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 Lung cancer remains one of the most prevalent and lethal malignancies 

worldwide, necessitating early detection and accurate classification for 

effective treatment. In this work, we present a unique machine learning 

(ML) model that uses medical imaging data to detect and classify lung 

cancer. Utilizing a dataset of 613 images which obtained from Kaggle, our 

model combines sophisticated feature extraction methods with three 

essential algorithms: AdaBoost, stochastic gradient descent (SGD), and 

random forest (RF). Orange3 data mining software was used to classify the 

model after it was preprocessed and features were extracted using 

MATLAB. Nonetheless, the model showed good performance in identifying 

lung cancer lesions in four different categories: squamous cell carcinoma, 

big cell carcinoma, adenocarcinoma, and normal. With an accuracy of 0.998 

and an AUC range of 1.000, AdaBoost notably produced the best results. 

Overall, ensemble ML techniques demonstrated notable benefits over single 

classifiers, indicating its potential to aid in the creation of accurate 

instruments for the diagnosis of lung cancer in its early stages. 
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1. INTRODUCTION 

Lung cancer remains one of the leading causes of cancer-related mortality worldwide, with a high 

incidence and poor prognosis, necessitating the development of innovative diagnostic and prognostic tools 

[1], [2]. Early detection and accurate classification of lung cancer are critical for improving patient outcomes, 

as timely intervention can significantly impact treatment efficacy and survival rates [3], [4]. Lung cancer 

imaging methods encompass a range of modalities, each contributing unique information to the diagnostic 

process. While computed tomography (CT) remains the primary imaging modality, positron emission 

tomography (PET)/CT, magnetic resonance imaging (MRI), and chest X-rays also play essential roles in the 

comprehensive evaluation and management of lung cancer patients. The selection of imaging modalities 

depends on clinical indications, tumor characteristics, and patient-specific factors, with the goal of optimizing 

patient care and treatment outcomes [5]. 

Lung cancer imaging plays a crucial role in diagnosis, staging, and monitoring, with a variety of 

modalities offering unique advantages and limitations in visualizing tumors and assessing disease progression 

[6], [7]. Since CT has a high spatial resolution and can identify small pulmonary nodules, it continues to be 

the primary imaging modality for evaluating lung cancer. Comprehensive anatomical data from CT scans is 

useful for identifying lung lesions, figuring out the size and location of tumors, and determining whether 

https://creativecommons.org/licenses/by-sa/4.0/
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lymph nodes are involved. Moreover, contrast-enhanced CT scans make it easier to see blood vessels and 

discern between benign and malignant tumors [8]. PET imaging, which is frequently used in addition with 

CT (PET/CT), offers useful data regarding cellular activity and tumor metabolism. PET/CT scans are used to 

detect metastases in distant organs, evaluate tumor aggressiveness, and identify malignant lesions by 

identifying regions of enhanced glucose metabolism [9]. 

MRI is less commonly used for lung cancer imaging but may be employed in specific clinical 

scenarios, such as evaluating mediastinal invasion or assessing brain metastases. MRI offers superior soft tissue 

contrast resolution compared to CT and is particularly valuable in cases where CT or PET/CT findings are 

inconclusive or when there are contraindications to iodinated contrast agents [10]. Chest X-rays remain a 

valuable initial screening tool for lung cancer, although their sensitivity for detecting small lesions is limited 

compared to CT imaging. Nevertheless, chest X-rays are readily accessible, cost-effective, and may serve as a 

first-line imaging modality for patients with suspected lung cancer, guiding subsequent diagnostic workup [11], 

[12] Conventional diagnostic methods, such as imaging modalities and histopathological analysis, have 

limitations in terms of accuracy, sensitivity, and speed, prompting the exploration of alternative approaches [9]. 

With the potential to improve diagnostic efficiency and accuracy, machine learning (ML) approaches 

have become increasingly attractive in recent years for the detection and classification of lung cancer [13]-[15]. 

These algorithms can find patterns and features that indicate the existence, subtype, and stage of lung cancer by 

analyzing vast amounts of medical imaging data, such as chest X-rays, CT scans, and PET images, along with 

patient demographics and clinical data [16], [17]. The application of ML in lung cancer detection and 

classification encompasses various approaches, including supervised learning, unsupervised learning, and deep 

learning (DL). Supervised learning algorithms, such as support vector machines (SVMs) and random forests 

(RF), utilize labeled training data to build predictive models for distinguishing between different classes of lung 

cancer and healthy tissue. Unsupervised learning techniques, such as clustering algorithms, enable the 

identification of hidden patterns and subgroups within lung cancer datasets, facilitating personalized treatment 

strategies and prognosis prediction [18]-[21]. Even while ML has great promise for diagnosing lung cancer, 

there are still a number of obstacles and restrictions that must be resolved. In addition to model interpretability, 

generalizability, and ethical considerations, these also involve data availability, quality, and standards issues. 

Regulatory approval, thorough validation, and smooth integration with current healthcare procedures are also 

necessary for the clinical application of ML-based algorithms [22], [23]. 

Previous studies have demonstrated various ML and image processing techniques for lung cancer 

detection and classification using CT imaging data. Research by Lin et al. [24] suggested a model based on 

CT images for non-small cell lung cancer (NSCLC) patient clinical staging and histological type. A total of 

107 radiomic characteristics were collected from 309 patients, which were split into training and testing sets. 

The model was built using four classifiers and had two output layers: clinical stage and histology type. With 

an AUC of 0.700 and 0.881 for histological typing and clinical staging, respectively, the RF model had the 

best classification performance. 

Gupta et al. [25] utilized RF classification, where feature extraction evaluated characteristics such as 

area, perimeter, and eccentricity to derive useful information for lung cancer detection. Sim et al. [26] 

implemented a texture matching process using the local binary pattern (LBP), which proved superior to other 

available texture patterns. This approach, combined with SVM classification, enhanced the detection accuracy. 

Pradhan and Chawla [27] focused on pre-processing techniques to reduce noise and improve CT image 

quality through various image enhancement methods. They converted grayscale CT images for segmentation 

and conducted further morphological opening procedures. Pati [28] used an SVM to categorize CT images into 

normal and abnormal, claiming high accuracy in early-stage cancer detection. They emphasized that image 

quality and enhancement levels significantly impact the accuracy of the detection process.  

Vijayalakshmi et al. [29] highlighted the significance of classification in digital image analysis, categorizing CT 

images based on similarities. In traditional systems, histogram equalization (HE) is used for preprocessing CT 

images, and feature ex0traction is performed using HE. These various methods collectively contribute to the 

advancement of lung cancer detection and classification, each bringing unique strengths to the diagnostic 

process. 

Using medical imaging data, namely CT imaging, this work focuses on the creation and assessment 

of ML algorithms intended to reliably detect and classify lung cancer. Because lung cancer is still the world's 

top cause of cancer-related death, the key goal is to develop reliable models that can accurately identify lung 

cancer lesions. This will help address the urgent need for early detection to increase patient survival rates. 

While they function well, traditional diagnostic techniques are frequently difficult and vulnerable to human 

error. However, the of this work is to improve the diagnosis process by using cutting-edge ML techniques, 

which will make it quicker, more accurate, and less dependent on human interpretation. Our method involves 

the rigorously development of algorithms designed to identify the unique patterns and features of lung cancer 

lesions in CT images. These algorithms are then trained on large datasets to learn and generalize from a 
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variety of imaging scenarios. The study assesses how well these models identify and categorize lung cancer 

and investigates how they might be used in medical environments. 

To improve classification performance, our novel pipeline incorporates multiple algorithms, 

supported by a comprehensive feature extraction strategy that combines DL with conventional image 

processing techniques. Enhanced preprocessing methods ensure high-resolution data quality, while the 

model's robust validation framework, user-friendly interface, and dynamic adaptability to various imaging 

protocols facilitate seamless integration into clinical workflows. By comparing outcomes across different ML 

techniques, we aim to identify the most effective strategies for lung cancer detection. 

 

 

2. METHOD 

This work proposed a ML model for the identification of lung cancer using a dataset of 613 CT 

images that acquired from Kaggle [30]. The preprocessing stage was deployed using MATLAB in order to 

enhance image quality and guarantee interoperability with ML algorithms, these steps were crucial through 

leveling pixel intensity values, boosting contrast by HE, shrinking the images to a consistent size, and using 

Gaussian filtering to lower noise. Due to the limited number of samples of the dataset, image extraction 

becomes an essential procedure in computer vision, data mining, and image processing. Using the 

lightweight convolutional neural network Squeeze Net, which employs Fire modules to extract features from 

input images, the extracted features are then processed by global average pooling, convolutional, and 

SoftMax layers, making it suitable for devices with limited resources. In this Python-based model, 1000 

features were extracted from images, greatly improving the model's performance and accuracy [31]-[33]. 

However, this model integrates AdaBoost, SGD, and RF, these classification methods that were applied after 

feeding the features into the suggested model. While AdaBoost improves weak classifiers, SGD maximizes 

large datasets and fast convergence to improve the diagnosis of lung cancer from CT images. RF increases 

prediction accuracy through the use of ensemble learning and robustness against overfitting. By providing 

information on feature significance, RF helps find CT image features that influence categorization outcomes. 

By addressing the complex nature of medical imaging problems, this hybrid model enhances diagnostic 

accuracy in clinical settings. Figure 1 shows the classification model using Orange3. 
 

 

 
 

Figure 1. Classification model using Orange3 
 

 

The model was trained and verified across several subsets of the training data using 10-fold  

cross-validation, which was used to guarantee model reliability. After training, performance indicators such 

as accuracy, sensitivity, precision, and F-measure were determined to provide a thorough assessment of the 

model's efficacy. To help highlight incorrect classifications and areas for improvement, a confusion matrix 
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was also created to show the classification findings. However, the flowchart of lung cancer detection and 

classification mode is shown in Figure 2. This methodical process made it easier to create a strong model that 

can reliably identify and categorize lung cancer from CT scan images into four categories: adenocarcinoma, 

large.cell.carcinoma, normal, and squamous.cell.carcinoma as shown in Figure 3, Figure 3(a) displays 

adenocarcinoma class, Figure 3(b) displays large cell.carcinoma class, Figure 3(c) displays normal class, and 

Figure 3(d) displays squamous cell.carcinoma class. 
 

 

 
 

Figure 2. Lung cancer detection and classification model architecture 
 

 

    
(a) (b) (c) (d) 

 

Figure 3. Chest CT-scan images; (a) adenocarcinoma, (b) large.cell.carcinoma, (c) normal, and  

(d) squamous.cell.carcinoma 

 

 

3. CLASSIFICATION METHODS 

3.1.  The random forest 

Classifier is a stochastic method that uses a random vector to create numerous decision trees (DTs) 

to improve accuracy and decrease correlations. Every DT is divided into a subset of features, and the 

diversity of the tree depends on how many characteristics are considered. The best-split function to 

encourage tree similarity is found at each split. For a variety of predictions, the objective is to construct an 

ensemble of several DTs [34]-[36]. Here, RF (1) with equal representation, where yi is the original value used 

for feature i and Fi is the value acquired from the system, shows N, the number of characteristics used to find 

equivalent accounts [37], [38]. 
 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑓𝑜𝑟𝑒𝑠𝑡 =
1

𝑁
∑  ( 𝐹𝑖 −  𝑦𝑖  )2𝑁

𝑁=1  (1) 
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3.2.  AdaBoost 

An approach to supervised learning that divides instances into positive and negative groups is called 

AdaBoost [39]. It works well with imbalanced data since it is based on weighted majority voting 

standards [40], [41]. Overfitting and generalization are its main problems, though. A unique approach to 

weak learning is put forward, which increases accuracy by employing numerous thresholds. With this 

approach, each piece of data is given the same weight, but points that are misclassified are given additional 

weight. AdaBoost is a simple, adaptable algorithm that can handle unbalanced datasets by changing weights 

[42], [43]. In (2) demonstrates that when a new tree model is presented, the general tree is eliminated and 

only the strongest tree is incorporated to the system. With this approach, the model's overall performance 

constantly becomes better as more simulations are made. 
 

𝐹𝑛(𝑥) =  𝐹𝑚−1(𝑥)  +  𝑎𝑟𝑔𝑚𝑖𝑛ℎℎ ∑ 𝐿( 𝑦𝑖,  𝐹𝑚−1( 𝑥𝑖) +  ℎ(𝑥𝑖)
𝑛

𝑖=1
 (2) 

 

when the inserted tree is denoted by h(xi), the freshly inserted tree is represented by yi, the i-th tree prediction 

result is represented by yi, and the overall model is represented by Fn(x) [44]. The AdaBoost classifier 

procedure is shown in Figure 4. 
 

 

 
 

Figure 4. AdaBoost classifier procedure [45] 

 

 

3.3.  Stochastic gradient descent 

Strong training techniques for linear, which estimates the cost function's gradient and updates model 

parameters in response to the addition of fresh training data. Particularly when dealing with enormous 

datasets, this approach produces substantially better results than traditional techniques [46]. To enhance 

optimization methods, SGD is a simple and powerful ML model that has seen a lot of effort recently. In (3) 

illustrates how the optimization problem often looks with 𝑖=1,2,...,𝑛 and the train data (𝑥𝑖,𝑦𝑖). 
 

𝑚𝑖𝑛 ℓ(𝑤) =
1

𝑛
∑  ℓ𝑖  (ℎ (𝑥𝑖; 𝑤), 𝑦𝑖)

𝑛

𝑖=1
 (3) 

 

where h is prediction function, 𝑖 is the loss function, and w is the weights in the model. 

 

 

4. PERFORMANCE EVALUATION 

The performance evaluation approach allows for the verification of efficiency and validity. There 

are several methods to assess a classifier. For this inquiry, two sets of data test sets and a train set represent 

30% and 70% of the total dataset, respectively. Using the invisible test set, the data's predicted success is 

assessed following training on the training set. We used the cross-validation method of 10 folds to further 

remove the over-fitting problem. Three MLML classification models were utilized in this paper: AdaBoost, 

RF, and SGD. The performance of each classifier was compared. Using a sample of test data, a ML tool 

called a confusion matrix indicates which predictions a classification model made correctly and inaccurately. 

According to [47]-[49], this category includes false positives (FP), true negatives (TN), true positives (TP), 

and false negatives (FN). Table 1 displays the confusion matrix. As can be shown in Table 2, it generates 

measures such as accuracy, precision, recall/sensitivity, and F1-score. Orange3, a data mining tool, was used 

to extract data. Figure 5(a) confusion matrix of the SGD classifier shows the results of testing the proposed 

model and calculating the performance of each classifier by constructing a confusion matrix. AdaBoost 

classifier confusion matrix (Figure 5(b)) and RF classifier confusion matrix (Figure 5(c)). Table 2 represents 

classifier’s performance matrices. 
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Table 1. Confusion matrix [50] 
 Predicted 

Actual TP FN 
FP TN 

 

 

Table 2. Classifier’s performance matrices [50] 
Performance matrices Equation Performance matrices Equation 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

    

Sensitivity 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F-measure 2 ∗ Precision ∗ Sensitivity 

Precision + Sensitivity
 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 5. Confusion matrix of all classifier; (a) confusion matrix of SGD classifier, (b) confusion matrix of 

AdaBoost classifier, and (c) confusion matrix of RF classifier 

 

 

5. RESULTS AND DISCUSSION 

The classification analysis's findings show a distinct difference between the AdaBoost, RF, and 

SGD models' performances on the dataset. AdaBoost outperformed the other models, achieving perfect 

scores for accuracy, AUC, and sensitivity, with near-perfect results (99.8%) in precision and F-measure as 

shown in Table 3. This highlights AdaBoost's robustness in handling the dataset, making it the most reliable 

model for this task. RF also demonstrated strong performance, with a 99.5% classification accuracy, 

precision, and F-measure, and a perfect AUC score, indicating its effectiveness. However, its slightly lower 

accuracy compared to AdaBoost suggests that while RF is highly reliable, it may not capture the dataset's 

nuances as well as AdaBoost. In contrast, SGD showed comparatively lower performance, with a 

classification accuracy of 98.9%. While this result is still robust, it indicates that SGD is less effective in this 

context compared to the other models. This difference in performance could be attributed to SGD's 

sensitivity to the specific characteristics of the dataset, such as its complexity and the presence of noise. 

 

 

Table 3. Comparison of ML performance classifiers on the training dataset 
Model AUC Accuracy F-measure Precision Sensitivity 

AdaBoost 1.000 0.998 0.998 0.998 1.000 

RF 1.000 0.995 0.995 0.995 0.998 
SGD 0.993 0.989 0.989 0.989 0.996 
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Overall, the results underscore the superiority of AdaBoost and RF in this classification task, with 

AdaBoost emerging as the most precise and consistent model. The lower performance of SGD suggests that 

it may not be the best choice for datasets with similar characteristics, particularly when high accuracy and 

reliability are crucial. 

The SGD, AdaBoost, and RF classifiers' confusion matrices are analyzed to show important details 

about each of their particular characteristics. The SGD classifier's confusion matrix (Figure 5(a)) shows that 

it can correctly identify a significant number of scenarios, although it might have some issues with managing 

misclassifications across different categories. According to this, SGD may be more vulnerable to errors in 

some situations than the other models, even though it performs well overall. With fewer misclassifications 

across categories, the confusion matrix of the AdaBoost classifier (Figure 5(b)) shows its exceptional 

classification performance. This suggests that AdaBoost performs exceptionally well at the higher levels, 

which makes it a dependable option for applications demanding high recall and precision. 

The accuracy and balanced error distribution of the RF classifier are demonstrated by the confusion 

matrix (Figure 5(c)). RF is a strong model that can handle a variety of complex datasets, demonstrated by its 

ability to maintain low error rates across all categories. Nevertheless, depending on the particulars of the 

dataset, it can perform slightly differently than AdaBoost. While all three models are successful, AdaBoost, 

and RF perform better in terms of accuracy and error distribution, according to the confusion matrices, which 

offer a thorough comparison of the classifiers overall. The evaluation underscores the importance of choosing 

the appropriate classifier based on the specific requirements of the task at hand, with AdaBoost and RF 

emerging as the more reliable options for high-stakes classification tasks. 

The comparative analysis of classifier performance, as illustrated in Figure 6, offers a detailed 

overview of how each model handles the dataset across key metrics such as accuracy, precision, recall, and 

F1-scores. This visual representation underscores the varying strengths and weaknesses of the classifiers, 

enabling a deeper understanding of their relative effectiveness.  

 

 

 

 

Figure 6. Comparative analysis of different classifiers' performances 

 

 

On the other hand, the differences in accuracy among the classifiers suggest that some models are 

better at correctly predicting outcomes, making them more reliable for tasks where accuracy is paramount. 

Precision and recall, on the other hand, highlight the classifiers' ability to minimize FP and FN, respectively. 

The variation in these metrics indicates that certain classifiers may be more suitable for tasks where either 

precision or recall is particularly critical. Also, the F1-scores, which balance precision and recall, provide a 

holistic view of each model's performance. The observed differences in F1-scores reflect the trade-offs each 

classifier makes between precision and recall, offering insights into which model may achieve the best 

overall balance for specific tasks. 

Overall, the results demonstrate that no single classifier universally outperforms the others across all 

metrics. Instead, the choice of classifier should be guided by the specific requirements of the task at hand. 

For instance, if the priority is to minimize FP, a model with higher precision may be preferred. Conversely, if 

the goal is to reduce FN, a model with higher recall would be more appropriate. The analysis in Figure 5 thus 

provides a valuable tool for selecting the most suitable classifier based on the desired performance outcomes. 

However, Table 4 depicts a comparison of previous studies with the proposed model. 
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Table 4. Comparison of previous studies with the proposed model 
Study/year Model Result 

Lin et al. [22] RF AUC of 0.700. 
Saba [23] RF classification Utilized feature extraction (area, perimeter, and eccentricity) for effective lung 

cancer detection. 

Lin et al. [24] SVM with texture matching Implemented LBP for superior texture matching, enhancing detection accuracy. 
Gupta et al. 

[25] 

Image preprocessing 

techniques 

Focused on noise reduction and morphological opening to improve CT image 

quality for better segmentation. 

Sim et al. [26] SVM Categorized CT images into normal and abnormal with high accuracy in early-
stage cancer detection. 

Vijayalakshmi  

et al. [29] 

Histogram equalization and 

HE 

Emphasized the significance of classification and feature extraction using HE for 

CT images. 
Proposed AdaBoost, RF, and SGD AUC: 1.000, accuracy: 0.998, F-measure: 0.998. 

Precision: 0.998 and sensitivity: 1.000. 

 

 

Additionally, the receiver operating characteristic (ROC) curve, which illustrates the trade-offs 

between TP and FP rates, is used to evaluate the effectiveness of binary classifiers in computational statistics 

and ML. For assessing the effectiveness of classifiers in a variety of applications, the ROC curve is essential 

[51]. The analysis provides a better understanding of the advantages and disadvantages of each classifier in 

real-world situations by examining AI and actual goal results [52]. Figure 7 depicts the ROC curve that is 

utilized to assess the effectiveness of classifiers: (a) ROC curve analysis according to adenocarcinoma,  

(b) ROC curve analysis according to large.cell.carcinoma, (c) ROC curve analysis according to normal, and  

(d) ROC curve analysis according to squamous.cell.carcinoma. 
 
 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 7. ROC curves analysis of all classifiers according to target; (a) ROC curve analysis according to 

adenocarcinoma, (b) ROC curve analysis according to large.cell.carcinoma, (c) ROC curve analysis 

according to normal, and (d) ROC curve analysis according to squamous.cell.carcinoma 
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In addition, this work assessed the probabilistic classifier performance to make sure the results 

match reality using calibration charts that show the expected probability against the actual results in Orange 

data mining tool. An accurate predictions are indicated by points near the diagonal line in a well-calibrated 

model in order to make well-informed adjustments like Platt scaling or isotonic regression, calibration charts 

assist in identifying any overconfidence or underconfidence in predictions [50]. However, Figure 8 depicts 

the calibration plot that is utilized to assess the effectiveness of classifiers: (a) calibration plot analysis 

according to adenocarcinoma, (b) calibration plot analysis according to large.cell.carcinoma, (c) calibration 

plot analysis according to normal, and (d) calibration plot analysis according to squamous.cell.carcinoma. 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 8. Calibration plot analysis of all classifiers according to target; (a) calibration plot analysis according 

to adenocarcinoma, (b) calibration plot analysis according to large.cell.carcinoma, (c) calibration plot 

analysis according to normal, and (d) calibration plot analysis according to squamous.cell.carcinoma 

 

 

6. CONCLUSION 

In conclusion, this work highlights the great potential of ML techniques for using medical imaging 

data to diagnose and categorize lung cancer. According to the results, our suggested model is a potentially 

very useful tool in clinical settings because it not only outperforms in accuracy but also in sensitivity and 

specificity. Improving early detection can result in prompt therapies and better patient outcomes, therefore 

this skill is essential. It is imperative to recognize the limits of the study, though. Future research must 

concentrate on confirming the model's resilience and generalizability using bigger and more varied datasets. 

Additionally, incorporating a wider array of clinical variables could further enhance predictive performance, 
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making the model even more reliable for real-world applications. The exceptional results achieved by 

AdaBoost reflect its potential for flawless identification, while RF and SGD also demonstrated commendable 

efficacy. These findings highlight the effectiveness of ML in oncology and emphasize the need for ongoing 

research and refinement. By continuing to integrate diverse data and methodologies, we can fully harness the 

power of ML in lung cancer detection, ultimately advancing the field and improving patient care. 

 

 

7. FUTURE WORK 

In the future larger datasets from different institutions and imaging devices should be used to 

validate and expand the suggested ML model. To increase classification accuracy, sophisticated DL 

architectures such as ResNet, DenseNet, and EfficientNet required to be incorporated. In order to integrate 

imaging findings and clinical factors, multimodal data fusion should be investigated. In addition of 

integrating explainable AI methods such as SHAP, LIME, or Grad-CAM is necessary to increase 

transparency and comprehension of the model's decision-making process and collaboration with hospitals for 

clinical trials is important for evaluating the accuracy and usability of the model, and it should be tuned for 

real-time and edge deployment. However, ethical, legal, and regulatory considerations are also essential for 

the model's safe and ethical deployment. However, these limitations must be reduced to sample size, 

potential biases, and generalizability in order to improve focus and clarity. Improving the model's accuracy 

and applicability for a range of clinical scenarios while advancing equitable and inclusive healthcare 

practices requires addressing these issues and making confident that it is continuously assessed and 

improved. 

 

 

8. LIMITATION 

The ML model for lung cancer detection faces several limitations, including lengthy processing 

times, low-quality images, irregular imaging protocols, and dependence on specific feature extraction 

methods, which can hinder its applicability in clinical settings and affect reliability and flexibility. 

Additionally, challenges such as small sample size, potential biases, and difficulties with generalizability 

arise from variations in image quality, limited CT scans, selection bias, labeling bias, and over-reliance on 

extracted features, all of which impact diagnostic accuracy. Furthermore, healthcare model development 

necessitates patient privacy, HIPAA compliance, and robust security measures. Deployment barriers, 

including technological infrastructure, integration challenges, and financial constraints, can complicate model 

implementation. Biases resulting from skewed training data or algorithmic assumptions may lead to 

inequitable treatment recommendations. Therefore, addressing these challenges and ensuring continuous 

assessment and refinement are essential for improving the model's precision and suitability for diverse 

clinical situations, while promoting fair and inclusive healthcare practices. 
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