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High-quality Papanicolaou (Pap) smear images are essential for reliable
early detection of cervical cancer, yet low contrast and noise often hinder
accurate interpretation. This study introduces spider monkey optimization
(SMO)-contrast-limited adaptive histogram equalization (CLAHE), an
optimized CLAHE framework guided by the SMO algorithm. A novel signal
contrast (SC) objective function is proposed, combining perceptual
enhancement contrast enhancement-based image quality (CEIQ) with
fidelity preservation peak signal-to-noise ratio (PSNR) to adaptively tune
CLAHE parameters. Experiments on the publicly available SIPaKMeD and
Mendeley LBC datasets demonstrate that SMO-CLAHE consistently
outperforms manual settings and flower pollination algorithm (FPA)-based
optimization, and achieves performance comparable to pelican optimization
algorithm (POA) across key quality metrics including entropy, structural
similarity index (SSIM), PSNR, enhancement measure estimation (EME),
root mean square contrast (RMSC), standard deviation (STD-DEV), and
CEIQ. Furthermore, downstream evaluation using a MobileNetV3-S
classifier shows that the enhanced images lead to improved cervical cancer
classification performance. These results highlight SMO-CLAHE as a robust
and clinically relevant preprocessing framework, offering a new perspective
for Pap smear image enhancement and diagnostic support.
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1. INTRODUCTION

Cervical cancer is still a leading cause of female cancer mortality worldwide, especially in low- and
middle-income regions lacking early screening [1], [2]. The Papanicolaou (Pap) smear test is a standard early
detection method, but its accuracy depends on the quality of the images [3]. In practice, Pap smear images
often suffer from low contrast and imaging noise caused by variations in staining, illumination, and
acquisition devices, making it difficult for cytologists to identify subtle morphological features [4].

To mitigate these limitations, contrast enhancement is commonly applied as a preprocessing step in
medical image analysis [5]. Histogram equalization (HE) and its local variant, adaptive histogram
equalization (AHE), are classical methods [6], but AHE can cause excessive enhancement and increase noise
in uniform regions. Contrast-limited adaptive histogram equalization (CLAHE) addresses this issue by
introducing a clip limit to control contrast amplification [7]. CLAHE has been successfully applied in diverse

Journal homepage: http://beei.org


https://creativecommons.org/licenses/by-sa/4.0/

4496 O ISSN: 2302-9285

tasks, including cervical cancer classification [8], object detection in low-light conditions [9], deep learning-
based medical image analysis [10], and segmentation of CT and underwater images [11], [12]. However, the
performance of CLAHE depends strongly on two parameters—clip limit and tile grid size. Fixed parameter
settings, such as the configuration proposed by Qassim et al. [13] (clip limit=0.01, tile size=8x8), may work
for specific datasets but often fail to generalize across imaging conditions.

To overcome this sensitivity, many studies have employed metaheuristic optimization to automate
the selection of CLAHE parameters. Multi-objective particle swarm optimization (MOPSO) [14], whale
optimization algorithm (WOA) [15], cuckoo search algorithm (CSA) [16], flower pollination algorithm
(FPA) [17], adaptive sailfish optimization (ASFO) [18], cat swarm optimization (CSO) [19], and the pelican
optimization algorithm (POA) [20] have all shown improvements when evaluated with metrics such as
entropy, structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and standard deviation (STD-
DEV). Although effective, these methods still leave room for alternative optimizers with stronger global
search capability, higher efficiency, and more robust convergence.

Spider monkey optimization (SMO) is a relatively recent swarm-intelligence algorithm inspired by
the fission—fusion foraging behavior of spider monkeys. Its adaptive leader—follower mechanism has proven
effective for complex optimization tasks [21], [22]. Building on these strengths, this study introduces a hew
framework, SMO-CLAHE, to adaptively determine the optimal clip limit and tile grid size for enhancing Pap
smear images. A key innovation is the use of signal contrast (SC) as the optimization objective SC combines
contrast enhancement-based image quality (CEIQ) with PSNR through a multiplicative formulation,
encouraging simultaneous improvement of perceptual contrast and noise suppression. CEIQ itself integrates
cross-entropy, entropy, and SSIM to evaluate enhancement quality while preserving structural fidelity
[23], [24]. Including PSNR ensures that contrast improvements do not come at the cost of excessive noise.

The main contribution of this work is the development of a novel SMO-CLAHE framework that
introduces SC as a new optimization goal to balance contrast enhancement and structural preservation.
Unlike previous methods that rely solely on traditional metrics or fixed parameter choices, the proposed
approach jointly optimizes CLAHE parameters using a metaheuristic search to improve both perceptual
quality and noise control. The framework is thoroughly evaluated on SIPaKMeD and Mendeley LBC
datasets using a broad range of image quality metrics—including entropy, SSIM, PSNR, enhancement
measure estimation (EME), root mean square contrast (RMSC), STD-DEV, and CEIQ. It is further validated
through a downstream classification task with a MobileNetV3-S model to demonstrate its practical value in
cervical cancer detection. By combining an effective metaheuristic search strategy with a clinically relevant
image quality metric, this study advances automated preprocessing for cervical cancer screening beyond
basic parameter tuning, providing empirical evidence of its benefits for real diagnostic applications.

2. METHOD
2.1. Image contrast enhancement

Image contrast enhancement is a method that amplifies the brightness difference between objects
and backgrounds, making objects more noticeable [25]. HE, AHE, and CLAHE are widely used for
enhancing image contrast, including in medical images. HE redistributes pixel intensities to produce a
uniform histogram [26]. The probability P(r;) of each intensity i is (1):

P(r) =" ()
where n; is the number of pixels with intensity i and N is the total number of pixels. The cumulative
distribution function (CDF) is (2):

CDF (1) = Ej=o P(1) @)
and the new intensity is (3):
lyew = round (CDF(ri) x (L — 1)) 3)

with L as the number of intensity levels (e.g., 256). HE works well globally but can create artefacts with
skewed histograms. AHE applies HE to smaller image regions (tiles) to improve local contrast [26]:

inew(p) = I'OUHd(CDFﬁ/e(Ti) X (L - 1)) (4)
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where CDFy;.(i) is the CDF within a tile. AHE handles uneven lighting but may amplify noise in uniform
areas. CLAHE prevents over-enhancement by limiting the histogram count with a clip limit g [27]:

he(¥) = min(h, (D), B), E; = Xtz max (0, k(i) = ) )
Re(@)) = Be(@) + 2,57 = L - D Te(n) (6)

where T; is the CDF of h,. Neighboring tiles are blended by bilinear interpolation. The CLAHE has two
parameters that can be fine-tuned to optimize its performance. Each technique has its strengths and
weaknesses. HE is computationally efficient and suitable for global enhancement, whereas AHE and CLAHE
are better for localized contrast improvement, with CLAHE being the most noise-robust [28].

2.2. Spider monkey optimization

The foraging and social behavior exhibited by spider monkeys serves as a model for the
development of the SMO algorithm. The goal is to find the best solution for complex optimization problems
by copying the collaborating and adaptable behaviors of spider monkeys [21]. In SMO, each candidate
(monkey) SM;, = [SMy4, ..., SMy,p] in D — dimensional space is initialized using by (7):

Sy = S+ R (SMas = i) ?

Local leader (LL) update: each monkey updates its position based on its local leader Leadery, and a random
peer SM,.:

SMJ®Y = SM;; + R (Leadery; — SM;;) + U (SM,.; — SM;;) (8)
Global leader (GL) selection: the probability of a solution being updated using (9):

prob; = 0.9 x LRS54 01 9)

Max fitness

where R and U are uniformly sampled from [0,1] and [—1,1], respectively; after each update, we clamp SM;;
to its bounds to prevent invalid parameters:

SM;; = min (max(SM;;, SMynin ;) » SMinax ;) (10)

The best solution becomes the global leader, while subgroup leaders act as local leaders. Suppose no progress
is made for a set number of steps. In that case, the local leader decision (LLD) reinitializes solutions, and the
global leader decision (GLD) splits or merges groups to encourage exploration. SMO has been successfully
used to optimize neural networks for intrusion detection systems and solve complex problems like optimizing
redundant units for CORAP in water treatment plants [29], [30].

2.3. Contrast enhancement-based image quality

The CEIQ method is designed to evaluate the quality of an image by analyzing how effectively its
contrast has been improved. The procedure, as illustrated in Figure 1, begins with decolorization, where the
original color image is converted into a grayscale version to simplify intensity-based analysis. Next, HE is
applied to the grayscale image, enhancing its contrast by redistributing pixel intensities across the available
range. Both the original and enhanced grayscale images undergo histogram computation, which generates
intensity distributions for further evaluation.
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Figure 1. CEIQ evaluation model
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The quality assessment is based on three main components:
a. Image similarity: this step measures how closely the enhanced image retains the structural content of the
original image. The SSIM is used for this purpose, producing a similarity score S,. that reflects
luminance, contrast, and structural preservation. SSIM is defined as (11):

SSIM(I, f) _ ( (2m1p3+€1) (20 3+C2) (11)

u%+u%+cl)(6%+cr%+cz)

where y;, u; are mean intensity of 1 and I, o2, o7 is variance of 1 and I. o7, o, are covariance between | and I.

C;, C, are small constants to stabilize the division.

b. Entropy: this measures the amount of information or detail in the image by evaluating how uniformly
brightness values are distributed. A higher entropy value generally indicates richer image details and
improved contrast.

Entropy = — X120 p; log, (p;) (12)

where p; is the probability of occurrence of the intensity level i. Higher entropy values suggest more detailed

and complex images, while lower values imply a uniform or less informative image.

c. Cross-entropy: this quantifies the difference between the intensity histograms of the original and
enhanced images. It is computed as (13):

Evy == Xlohe (D) log (hy (1)) (13)

where h, (i) and h, (i) represent the normalized histogram values of the enhanced and original images,
respectively, b is the total number of histogram bins. The CEIQ score is computed by combining the SSIM,
entropy, and cross-entropy metrics. This composite score reflects both the preservation of structural
similarity and the enhancement of image contrast, making it a robust measure for evaluating contrast
enhancement quality [31].

2.4. Image quality assessment

IQA is used to evaluate the quality of digital images. There are three main types of IQA models: no-
reference image quality assessment (NR-IQA), reduced-reference image quality assessment (RR-1QA), and
full-reference image quality assessment (FR-IQA) [32]. In this study, several IQA metrics were used to
evaluate the effectiveness of the proposed image enhancement method [33].
— EME is defined as (14):

EME = —— 3, 5, [20log (%)] -

where M and N are the image height and width. I.,;, (i, ) and I, (i, j) are the minimum and maximum pixel
intensities in a block at position (i, j). Higher EME values indicate better local contrast and sharper details in
the image.

— RMSC quantifies the overall contrast of the image by calculating the deviation of each pixel's intensity
from the average intensity I. It is calculated as (15):

RMSC=\/ﬁ MO LUGH -2 (15)

where I(i, j) represents the intensity of the pixel at (i, j) position, and I is the average intensity of all pixels.
A higher RMSC reflects more distinct separation between features in the image.
— Standard deviation (STD-DEV) measures the variation in pixel intensities, calculated as (16):

STD DEV = %Z?’zl(li — )2 (16)

where I; is the intensity of pixel i, and u is the mean intensity of the image. A higher standard deviation
indicates greater contrast and image variation, contributing to improved image clarity and detail preservation.
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2.5. Experimental setup

Figure 2 illustrates the workflow of the proposed CLAHE optimization using SMO. We used the
SIPaKMeD dataset (five cervical cell classes) [34]. RGB images were converted to CIELAB; the L channel
(luminance) was enhanced while preserving a/b (chromaticity) [35]. SMO optimized clip limit and tile grid
size with 30 iterations and population size 50 [16]. The search ranges for the clip Limit were from 0.01 to 3,
and for the tile grid size, from 2 x 2 to 16 x 16. These ranges were selected to incorporate the widely used
defaults in medical imag (Clip Limit = 2.0, Tile Size = 8 X 8), allowing both conservative and aggressive
enhancement while avoiding noise amplification [15]. The objective was to maximize the SC. After
optimization, the enhanced L channel was recombined with the a/b channels and converted back to RGB.
One hundred images were selected via stratified random sampling (twenty images per class). The
experiments were conducted on a system with Windows 11, an AMD Ryzen 5500 CPU, an Nvidia RTX
3060 12 GB GPU, 32 GB of RAM, and Python 3.11/OpenCV 4.9 (random seed=42). The performance was
assessed through qualitative visual inspection by an anatomical pathologist, statistical analysis, and
quantitative metrics: entropy, SSIM, PSNR, EME, RMSC, STD-DEV, and time process. A sensitivity
analysis was conducted. Results indicated that minimal clip limits resulted in low-contrast images, while
extremely high values increased noise and artifacts. Similarly, small tile grid sizes caused local over-
enhancement, whereas huge grid sizes reduced local contrast. In addition, MobileNetV3-S was employed to
evaluate Pap smear images enhanced through different optimization approaches (manual setting, FPA, and
POA). The pretrained MobileNetV3-S model from TorchVision was utilized to classify the optimized
SIPaKMeD images, thereby assessing the impact of contrast enhancement on downstream classification
performance. The model was trained using the Adamax optimizer with a learning rate of 0.001 over 30
epochs, with the dataset split into 70% for training, 15% for validation, and 15% for testing.

Input images
color (Pap smear)

Split images
to L AB color

Enhance channel L with
Color channel A SMO-CLATE Color channel A

Combine L A B channel

Enhanced Pap smear
images

End.

Figure 2. Simulation flowchart for SMO-CLAHE

2.6. Objective function (signal contrast)

In this study, we define SC as a combined measure of perceptual enhancement and fidelity. Let I,,;,
be the original image and I,,,. The CLAHE-enhanced image. We compute CEIQ(/,,,) and PSNR
(Ienns Iorig) (in dB). Because PSNR is expressed in decibels, we first normalize both metrics to the unit
interval:

CEIQ=CEIQmin _ poNR — _PSNR=PSNRmin
CEIQmax—CEIQmin’' PSNRmax—PSNRmin

CEIQ = 1

The SC objective is then defined as the geometric mean (18):

SC = /CEIQ x PSNR (18)

We maximize SC with respect to CLAHE parameters (clip limit € [0.01,3.0], tile grid size
€ {2,...,16}). Normalization bounds (min/max) are computed from the current dataset range. This choice
balances contrast enhancement (CEIQ) and noise suppression (PSNR) and avoids unit mismatch.
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3. RESULTS AND DISCUSSION

This section presents the results of the SMO-CLAHE method through both visual inspection and
quantitative analysis. A pathology specialist evaluated the images for clarity, contrast, and preservation of
cellular structures across different enhancement techniques. For the quantitative assessment, various metrics
were used, including entropy, EME, RMSC, STD-DEV, and CEIQ. The performance of the proposed method
was compared to other optimization techniques, and statistical significance was assessed using a paired t-test.
This statistical analysis helps confirm the improvements brought by the SMO-CLAHE method in terms of
image quality and structural preservation.

3.1. Qualitative visual inspection

Pap-smear image analysis primarily focuses on accurately visualizing the nucleus and cytoplasm, as
these structures are key to recognizing abnormal cell shapes and features, such as changes in nuclear size and
shape, chromatin patterns, and the nucleus—to—cytoplasm (N/C) ratio [36]. To ensure clinical interpretability,
the qualitative review by a specialist in anatomical pathology followed cytology-oriented quality criteria:
i) nuclear contours are delineated with discernible chromatin texture; ii) cytoplasm is distinctly identifiable
and uniformly visible, with intact boundaries and textural cues (vacuolation, perinuclear halo) preserved;
iii) boundaries between nucleus—cytoplasm—background are well separated, minimizing artifacts such as
haloing, ringing, blockiness, or stain-amplified speckle; iv) background cleanliness is adequate (suppression
of debris and stain precipitates without erasing low-contrast actual structures); and v) in partially overlapping
or crowded cells, intercellular interfaces remain discernible to support reliable estimation of nuclear size and
N/C ratio [37]. These criteria directly reflect what cytologists require to judge pleomorphism, membrane
irregularity, nucleolar prominence, and cytoplasmic changes during routine screening.

Figure 3 contrasts enhancement strategies on a SIPakKMeD sample. The original image (Figure 3(a))
exhibits low contrast and soft edges, obscuring nuclear rims and fine chromatin granules. The cytoplasmic
boundaries blend with the background, and subtle perinuclear clearing is not reliably discernible. With
Qassim's manual CLAHE (Figure 3(b)), global contrast and edge sharpness improve modestly; however,
subtle nuclear texture and thin cytoplasmic margins remain partially veiled, and boundary transitions are not
consistently crisp. FPA-optimized CLAHE (Figure 3(c)) sharpens nuclear rims and reveals more chromatin
detail, better meeting the criteria than manual tuning, though localized haloing appears at some high-contrast
interfaces. POA-optimized CLAHE (Figure 3(d)) further strengthens local contrast and boundary separation,
improving differentiation of nucleus from cytoplasm in crowded fields; minor over-enhancement at
peripheral cytoplasm may occur but generally remains controlled. The proposed SMO-CLAHE (Figure 3(e))
provides the most balanced outcome: nuclear edges are crisp, chromatin granularity is visible without
clipping, cytoplasm is uniformly rendered with preserved texture, and interfaces with background are cleanly
separated while artifacts (halo/ringing) are minimized. This balance is crucial: over-enhancement can create
false edges or saturate chromatin, whereas under-enhancement can conceal diagnostically relevant details.

SIPaKMeD

Mendeley

Figure 3. Comparative enhancement results on SIPaKMeD and Mendeley Pap smear dataset; (a) original,
(b) Qassim manual setting CLAHE, (c) FPA-CLAHE, (d) POA-CLAHE, and () SMO-CLAHE

3.2. Statistical analysis

The paired t-test results provide strong evidence of SMO’s effectiveness compared to manual and
FPA, while showing comparable performance to POA in most metrics. For entropy, SMO does not differ
significantly from POA (SIPaKMeD: p=0.588; Mendeley LBC: p=1.0), indicating both methods maintain
information content at similar levels. However, significant differences against manual and FPA (p<0.001)
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demonstrate SMO’s ability to enhance entropy more effectively. Similarly, for SSIM, SMO achieves
substantially higher values than manual and FPA across both datasets (p<0.001), confirming superior
structural preservation, while remaining statistically indistinguishable from POA (p>0.3). PSNR results
reinforce this trend: SMO is equivalent to POA (p>0.09) but significantly outperforms manual and FPA
(p<0.001), which highlights its robustness in suppressing noise and reducing distortion. In contrast-related
metrics (EME, RMSC, and STD-DEV), SMO and POA exhibit no significant differences (p=1.0), yet SMO
consistently outperforms manual and FPA (p<0.001), underscoring its capacity for balanced contrast
enhancement. The CEIQ metric further confirms these findings: SMO is comparable to POA but significantly
superior to manual and FPA (p<0.001), reflecting its overall advantage in enhancing perceptual image quality.

Analysis of the fitness function also reveals SMO’s superiority over manual and FPA (p<0.001),
while maintaining parity with POA (p>0.09). Importantly, processing time results highlight SMO’s
efficiency, showing significantly faster execution than manual and FPA (p<0.001). Although differences with
POA are dataset-dependent—non-significant for SIPaKMeD (p=0.0879) but significant for Mendeley
(p=7.79E-05)—SMO generally maintains competitive runtime performance. These findings suggest that
while POA and SMO achieve comparable outcomes in most image quality metrics, SMO demonstrates a
clear and consistent advantage over manual and FPA methods. The results emphasize SMO’s strength in
balancing structural fidelity, contrast enhancement, and computational efficiency, making it a robust and
reliable optimization strategy for Pap smear image enhancement. From a practical perspective, this implies
that SMO can be adopted in real-world diagnostic workflows where high-quality images are critical for
accurate classification, offering both quality improvement and reduced processing time compared to
traditional and less advanced optimization approaches.

Figure 4 compares the relationship between processing time (Runtime) and reconstruction quality
(PSNR) for four optimization methods across the SIPaKMeD see Figure 4(a) and Mendeley LBC see
Figure 4(b) datasets. Each point represents a single optimized image. A desirable solution is located toward the
upper-left corner, where PSNR is high and runtime is low. On both datasets, the manual settings form a tight
cluster near the origin, indicating very short runtimes but consistently low PSNR. This confirms that manually
chosen parameters cannot match the quality achieved by the automated optimizers. The FPA method displays a
broad vertical spread of PSNR values but maintains relatively moderate runtimes (around 7—-10 seconds). This
suggests that FPA can occasionally reach higher PSNR, but its results are less stable and sometimes converge to
sub-optimal quality. POA and SMO consistently achieve the highest PSNR values (approximately 45-50 dB)
but require longer processing times (about 15-20 seconds). Between these two, SMO tends to form a slightly
tighter cluster at the upper end of PSNR, indicating more reliable convergence to high-quality solutions. POA
shows a slightly wider range of runtimes, reflecting more variability in computational cost. These results
highlight a clear trade-off between image quality and computational effort. For practical applications, the choice
of method should depend on operational constraints. In settings where high diagnostic accuracy is critical and
computation time is less important, SMO is preferable. In time-sensitive clinical environments, FPA could be
considered when a small loss in PSNR is acceptable to achieve faster turnaround.
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Figure 4. Trade-off runtime vs PSNR; (a) SIPaKMeD and (b) Mendeley LBC dataset

3.3. Quantitative evaluation
The quantitative results presented in Tables 1 and 2 provide insights into the comparative
performance of different optimization strategies—POA, FPA, SMO, and manual CLAHE parameter
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settings—when applied to cervical cell image enhancement. Across both datasets, several consistent patterns
can be observed in terms of entropy, SSIM, PSNR, local contrast measures (EME and RMSC), as well as
perceptual quality indices (CEIQ and Finess), which together provide a comprehensive picture of image
enhancement quality.

Table 1. Paired t-test on SIPaKMeD and Mendeley LBC datasets

SipakMed dataset Mendeley LBC dataset
Metrics SMO vs POA SMO vs manual SMO vs POA SMO vs OA SMO vs manual SMO vs FPA
Entropy (t,p) -5.44E+01 -1.54E+01 -6.23E+00 0.00E+00 -1.46E+01 -6.13E+00
5.88E—01 4.59E-28 1.14E-08 1.00E+00 2.46E-26 1.79E-08
SSIM (t,p) 8.63E—01 4.12E+01 6.23E+00 1.00E+00 3.57E+01 6.42E+00
3.90E-01 3.71E-64 1.17E-08 3.20E-01 2.60E-58 4.64E-09
PSNR (t,p) 8.30E—01 7.97E+01 1.67E+01 1.70E+00 1.19e+02 1.99E+01
4.09E-01 1.33E-91 1.39E-30 9.30E—02 1.68E+08 2.68E-36
EME (t,p) 1.51E+00 -3.67E+01 -9.29E+00 0.00E+00 -4,10E+01 -1.03E+01
1.34E-01 1.82E-59 3.85E-15 1.00E+00 6.48E—64 2.18E-17
RM SC (t,p) -2.77E-01 -1.40E+01 -6.92E+00 0.00E+00 -2.84E+01 -1.14E+01
7.83E-01 2.93E-25 4.60E-10 1.00E+00 2.04E-49 1.13E-19
STD-DEV -5.26E-01 -1.28E+01 -5.98E+00 0.00E+00 -2.85E+01 -1.12E+01
(t,p) 6.00E—01 8.66E—23 3.60E-08 1.00E+00 1.52E-49 2.42E-19
CEIQ (t,p) 1.18E+00 -1.50E+01 -6.42E+00 0.00E+00 -2.06E+01 -6.58E+00
2.40E-01 2.47E-27 4.84E—09 1.00E+00 1.24E-37 2.22E-09
Fitnes (t,p) 9.39E-01 5.84E+01 1.62E+01 1.70E+00 6.00E+01 1.97E+01
3.50E-01 1.51E-78 1.37E-29 9.16E—02 1.11E-79 3.48E-36
Time (t,p) -1.72E+00 6.57E+01 5.58E+01 -4,12E+00 1.19E+02 7.54E+01
8.79E—-02 1.77E-83 1.37E-76 7.97E-05 9.44E-109 2.78E—89

Table 2. Mean + SD over 100 images for the metrics evaluation score on the SIPaKMeD dataset
Method  Entropy  SSIM PSNR EME RMSC STD DEV  CEIQ Fitness Time (s)
POA 54688 09949 47.8379 0.8993 28.0784  36.0646  3.4517 0.6598 16.2019
FPA 55025 09880 40.3875 0.9931 28.6075  36.4409 34786 05464  9.3081
SMO 5.4686 0.9950 47.9696 0.9027 28.0176  36.0632 35323 0.6621 16.0380
Manual  5.6389  0.9427 29.4642 1.3255 30.3599  37.7466  3.4644 0.2828 -

On SIPaKMeD, both SMO and POA achieved nearly identical outcomes in most metrics, with SMO
showing a slight edge in PSNR (47.97 vs. 47.83) and CEIQ (3.53 vs. 3.45). This suggests that SMO was
more effective in preserving image quality while improving perceptual contrast. FPA, although competitive
in entropy (5.50) and RMS contrast (28.60), exhibited a notably lower SSIM (0.9880) and PSNR (40.38),
indicating that images enhanced by FPA suffered some structural distortions and reduced noise suppression
compared to SMO and POA. The manual CLAHE setting, while producing the highest entropy (5.64) and
RMS contrast (30.36), demonstrated a clear decline in SSIM (0.9427) and PSNR (29.46). These results
indicate that manual parameter tuning tends to over-amplify contrast at the cost of image fidelity, introducing
excessive noise and structural distortions. Furthermore, the Finess score for the manual method (60.5464)
was substantially lower than that of SMO and POA (>6590), reflecting weaker enhancement consistency. In
terms of processing time, FPA consistently required the least computational cost (9.31 s), while SMO and
POA were more time-intensive (~16 s). This trade-off highlights that while FPA is efficient, its reduction in
image fidelity makes SMO and POA more suitable choices for medical image preprocessing.

The results on the Mendeley dataset reaffirmed the trends observed in SIPaKMeD, as shown in
Table 3. SMO and POA again achieved the highest PSNR values (45.84 and 45.79, respectively) with
superior SSIM (~0.9968), indicating strong preservation of structural content. Notably, SMO consistently
produced a higher CEIQ score (3.55) compared to POA (3.45). It means that its optimization strategy better
balances enhancement and perceptual quality. FPA yielded higher entropy (5.29) and RMS contrast (28.53)
than SMO/POA, but at the expense of PSNR (36.01), implying suboptimal suppression of noise artifacts.
Manual settings once again produced the highest entropy (5.50) and RMS contrast (33.18). Still, these gains
came with severe degradation in PSNR (25.26) and SSIM (0.9360), underscoring the risks of heuristic
parameter tuning in sensitive medical imagery. The Finess scores followed a similar pattern to SIPakKMeD,
with SMO and POA (~0.6270) outperforming both FPA (0.4371) and manual (0.2761). This suggests that
stochastic optimization approaches provide more stable and reliable enhancements across diverse image
samples. In terms of time efficiency, FPA was again the fastest (~9.69 s), while SMO and POA required
nearly double the processing time.
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Table 3. Mean+SD over 100 images for the metrics evaluation score on the Mendeley LBC dataset
Method  Entropy  SSIM PSNR EME RMSC  std dev  CEIQ  Fitness Time (s)
POA 52068 0.9967 457861 3.1804 26.7959 28.3258 3.4463 0.6271 17.0684
FPA 52856 0.9904 36.0117 3.4147 285303 29.9441 34845 04371  9.6942
SMO 52068 09968 458372 3.1804 26.7959 283258 3.5463 0.6280 16.6525
Manual 55001  0.9360 25.2623 4.1819 33.1796 34.3198 3.4840 0.2761 -

Comparing both datasets, it is evident that SMO maintained the most consistent performance across
evaluation metrics, with the highest CEIQ scores (3.53 on SIPaKMeD and 3.55 on Mendeley) and
competitive PSNR and SSIM values. POA showed nearly identical results but slightly lagged in CEIQ,
suggesting that SMQ's swarm-based adaptive search provides an edge in balancing structural fidelity and
perceptual quality. The manual method consistently amplified entropy and RMS contrast but suffered from
poor structural similarity and perceptual quality indices, confirming that manual tuning risks over-
enhancement. Meanwhile, FPA demonstrated strengths in efficiency but compromised structural integrity,
making it less suitable for medical preprocessing tasks where diagnostic accuracy depends on image fidelity.

3.4. Image classification performance

The evaluation of MobileNetV3-S on the SIPaKMeD dataset reveals that contrast enhancement
using CLAHE significantly improves classification performance, as shown in Figure 5. For the original
image, the model achieved an accuracy of 90.57% with balanced precision and recall, confirming that
MobileNetV3-S is effective at extracting features from cytological images. However, applying CLAHE with
manually selected parameters improved all metrics, increasing accuracy to 92.82% and the F1-score to
92.61%. This suggests that enhancing local contrast helps the model capture more distinctive cellular
structures. Further gains were made through metaheuristic-based optimization of CLAHE parameters. The
FPA achieved an accuracy of 93.12%, with a precision of 94.37% and a recall of 93.65%, effectively
balancing false positives and false negatives. The POA achieved a slightly higher accuracy of 93.22%.
However, its recall of 93.16% was marginally lower than FPA's, indicating POA provided good overall
enhancement but was less effective at identifying all abnormal cases. The best results were achieved by the
SMO, which attained the highest accuracy of 93.47%, with precision and recall at 94.46% and 94.18%,
respectively. This demonstrates that SMO is particularly effective in optimizing CLAHE parameters,
resulting in improved feature visibility and more reliable classification. Although the F1-score under SMO
(92.94%) was similar to POA's, the improved recall is significant in medical diagnostics, as it reduces the
chance of missing precancerous or malignant cells. The SMO-CLAHE method offers a robust and efficient
framework for cervical cancer classification, achieving high accuracy while remaining computationally
lightweight enough for use in clinical or resource-limited settings.
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Figure 5. MobileNetV3-S performance over optimized SIPaKMeD images dataset

4. CONCLUSION

This study presented SMO-CLAHE, an image enhancement framework that leverages SMO with a
SC objective to adaptively optimize CLAHE parameters. The proposed approach successfully balances
contrast enhancement with noise suppression, as validated on SIPaKMeD and Mendeley datasets. Compared
with manual CLAHE and FPA, SMO-CLAHE delivered significant improvements across multiple metrics,
while maintaining comparable performance to POA. Crucially, downstream classification with
MobileNetV3-S confirmed that enhanced images not only improve visual clarity but also strengthen
diagnostic accuracy. The findings establish SMO-CLAHE as a reliable and efficient preprocessing technique
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for cervical cytology, suitable for integration into clinical image analysis workflows. Looking forward, future
research should: i) investigate parameter sensitivity and optimization stability across diverse imaging
conditions, ii) broaden expert-based qualitative evaluation for clinical adoption, iii) validate performance on
additional Pap smear and histopathological datasets, and iv) explore integration with deep learning
segmentation and classification pipelines. These directions will further enhance the generalizability and
clinical impact of SMO-CLAHE, advancing the development of automated and reliable cervical cancer
detection systems.
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