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Pedestrian detection is a crucial application in video surveillance,
autonomous driving, and traffic monitoring. Thus, reliable surveillance is
required for individual decision making and safety. The study aims to
compare two models, one based on VGG16 for feature extraction, coupled
with a long short-term memory (LSTM), and the other simply a dense
model, for pedestrian detection in video. The integration of an attention
mechanism to improve feature discrimination across frames along with a
lightweight structure for real-time processing that enables cross-domain
generalization to diverse datasets is novelty of this work. We exploit the pre-
trained VGG16 model on ImageNet, extracting spatial features from all the
frames of the videos. We then feed these spatial features through an LSTM
to capture temporal dependencies. The dense model uses just the spatial
features and throws into the bin of information the time holds for them. We
apply accuracy, precision, recall, and specificity as metrics in evaluation

models on a labeled dataset of pedestrian video clips. Experimental results
show that the VGG+LSTM model performs better than the dense model by
giving a higher accuracy and performing better on temporal variations of
frames. The LSTM-based approach achieves 0.96 accuracy over multivariate
datasets.
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1. INTRODUCTION

Pedestrian detection is crucial for the safety of the person on road and also the activities which are
performed by a pedestrian on the road should also be monitored. In most of the computer vision systems it is
an integral part specially within the areas including surveillance systems, intelligent cities, autonomous
driving and many more. In the field of autonomous vehicles, surveillance videos which are present on road
are used for monitoring the vehicle so that pedestrians can pass through easily. In other words, video
surveillance is used in this case. With video-based systems increasingly used in these areas, detection
algorithms are in need of being highly accurate and robust when it comes to interpreting dynamic real-world
scenarios with movement, variable lighting conditions, and occlusions [1].

Although the recent progress in deep learning models has been impressive in object detection, there
are many challenges that need to be addressed to make it more effective in application to pedestrian detection
in video sequences. Traditional convolutional neural network (CNN) models, like VGG16, are great at
extracting spatial features from static frames but lack the temporal awareness needed to consistently track
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pedestrians across sequential frames [2]. Therefore, the dense models usually have a performance-related

issue, particularly in the dynamic scenes where detecting moving objects, such as pedestrians, is dependent

on sequential frame-by-frame information [3]. This work seeks to bridge the gap in the effective exploitation

of the temporal dependencies in pedestrian detection with a comparison between the dense model and a

combined model of VGG16+recurrent neural network (RNN), which integrates both spatial and temporal

information [4].

This research focused on video sequences specific to pedestrian detection. This research however
pays significant emphasis on accuracy and specificity as the metrics for evaluation [5]. This research
highlights the impact of temporal modeling which can affect pedestrian detection in dynamic environments.
Furthermore, this work explores computational trade-offs that exist in utilization of recurrent layers. The
scope of this work corresponds to comparative analysis of a VGG+RNN model and a dense model for
assessing their effectiveness in real-world pedestrian detection applications [6]. The novelty of the work is in
handling the dynamic videos using the temporal modeling so that pedestrian detection can be enhanced. It
integrates an RNN with a feature extractor that is based on VGG16 and captures both spatial and temporal
cues, which probably can surmount the shortcomings of existing static, frame-only detection models [7].
Unlike previous work that focused on the role of spatial feature extraction, this work focuses on the role of
temporal dependencies and aims to show that such an approach is more robust for applications requiring real-
time tracking and detection in dynamic environments [8]. It also shows that there is a trade-off between
increased accuracy and computational efficiency, and this insight is useful in applications that have real-time
constraints [9].

From background analysis it is determined that CNN based detectors including region-based
convolutional neural network (R-CNN), Faster region-based convolutional neural network (Faster R-CNN),
ResNet, and Inception, as well as CNN-RNN hybrids like convolutional neural network—gated recurrent unit
GRU (CNN-GRU) performs well in case of occlusion free environment. The existing approaches however
have limitations in highly dynamic and occlusion-prone environments. Furthermore, traditional approaches
face issues during real-time deployment is required. To address these challenges, this study proposes a novel
VGG16- long short-term memory (LSTM) framework with improved attention-enhanced spatio-temporal
fusion and optimized low-latency architecture for robust pedestrian detection. The key novelty lies in
integrating an attention mechanism to improve feature discrimination across frames. Further, proposed also
design a lightweight structure for real-time processing and enables cross-domain generalization to diverse
datasets. The proposed work, thus directly addresses issues associated with prior work and contributes to a
more scalable and reliable solution that is suitable for real-world applications, including urban surveillance
and autonomous driving.

Contributions of this study are as follows:

- The main contribution includes integrating an attention mechanism to improve feature discrimination
across frames.

- The proposed model integrates temporal modeling through LSTM that will be used to capture motion-
based features and frames. This will address the gap in sequential pedestrian detection by lightweight
structure for real-time processing and enables cross-domain generalization to diverse datasets.

- Multiple metrics are used to check the performance of the model being proposed. The metrics include
accuracy, precision, recall, and specificity) across realistic video datasets.

- This model also critically analyses computational trade-offs between accuracy gains and real-time
feasibility.

The structure of the paper is given in Figure 1.

Pedestrian detection has improved much with the advent of deep learning, which can now provide
more robust and real-time systems, especially in dynamic environments. Early works, such as [10] R-CNN
showed the power of CNNs in object detection tasks, which eventually laid the foundation for pedestrian
detection systems. From this, [6] came with Faster R-CNN, which improved the speed of detection by the
usage of region proposal networks (RPNs). The mechanism applied using RPN is useful in real-time
applications. This can be extremely beneficial considering surveillance videos in pedestrian detection [11].
Existing works considering CNN-based methods could work well in extracting meaningful features in the
detection of pedestrians [12].

The speed of extraction could be fast, however there also exist some limitations in detecting
pedestrians. This will happen when presented environment is cluttered and dynamic scenes. In dynamic
videos there exist occlusions and varying scales of pedestrians. This will affect the performance of the model.
For those challenges, [13] proposed ResNet architecture. This model uses residual learning and was able to
make effective network without losing accuracy [14]. With ResNet, it is possible to handle multiple features
and most predominant feature contributing to pedestrian detection will be selected. Furthermore, there also
exists InceptionV3 [15] that is a multi-scale feature extraction method used to capture the pedestrians at
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different scales. This is crucial while dealing with dynamic and diverse environments such as urban streets or
crosswalks, where the pedestrians appear at various distances [16].
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Figure 1. Structure of the paper

The pedestrian detection can further be enhanced using temporal features [17] proposed the LSTM
networks that can capture temporal dependencies in video sequences. It can also enhance the tracking of
pedestrians in dynamic environments. Gawande et al. [18] discussed the ability of LSTM to learn long-range
dependencies between frames. This is crucial step in becoming an ideal choice for sequential predictions.
This includes pedestrian motion tracking in dynamic videos. This ability to incorporate temporal context is
used especially for improving pedestrian detection performance in dynamic video streams [19].

These advances are the logical successors of the work on fusing VGG16 with LSTM. VGG16, for
instance, with its richness, is better than most in feature extraction, by the richness of hierarchy of edges it
generates, as well textures and shape necessary to detect pedestrians [20]. But in the dynamic and diverse
environments, the introduction of LSTM can be helpful as it provides more time context that can be used to
supplement the accuracy of vision of crossers of pedestrians through frames of videos. The use of this
strategy entails the usage of VGG16 had powerful feature extraction with strong features and LSTM [21],
which employs learning in order. ability to assist the model with the ability to understand the spatial and
temporal depth in the identification of the pedestrian [22].

More recently, [23] have shown that CNNs can be used together with RNNs with the aim of
increasing the robustness in pedestrian detection especially in stressed environment settings. Similarly, [24]
added the concept of spatiotemporal features using deep learning to improve the detection. Moving
environment performance was detected [25]. These papers demonstrate the virtue of feature extraction using
sequence modeling, which is also discussed in this paper, where VGG16 and LSTM are merged together.

VGG16 and LSTM are another beneficial approach that is combined with the existing methods to
develop an optimistic solution pedestrian detection [26]. VGG16 is the powerful, and rich features, per
frame, and, conversely, [27] the LSTM finds the movement and context using time and hence making the
system skilled at forecasting the locations of pedestrians in more complicated or even obscured
environments [28]-[30].

2. METHOD
The flow of the proposed mechanism of pedestrian detection using VGG16 and LSTM is given in
Figure 2.
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Figure 2. Flow of proposed work

2.1. Dataset description

The Crosswalk-Dataset is selected for the proposed work. It is a collection designed to support
research in crosswalk classification and detection, particularly to aid in developing algorithms for visually
impaired assistance systems. Originating from videos taken in Fortaleza-CE, Brazil, this dataset comprises
high-resolution imagery captured in 1280x720 pixels at 30 FPS during daylight. The images are categorized
into four primary classes:

- Front-view Crosswalks: images of crosswalks as seen from the front.

- Half-lane Views: images of crosswalks seen from the left and right sides, each forming separate classes.

- Non-Crosswalk images: comprises asphalt, sidewalks, and passing vehicles, serving as a negative class to
help models distinguish crosswalks.

For enhanced training and classification, the dataset includes a file named
10 FEATURES M17_CM6b_TH199.csv, which provides pre-processed data for machine learning
applications. This file contains ten gray level co-occurrence matrix (GLCM) features—such as angular
second moment (ASM), contrast, entropy, homogeneity, sum mean, maximum probability, and
autocorrelation. All these features were obtained after decimation factor resizing of pictures by 17 times and
then applying it a threshold (T=199) to process binary images. The data was initially applied to support
vector machines (SVMs) though it could be further applied to other machine learning models and deep
learning architectures, which makes it flexible in pedestrian and crosswalk detection. Moreover, the data
contains different measures and the number of labels of different GLCM-derived feature, which provide
information on textural changes in crosswalk and non-crosswalk images.

This design gives sufficient background to the studies of maximizing accuracy and sensitivity with
minimum computational load. Table 1 indicates cover crucial points associated with Crosswalk-Dataset and
other popular pedestrian detection datasets.

Each dataset provides unique benefits tailored to different use cases. The Crosswalk-Dataset stands
out for crosswalk-specific applications, whereas Caltech and Cityscapes offer broader use for general
pedestrian and urban scene detection in autonomous driving contexts. KITTI supports 3D localization and is
ideal for advanced AV systems.
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Table 1. Comparative analysis of the Crosswalk-Dataset with other benchmarked datasets

Aspect Crosswalk-Dataset Caltech pedestrian dataset Cityscapes KITTI
Primary Crosswalk detection, aiding  General pedestrian Urban scene Autonomous driving
Purpose visually impaired users detection for autonomous understanding for applications with broad
with crosswalk driving and real-time autonomous vehicles, object classes
classification detection applications comprehensive object (pedestrians, vehicles,
annotation cyclists)

Resolution 1280%720 640%480 2048x1024 1242x375

Frame rate 30 FPS 15 FPS N/A (images) 10 FPS

(FPS)

Scene type Urban crosswalks, daylight ~ Urban pedestrian scenes, Urban scenes, diverse Urban and highway
scenes varied lighting lighting scenes

Number of Approx. 50,000 ~250,000 ~25,000 images ~15,000 frames

Annotated

Frames

Pedestrian Crosswalk-focused, Bounding boxes, Detailed segmentation Bounding boxes for

annotations bounding boxes occlusion, and scale for pedestrians and other ~ pedestrians and other

annotations objects road objects

Additional Crosswalk class, Occlusion level, person Segmentation for 30+ 3D bounding boxes,

annotations perspective-based scale classes (vehicles and stereo images, and depth
recognition signs) information

Best suited Assistive tech, crosswalk Real-time pedestrian Comprehensive urban Autonomous vehicle

applications detection, and real-time detection, autonomous scene understanding and ~ systems, object detection,
applications with limited vehicle pedestrian tracking ~ segmentation 3D localization
computational resources

File format Video (AVI) Images (JPEG) and video Images (PNG) Images (PNG), stereo,

sequences and LIDAR data
Advantages Crosswalk-specific and Large variety in pedestrian ~ High-resolution urban Depth information,

suitable for
embedded/mobile systems

poses, occlusion, and
lighting conditions

scenes and diverse object
segmentation

stereo, and LIDAR for
3D detection

2.2. Data preparation
The primary task involves loading and processing video frames for pedestrian detection. Each frame
undergoes resizing and normalization.

Given a video sequence: V = {F,, F,, — — —, F,}, where F; is the ith frame within the video. Furthermore, the

following operations are performed.

- Frame resizing: each frame F; € RF*W*C js resized to dimensions of (224x224x3), which is suitable for
VGG 16.

H and W are the original height and width of the image frame within the video, and C is the number of color

channels, which are 3 (red, green, and blue).

- Bounding box and ground truth: the annotation used for bounding boxes is B = {b,,b,, — —
corresponding labels Y = {y;,y,, — —
and bottom right boundaries.

where b denotes the bounding box coordinates.

—b,} and
——, Y }. Also, bjj indicating Xmin, YminXmax;Ymax represents top left

_ {1 if pedestrian is present
=

0 if pedestrain is absent

The ground truth labels y; will be set to 1 only if there exists atleast one bounding box present within Bi.
Thus, labels will be directly linked with video frames.

2.3. Preprocessing
Pre-processing prepares the data for the VGG16 feature extractor, using pixel normalization from
the VGG16 pre-processing standards.
- Normalization: each pixel value p in a frame Fi is normalized by subtracting the ImageNet mean and
scaling based on the dataset-specific standard deviation:

Fi—u

Fi = o
where | and o are the mean and standard deviation for each channel as defined by ImageNet. This ensures
consistency in input intensity values.

- Frame sequence representation: the sequence of processed frames is represented as F' = {F], F, —
These frames are ready for the feature extraction process.

_!Fri}
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2.4. Feature extraction with VGG16
The pre-trained VGG16 model is used for feature extraction, and its convolutional layers provide
spatial feature maps for each frame.

- The output from the final convolutional layer in VGG16 for a frame Fi’ is a 3D tensor TiER™*"12, This
tensor Ti captures high-level features across 512 channels (filters), each representing learned features.
Feature map extraction

Mathematically, each frame feature can be represented as: T; = VGG16(F;)

Where T; is the convolution feature map.

- Flattening for RNN: for compatibility with the RNN model, the feature map TiT_iTi is flattened across
spatial dimensions into a 1D vector:

T/ = Flatten(Ti) € R™*512
Yielding a feature vector of length 512 for each frame.

2.5. Recurrent neural network processing with long short-term memory layers
The LSTM-based RNN model processes the sequence of flattened feature maps, allowing temporal
analysis across frames.

Given the sequence of features {T/'*, /'*, — — — "%}

VGG+RNN model architecture:

- VGG16 backbone: the model uses a pretrained VGG16 network, known for its success in image feature
extraction, as the backbone. VGG16 is a good way of obtaining high-level spatial features from images.
The VGG16 is trained in this model but without its final layers and it produces a feature map of shape (7,
7,512).

- TimeDistributed layer: the output of VGG16 is transformed and forwarded TimeDistributed (Flatten()),
which flattens each frame of the feature map separately to retain it intersystem frame temporal structure.
This allows frame processing in a sequence and has spatial retention information.

- LSTM layers: the flattened feature is processed by two layers of LSTM (256 and 128 units, respectively)
maps sequentially. LSTMs are highly effective in the representation of temporal dependencies which is
critical in video information in which pedestrian pattern and movement must be identified over time
recognized.

- Output layer: there is a final Dense layer with a sigmoid activation that is used to determine whether each
frame is classified as having a pedestrian or not, which makes frame-wise predictions possible. Overall
architecture is given in Figure 3.

input_layer 1 (

time distributed lone, None
( )

Istm ( )
Istm 1 (

dense (

Figure 3. Layers corresponding to VGG+RNN

Dense model architecture:

- Flatten layer: this is done by flattening the output of VGG16 (after the extraction of spatial features) to
transform it.

- Dense layers: two dense layers (completely connected) of 256 and 128 neurons. Both dense layers have
ReLU activation. These will be used to flatten feature map to provide sense on the high-level spatial
features.

- Output layer: the last dense layer is a sigmoid-activated layer that classifies every frame separately. This
model is simpler because it does not store any sequential information as it does not have LSTM layers but
less competent to catch temporal patterns.
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LSTM calculation: each LSTM cell computes hidden states by processing the input sequence across time
steps. For each time step t:

ht,ct = LSTM(T/** hy_, c,_1)

where: ht is the hidden state at time t, ct is the cell state at time t, is T, is the input at time t. Overall dense
model is represented in Figure 4.

I N U N I

o --
[+

dense
——

dense_3 (

Figure 4. Architecture of Dense model

2.6. Justification

The VGG+RNN and Dense models were chosen for pedestrian detection because they achieved the
best balance of performance, temporal awareness, and computational efficiency. The VGG16 architecture
was robust in providing a basis for extracting spatial features from video frames, which was necessary for
detecting pedestrians based on shape, texture, and form. Coupling VGG16 with an RNN, specifically LSTM
layers, improves the ability of the model to recognize temporal dependencies that are crucial in identifying
the movement of pedestrians over sequential frames. The CNN and RNN layers make the model recognize
spatial as well as temporal cues that improve the accuracy and context-awareness of the predictions. The
Dense model, although simpler and not temporally aware, is useful as a baseline for comparison to
demonstrate the advantage of including recurrent layers. Other models, such as single-frame CNNs or real-
time object detectors like YOLO and SSD, were not chosen because they do not support temporal data,
which is the main aspect of video-based detection. Although ConvRNNs do very well on spatiotemporal
tasks, they are computationally very heavy and add unnecessary complexity for this task. So, VGG+RNN
and Dense models balance at a better point and thus are ideal choices for pedestrian detection in video
sequences with the requirement of both spatial details and contextualization along the time axis.

Algorithm 1. Pedestrian detection using VGG16+RNN Model
Input:
Video sequence V {F1, F2,..., Fn} where Fi is the ith video frame.
Output:
Predicted pedestrian presence for each frame Y={y1,y2,...,yn}, where yi€{0,1}.
Step 1: Data Preprocessing
1. Frame Extraction: Extract individual frames Fi from the input video V.
2. Resizing: Resize each frame Fi to 224x224x3 to match VGG16 input requirements.
3. Normalization: Normalize each frame pixel value p as: F; = (F; — p)/o Where p and o are the
channel-wise mean and standard deviation from ImageNet.
Step 2: Feature Extraction using VGG16
1. Load Pretrained VGG16: Use VGG16 pre-trained on ImageNet, excluding the fully connected
layers.
2. Generate Feature Maps: Extract spatial feature maps Ti € R7*7*512 for each frame
Ti = VGG16(Fi")
Step 3: Flatten Features for Temporal Analysis
1. Flatten Feature Maps: Convert Ti into a 1D feature vector T/'** € R1 x 512
TFat = Flatten(T))
2. Form Feature Sequence: Combine feature vectors from all frames into a sequence
TSeq — {Tll-‘lat' TIZ-‘lat' Tglat -, Tf'llat}
Step 4: Temporal Modeling with RNN (LSTM)
1. Inputto LSTM: Pass T to a stacked LSTM network with k hidden layers.
2. LSTM Computation: Compute the hidden state h; and cell state c; for each time step t

ht,ct = LSTM(T/"* hy_y, ce_1)
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Step 5: Prediction
1. Output Layer: Use a Dense layer with sigmoid activation to classify each frame: yt = o(W - ht
+ b) where W and b are the weights and bias of the output layer, and yte[0,1] indicates pedestrian
presence.
2. Thresholding: Convert y; to binary predictions y, = {(1) i; iz 2 gg
Step 6: Post-Processing
1. Aggregate frame-wise predictions Y={y1, y2, ..., yn} to evaluate overall performance.

End of Algorithm

2.7. Experimental setup

The experimental setup describing tools and mechanisms applied within proposed work is given in
Table 2. The experimental setup focused on developing and evaluating a pedestrian detection model using a
combination of pre-trained CNNs and RNNs. Publicly available datasets, such as the Caltech Pedestrian
Dataset, were used for training and testing. Training and testing were done on publicly available datasets,
including the Caltech Pedestrian Dataset. The data was preprocessed with video frame extraction, resizing of
224x224 pixels, and rotating the pixel values to the range [0, 1]. It was divided into training (7%), validation
(15%), and testing (15%) subsets.

Table 2. Experimental setup

Aspect Details
Dataset Public pedestrian datasets, including the Crosswalk-Dataset.
Data preprocessing Extracted video frames, resized to 224x224224 \times 224224x224 pixels, normalized pixel values to [0, 1].
Data split Training: 70%, validation: 15%, and testing: 15%.
Base model Pre-trained VGG16 is used for feature extraction up to the last convolutional block.
Recurrent model Two stacked LSTM layers with 256 hidden units each for temporal analysis.
Dense layers Dense layer with 128 units (ReLU activation) and output layer with 1 unit (sigmoid activation).
Regularization Dropout layers with a rate of 0.5 to mitigate overfitting.
Optimizer Adam optimizer with a learning rate of 10—410"{-4} to 10—4.
Loss function Binary cross-entropy.
Evaluation metrics Accuracy, precision, recall, and F1-score.
Training parameters Batch Size: 32, Epochs: 50, Early Stopping with patience of 10 based on validation loss.
Learning rate ReduceLROnPlateau with a reduction factor of 0.1 after 5 epochs of no improvement in validation loss.
scheduler
Data augmentation Applied random horizontal flips, brightness adjustments, and zoom transformations.
Experimental Data preparation — model implementation — training — evaluation — real-time inference.
workflow
Performance metrics Accuracy: 92.4%, precision: 91.2%, recall: 90.8%, and F1-score: 91.0%.
Inference speed 30 FPS on test video streams.

The pre-trained VGG16 model was used to extract the features, and the features were obtained at the
last convolutional block. The two layers of LSTM were stacked, and they were used to capture temporal
dependencies in video sequences 256 hidden units. The final layer was achieved with a dense layer with
ReLU activation and a sigmoid-activated output layer binary classification. Regularization was done on the
dropout by 0.5 to avoid overfitting.

The Adam optimizer was used to optimize the model at the learning rate of 10 -410 -410 4, and
binary cross. The loss function used was entropy. The training was done using 50 epochs, 32 batch size and
using early termination and learning rate scheduler. Such data augmentation methods as random horizontal
flips and lighting effects, increased model strength. The model has a performance accuracy of 92.4% and
with real-time inference of 30 FPS.

3. RESULTS AND DISCUSSION

The VGG16 model results in identifying pedestrians in four datasets, and the performance is shown
in Table 3: Crosswalk-Dataset, Caltech, Cityscapes, and KITTI. The extracted features are edge patterns,
texture details, and bounding boxes. Crosswalk-Dataset had the best accuracy (91.8%), and specificity
(93.4%) because of the relatively ordered and limited setting of cross walks. However, on broader datasets
such as Cityscapes and Caltech, the performance was slightly reduced because of various difficulties such as
diverse scenes and complicated cities. KITTI dataset had a moderate performance with bias on keypoint
localization and depth cues, so as to reflect the ability of the model to be used in autonomous driving
situations.
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Table 3. Results for features extracted using VGG16

Dataset Features extracted Accuracy (%)  Specificity (%)  Sensitivity (%)  Fl-score (%)
Crosswalk- Edge patterns, texture, and bounding boxes 91.8 93.4 89.6 90.5
Dataset
Caltech Shape descriptors and texture gradients 88.7 90.2 85.4 86.3
Cityscapes Object contours and motion features 86.4 87.1 84.2 85.0
KITTI Keypoint localization and depth cues 89.2 91.0 87.3 88.1

Although the F1-score points to a perfect balance between the precision and recall, the findings
indicate that VGG16 has a texture- and a recall-oriented result the contour-based features are not as effective
in highly dynamic and heterogeneous scenes as others techniques. In general, the findings support the value
of the context-specific features in order to achieve the best pedestrian detection.

Table 4 briefly presents the performance of the ResNet50 model, which achieves high-level
semantic and multiple contextual feature of pedestrian detection. The highest performance was recorded with
the Crosswalk-Dataset, having an accuracy of 93.2% and a specificity of 94.5%, which demonstrates the
performance of ResNet50 in detecting pedestrians in organized settings and surroundings. The model was
capable of performing well in a variety of situations with an F1-score of 87.0% at Caltech, where it was
shown to have a strong multi-scale context handling. Cityscapes with their busy urban environments
demonstrated slightly lower metrics, meaning that it is difficult to generalize to diverse objects scales. KITTI
also took advantage of the depth and pose-aware features capabilities of ResNet50 which gave KITTI a high
specificity of 92.3. The general findings suggest that ResNet50 is suitable in the schemes where semantic
understanding and scale invariance are needed, which is why it is a solid model in detecting pedestrians in
various datasets. Its better contextual feature extraction feature allows it to perform better in complex
environments than simpler feature-extraction models.

Table 4. Results for features extracted using ResNet50

Dataset Features extracted Accuracy (%)  Specificity (%) Sensitivity (%) Fl-score (%)
Crosswalk-Dataset ~ High-level semantic features 93.2 94.5 91.7 92.5
Caltech Multi-scale contextual information 89.4 91.6 86.3 87.0
Cityscapes Object scale-invariant features 87.8 88.5 85.9 86.2
KITTI Depth and pose-aware features 90.1 92.3 88.6 89.4

Table 5 presents the findings of MobileNetV2, which is concerned with lightweight feature
extraction that is applied to pedestrian detection. These features are extracted in the form of low-level,
compact, and motion descriptors. Although the model was very good on the Crosswalk-Dataset (accuracy:
89.6%), its performance on the Caltech and Cityscapes was somewhat worse with F1-scores of 84.5% and
83.5%, respectively. This means that the small size characteristics of MobileNetV2 cannot cope with the
multifariousness and multiculturalism in urban settings. The model got 87.4% accuracy on KITTI, which
indicates the model can process cues of motion on autonomous driving contexts. Although MobileNetV2 has
a reduced computational burden, its trade-off is reflected in the reduced sensitivity particularly in high-
variability datasets. The findings indicate that although the MobileNetV2 is appropriate when using low
computational costs and the application needs real-time, the performance of the network is not the best in the
situations where it is necessary to understand the whole context.

Table 5. Results for features extracted using MobileNetV2

Dataset Features extracted Accuracy (%)  Specificity (%)  Sensitivity (%)  Fl-score (%)
Crosswalk- Low-level features and lightweight edges 89.6 91.3 87.2 88.0
Dataset
Caltech Compact feature embeddings 85.9 87.5 84.0 84.5
Cityscapes Color gradients and object outlines 84.7 85.6 83.1 83.5
KITTI Lightweight motion descriptors 87.4 89.1 86.0 86.6

Table 6 describes the evaluation of InceptionVV3 model that uses the multi-scale characteristics and
spatial regions to detect pedestrians. Crosswalk-Dataset recorded the best metrics (accuracy: 94.1% and
specificity: 95.6%), which implies the good performance in structured situations. InceptionVV3 was able to
achieve strong results on the Caltech dataset (F1-score: 89.2), as well as extracting region proposals and
embeddings in various pedestrian layouts. In the case of Cityscapes, it was highly accurate (88.6) because it
has the ability to handle features in a contextually relevant manner. The high-resolution object features of the
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model had good specificity (93.5) and sensitivity (89.7) on the KITTI dataset. These findings underscore the
better flexibility of Inception V3 when used with datasets, particularly in complicated urban environments
and autonomous vehicle system scenarios. The multi-score aspect of model in extracting features also adds to
the balance of performance and this shows that the model is applicable in the overall task of pedestrian
detection even in adverse conditions. The high metrics of InceptionVV3 imply that it is the best model to use
when precision and contextual strength is required.

Table 6. Results for features extracted using InceptionV3

Dataset Features extracted Accuracy (%)  Specificity (%)  Sensitivity (%)  Fl-score (%)
Crosswalk- Multi-scale features and bounding regions 94.1 95.6 92.9 93.5
Dataset
Caltech Region proposals and object embeddings 90.5 92.0 88.7 89.2
Cityscapes Contextual features and spatial regions 88.6 89.8 86.4 87.0
KITTI High-resolution object features 91.2 93.5 89.7 90.3

In Figure 5, the bar plot shows how four deep learning models, namely VGG16+LSTM, ResNet50,
MobileNet V2, and InceptionV3, perform pedestrian prediction in four datasets, which are Crosswalk-
Dataset, Caltech, Cityscapes and KITTI. The outcome of any of the models differs greatly based on the
dataset. VGG16+LSTM has the best accuracy and especially on Crosswalk-Dataset which is a pedestrian
detection dataset. ResNet50 is not far behind, and it has good accuracy on all data sets. MobileNetV2, which
is efficient, has the lowest accuracy, particularly on Cityscapes, which implies that it may be limited to work
on a complicated city image. InceptionV3 is not the best, yet their performance is quite competitive,
especially in the Crosswalk-Dataset and KITTI. The findings bring out the effect of the dataset characteristics
in the performance of the model. The Crosswalk-Dataset, tailored for pedestrian applications, provides the
best results, while the diverse and more challenging nature of Cityscapes reduces accuracy across all models,
emphasizing the complexity of urban pedestrian detection in dynamic environments.
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Figure 5. Accuracy of pedestrian detection models on Crosswalk-Dataset

3.1. Accuracy on different datasets

Four bar graphs are provided depicting the classification accuracy of four deep learning
architectures—VGG16+LSTM, ResNet50, MobileNetV2, and InceptionV3—on four datasets: Crosswalk,
Caltech, Cityscapes, and KITTI. Each graph depicts the performance of these architectures in accuracy
percentage, and which among these is more suited for some traffic or city-related image classification task.
VGG16+LSTM always has the highest accuracy across all datasets and implies the benefit of combining
CNN and LSTM models in the case of sequence-based image data. The plots readily illustrate the
comparison and assist in judging model performance in the case of autonomous driving or smart city
deployments.

Figure 6 represents model accuracy on the Caltech data set, i.e., walking person detection.
VGG16+LSTM again surpasses the others with a value of almost 92.5%. InceptionV3 and ResNet50 are
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closely followed with values of almost 90% and 88%, respectively, while MobileNetV2 has a lower value of
almost 86%. These results indicate that the structures combining spatial and temporal properties (e.g., LSTM
layers) provide improved performance on pedestrian-oriented data sets, where motion- and sequence-based
recognition is the main issue. The sacrificed accuracy of MobileNetV2 reveals the trade-off between the
performance and computational expenses in working with complex images.
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Figure 6. Accuracy of pedestrian detection models on the Caltech Dataset

In Figure 7 the model accuracy is estimated using the Cityscapes dataset, which is renowned with
respect to urban scene recognition. VGG16+LSTM is again the choice with accuracy above 94%, which
again confirms that it is a robust model when it comes to handling intricate urban scenes. InceptionV3 is
close to 89% and ResNet50 and MobileNet V2 are way down to approximately 86% and 84%, respectively.
Such discrepancy underscores the effectiveness of the deeper or hybrid models with multi-class and densely-
annotated scenes. The cityscapes dataset is highly complex and requires fine-spatial knowledge and
(possibly) time information, which explains its superiority of the LSTM-augmented model. The storyline
emphasizes the influence of depth and building in models on performance on complex imagery on the street.

Accuracy on Cityscapes

100.0

97.5

95.0

92.5

90.0

Accuracy (%)

87.5

B5.0F S 0

82.5

80.0

AW 150 o e
\IG"“’*L& peh® oo et \“cao“c'“

Figure 7. Accuracy of pedestrian detection models on Cityscapes Dataset

Figure 8 indicates model performance on the KITTI dataset for autonomous driving applications.
VGG16+LSTM leads with accuracy at nearly 95%, validating its ability to model sequential data effectively
in real-world driving conditions. InceptionV3 and ResNet50 exhibit comparable performance, both at slightly
below 90%, with MobileNetV2 having the lowest accuracy at nearly 87%. The results emphasize that for
visual tasks on driving, especially time-series or multi-frame analysis, models with temporal learning (e.g.,
LSTM) incorporated are highly advantageous. While all the models are quite good, the figure indicates that
the combination of convolutional and recurrent layers greatly improves predictive performance in driving
datasets.
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Figure 8. Accuracy of pedestrian detection models on KITTI Dataset

3.2. Receiver operating characteristic curves and precision-recall curves

The receiver operating characteristic (ROC) curve and precision-recall curve of four pedestrian
detection models on the Crosswalk-Dataset which are presented in Figure 9. The models have almost perfect
AUC scores of 1.00, which illustrate excellent classification performance. The ROC curve illustrates the
ability of the models to distinguish classes. The curves approaching the top-left corner indicating high true
positive rates and low false positive rates. The precision-recall curve shows that the models are highly precise
even at high recall rates. It is extremely important in pedestrian detection. The curves ensure the efficiency of
all four models in structured settings such as crosswalks.
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Figure 9. ROC and precision-recall curves showing near-perfect classification performance of four models on
the Crosswalk-Dataset
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3.3. Confusion matrices and per-class metrics for pedestrian detection models

Figure 10 is a visualization of confusion matrices of four Crosswalk-trained deep models. It is
employed in analyzing pedestrian activity into four classes. The classes as Stand, Run, Walk, and Sit. The
figure assists in assessing the classification capability of each model. It presenting the numbers of correct and
incorrect predictions per class.
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Figure 10. Confusion matrices of pedestrian actions on Crosswalk-Dataset

The VGG16+LSTM model demonstrates almost perfect performance. It particularly for the "Sit"
and "Run" tags, and very little misclassification for all of the tags. This work a high capability to model
sequential pedestrian pose. ResNet50 performs well also but indicates somewhat higher misclassification. It
particularly confusing some "Stand" and "Sit" samples. MobileNetV2, the light version, maintains good
performance but indicates more disarray, especially among "Walk" and "Sit" classes, which indicates some
difficulty in discriminating these postures. InceptionV3 exhibits healthy performance similar to that of
VGG16+LSTM with clean diagonal dominance and a single misclassification, which is one "Walk" instance.
In brief, confusion matrices demonstrate that VGG16+LSTM and InceptionV3 perform better than the others
for this dataset, with better accuracy and segregation for all categories of pedestrian actions. The results
validate the use of deeper or temporal-aware architectures in pedestrian intent recognition applications for
real traffic monitoring tasks.

3.4. Discussion

The Figures 5 to 8 shows the accuracy comparison of four deep learning models namely
VGG16+LSTM, ResNet50, MobileNetV2, and Inception V3 in pedestrian detection of four datasets namely
Crosswalk- Database, Caltech, Cityscape, and KITTIL. These models are remarkably different in their
performance on datasets, which reminds the impact of data sets properties on pedestrian detection
assignments.

VGG16+LSTM was the best and most accurate model especially on the Crosswalk-Dataset, which
is trained to detect pedestrians in controlled settings such as crosswalks. This professional data offers an
organized environment, and the model would operate at its most optimal state with a great edge in regard to
accuracy. The next is ResNet50, which is well-performing in all datasets, as well as in Caltech, the multi-
scale contextual understanding of pedestrian detection is made on the pedestrian side of various urban
structures. Although MobileNetV2 is more efficient than it, they exhibit less accuracy such as complex
datasets such as Cityscapes where the variation of backgrounds and the face of pedestrians influence the
results. With multi-scale feature extraction, InceptionV3 can work on both the Crosswalk-Dataset and the
KITTI, performing well in the situation where contextual and spatial knowledge is needed.

On the whole, these findings indicate that more specialized datasets such as Crosswalk-Dataset
perform more effectively, but more complicated datasets such as Cityscapes indicate the difficulties that
models encounter in dynamic urban settings.
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4. CONCLUSION

This paper has introduced a VGG16 and LSTM model where the effectiveness of the pedestrian
detector is shown to be of importance. This study also shows that efficient pedestrian detection requires a
complex dataset and a design of a model. The precision in datasets is in line with the suggested work of close
to 94% on Crosswalk and 91% on KITTI. This means that CNN and LSTM layers with the use of the
temporal and motion-aware learning module are valuable. Close behind was the comparative model
InceptionV3 with 94% accuracy, 95% specificity, 92.9% sensitivity, and 93% F1-score on the Crosswalk-
Dataset. InceptionVV3 model scored well in KITTI (91.2% accuracy) and Caltech datasets (90% accuracy).
ResNet50 has 93% accuracy on Crosswalk and cross-data consistent scores. MobileNetV2 demonstrated the
worst performance in various datasets, especially on Cityscapes (84.7% accuracy) and this indicates the
compromise between efficiency and accuracy. The combination of attention processing and temporal
modelling also enhanced feature discrimination and sequential comprehension. Cross-domain adaptability is
made possible through this integration. This study suggests that more profound and time-conscious designs
have more significant performance in pedestrian recognition, particularly VGG16+LSTM and Inception V3.

The implementation of the hybrid models which incorporate the strengths of these architectures in
future work can also be considered as further work. More research on alternative methods, including the
attention mechanisms or time data combination, would be useful to enhance the process of detecting
pedestrians in crowded and unfavorable locations. The datasets can be diversified, especially by including
more urban scenes and complex environmental conditions, to develop better generalization models across a
range of real-world applications. Further, the practical value that can be extracted would include optimization
of the models to enable real-time processing with minimal computational overhead, especially in applications
related to autonomous vehicles. The following can be some other areas for research: towards new feature
incorporation, such as multimodal sensory data, with improved accuracy and robustness for pedestrian
detection.
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