA consistently required the least computational cost (9.31 s), while SMO and 

POA were more time-intensive (~16 s). This trade-off highlights that while FPA is efficient, its reduction in 

image fidelity makes SMO and POA more suitable choices for medical image preprocessing. 

The results on the Mendeley dataset reaffirmed the trends observed in SIPaKMeD, as shown in 

Table 3. SMO and POA again achieved the highest PSNR values (45.84 and 45.79, respectively) with 

superior SSIM (~0.9968), indicating strong preservation of structural content. Notably, SMO consistently 

produced a higher CEIQ score (3.55) compared to POA (3.45). It means that its optimization strategy better 

balances enhancement and perceptual quality. FPA yielded higher entropy (5.29) and RMS contrast (28.53) 

than SMO/POA, but at the expense of PSNR (36.01), implying suboptimal suppression of noise artifacts. 

Manual settings once again produced the highest entropy (5.50) and RMS contrast (33.18). Still, these gains 

came with severe degradation in PSNR (25.26) and SSIM (0.9360), underscoring the risks of heuristic 

parameter tuning in sensitive medical imagery. The Finess scores followed a similar pattern to SIPaKMeD, 

with SMO and POA (~0.6270) outperforming both FPA (0.4371) and manual (0.2761). This suggests that 

stochastic optimization approaches provide more stable and reliable enhancements across diverse image 

samples. In terms of time efficiency, FPA was again the fastest (~9.69 s), while SMO and POA required 

nearly double the processing time. 
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Table 3. Mean±SD over 100 images for the metrics evaluation score on the Mendeley LBC dataset 
Method Entropy SSIM PSNR EME RMSC std_dev CEIQ Fitness Time (s) 

POA 5.2068 0.9967 45.7861 3.1804 26.7959 28.3258 3.4463 0.6271 17.0684 
FPA 5.2856 0.9904 36.0117 3.4147 28.5303 29.9441 3.4845 0.4371 9.6942 

SMO 5.2068 0.9968 45.8372 3.1804 26.7959 28.3258 3.5463 0.6280 16.6525 

Manual 5.5001 0.9360 25.2623 4.1819 33.1796 34.3198 3.4840 0.2761 - 

 

 

Comparing both datasets, it is evident that SMO maintained the most consistent performance across 

evaluation metrics, with the highest CEIQ scores (3.53 on SIPaKMeD and 3.55 on Mendeley) and 

competitive PSNR and SSIM values. POA showed nearly identical results but slightly lagged in CEIQ, 

suggesting that SMO's swarm-based adaptive search provides an edge in balancing structural fidelity and 

perceptual quality. The manual method consistently amplified entropy and RMS contrast but suffered from 

poor structural similarity and perceptual quality indices, confirming that manual tuning risks over-

enhancement. Meanwhile, FPA demonstrated strengths in efficiency but compromised structural integrity, 

making it less suitable for medical preprocessing tasks where diagnostic accuracy depends on image fidelity. 

 

3.4.  Image classification performance 

The evaluation of MobileNetV3-S on the SIPaKMeD dataset reveals that contrast enhancement 

using CLAHE significantly improves classification performance, as shown in Figure 5. For the original 

image, the model achieved an accuracy of 90.57% with balanced precision and recall, confirming that 

MobileNetV3-S is effective at extracting features from cytological images. However, applying CLAHE with 

manually selected parameters improved all metrics, increasing accuracy to 92.82% and the F1-score to 

92.61%. This suggests that enhancing local contrast helps the model capture more distinctive cellular 

structures. Further gains were made through metaheuristic-based optimization of CLAHE parameters. The 

FPA achieved an accuracy of 93.12%, with a precision of 94.37% and a recall of 93.65%, effectively 

balancing false positives and false negatives. The POA achieved a slightly higher accuracy of 93.22%. 

However, its recall of 93.16% was marginally lower than FPA's, indicating POA provided good overall 

enhancement but was less effective at identifying all abnormal cases. The best results were achieved by the 

SMO, which attained the highest accuracy of 93.47%, with precision and recall at 94.46% and 94.18%, 

respectively. This demonstrates that SMO is particularly effective in optimizing CLAHE parameters, 

resulting in improved feature visibility and more reliable classification. Although the F1-score under SMO 

(92.94%) was similar to POA's, the improved recall is significant in medical diagnostics, as it reduces the 

chance of missing precancerous or malignant cells. The SMO-CLAHE method offers a robust and efficient 

framework for cervical cancer classification, achieving high accuracy while remaining computationally 

lightweight enough for use in clinical or resource-limited settings. 
 

 

 
 

Figure 5. MobileNetV3-S performance over optimized SIPaKMeD images dataset 

 

 

4. CONCLUSION 

This study presented SMO-CLAHE, an image enhancement framework that leverages SMO with a 

SC objective to adaptively optimize CLAHE parameters. The proposed approach successfully balances 

contrast enhancement with noise suppression, as validated on SIPaKMeD and Mendeley datasets. Compared 

with manual CLAHE and FPA, SMO-CLAHE delivered significant improvements across multiple metrics, 

while maintaining comparable performance to POA. Crucially, downstream classification with 

MobileNetV3-S confirmed that enhanced images not only improve visual clarity but also strengthen 

diagnostic accuracy. The findings establish SMO-CLAHE as a reliable and efficient preprocessing technique 
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for cervical cytology, suitable for integration into clinical image analysis workflows. Looking forward, future 

research should: i) investigate parameter sensitivity and optimization stability across diverse imaging 

conditions, ii) broaden expert-based qualitative evaluation for clinical adoption, iii) validate performance on 

additional Pap smear and histopathological datasets, and iv) explore integration with deep learning 

segmentation and classification pipelines. These directions will further enhance the generalizability and 

clinical impact of SMO-CLAHE, advancing the development of automated and reliable cervical cancer 

detection systems. 
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