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1. INTRODUCTION

Lung cancer remains one of the leading causes of cancer-related mortality worldwide, with a high
incidence and poor prognosis, necessitating the development of innovative diagnostic and prognostic tools
[1], [2]. Early detection and accurate classification of lung cancer are critical for improving patient outcomes,
as timely intervention can significantly impact treatment efficacy and survival rates [3], [4]. Lung cancer
imaging methods encompass a range of modalities, each contributing unique information to the diagnostic
process. While computed tomography (CT) remains the primary imaging modality, positron emission
tomography (PET)/CT, magnetic resonance imaging (MRI), and chest X-rays also play essential roles in the
comprehensive evaluation and management of lung cancer patients. The selection of imaging modalities
depends on clinical indications, tumor characteristics, and patient-specific factors, with the goal of optimizing
patient care and treatment outcomes [5].

Lung cancer imaging plays a crucial role in diagnosis, staging, and monitoring, with a variety of
modalities offering unique advantages and limitations in visualizing tumors and assessing disease progression
[6], [7]. Since CT has a high spatial resolution and can identify small pulmonary nodules, it continues to be
the primary imaging modality for evaluating lung cancer. Comprehensive anatomical data from CT scans is
useful for identifying lung lesions, figuring out the size and location of tumors, and determining whether
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lymph nodes are involved. Moreover, contrast-enhanced CT scans make it easier to see blood vessels and
discern between benign and malignant tumors [8]. PET imaging, which is frequently used in addition with
CT (PET/CT), offers useful data regarding cellular activity and tumor metabolism. PET/CT scans are used to
detect metastases in distant organs, evaluate tumor aggressiveness, and identify malignant lesions by
identifying regions of enhanced glucose metabolism [9].

MRI is less commonly used for lung cancer imaging but may be employed in specific clinical
scenarios, such as evaluating mediastinal invasion or assessing brain metastases. MRI offers superior soft tissue
contrast resolution compared to CT and is particularly valuable in cases where CT or PET/CT findings are
inconclusive or when there are contraindications to iodinated contrast agents [10]. Chest X-rays remain a
valuable initial screening tool for lung cancer, although their sensitivity for detecting small lesions is limited
compared to CT imaging. Nevertheless, chest X-rays are readily accessible, cost-effective, and may serve as a
first-line imaging modality for patients with suspected lung cancer, guiding subsequent diagnostic workup [11],
[12] Conventional diagnostic methods, such as imaging modalities and histopathological analysis, have
limitations in terms of accuracy, sensitivity, and speed, prompting the exploration of alternative approaches [9].

With the potential to improve diagnostic efficiency and accuracy, machine learning (ML) approaches
have become increasingly attractive in recent years for the detection and classification of lung cancer [13]-[15].
These algorithms can find patterns and features that indicate the existence, subtype, and stage of lung cancer by
analyzing vast amounts of medical imaging data, such as chest X-rays, CT scans, and PET images, along with
patient demographics and clinical data [16], [17]. The application of ML in lung cancer detection and
classification encompasses various approaches, including supervised learning, unsupervised learning, and deep
learning (DL). Supervised learning algorithms, such as support vector machines (SVMs) and random forests
(RF), utilize labeled training data to build predictive models for distinguishing between different classes of lung
cancer and healthy tissue. Unsupervised learning techniques, such as clustering algorithms, enable the
identification of hidden patterns and subgroups within lung cancer datasets, facilitating personalized treatment
strategies and prognosis prediction [18]-[21]. Even while ML has great promise for diagnosing lung cancer,
there are still a number of obstacles and restrictions that must be resolved. In addition to model interpretability,
generalizability, and ethical considerations, these also involve data availability, quality, and standards issues.
Regulatory approval, thorough validation, and smooth integration with current healthcare procedures are also
necessary for the clinical application of ML-based algorithms [22], [23].

Previous studies have demonstrated various ML and image processing techniques for lung cancer
detection and classification using CT imaging data. Research by Lin et al. [24] suggested a model based on
CT images for non-small cell lung cancer (NSCLC) patient clinical staging and histological type. A total of
107 radiomic characteristics were collected from 309 patients, which were split into training and testing sets.
The model was built using four classifiers and had two output layers: clinical stage and histology type. With
an AUC of 0.700 and 0.881 for histological typing and clinical staging, respectively, the RF model had the
best classification performance.

Gupta et al. [25] utilized RF classification, where feature extraction evaluated characteristics such as
area, perimeter, and eccentricity to derive useful information for lung cancer detection. Sim et al. [26]
implemented a texture matching process using the local binary pattern (LBP), which proved superior to other
available texture patterns. This approach, combined with SVM classification, enhanced the detection accuracy.

Pradhan and Chawla [27] focused on pre-processing techniques to reduce noise and improve CT image
quality through various image enhancement methods. They converted grayscale CT images for segmentation
and conducted further morphological opening procedures. Pati [28] used an SVM to categorize CT images into
normal and abnormal, claiming high accuracy in early-stage cancer detection. They emphasized that image
quality and enhancement levels significantly impact the accuracy of the detection process.
Vijayalakshmi et al. [29] highlighted the significance of classification in digital image analysis, categorizing CT
images based on similarities. In traditional systems, histogram equalization (HE) is used for preprocessing CT
images, and feature exOtraction is performed using HE. These various methods collectively contribute to the
advancement of lung cancer detection and classification, each bringing unique strengths to the diagnostic
process.

Using medical imaging data, namely CT imaging, this work focuses on the creation and assessment
of ML algorithms intended to reliably detect and classify lung cancer. Because lung cancer is still the world's
top cause of cancer-related death, the key goal is to develop reliable models that can accurately identify lung
cancer lesions. This will help address the urgent need for early detection to increase patient survival rates.
While they function well, traditional diagnostic techniques are frequently difficult and vulnerable to human
error. However, the of this work is to improve the diagnosis process by using cutting-edge ML techniques,
which will make it quicker, more accurate, and less dependent on human interpretation. Our method involves
the rigorously development of algorithms designed to identify the unique patterns and features of lung cancer
lesions in CT images. These algorithms are then trained on large datasets to learn and generalize from a
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variety of imaging scenarios. The study assesses how well these models identify and categorize lung cancer
and investigates how they might be used in medical environments.

To improve classification performance, our novel pipeline incorporates multiple algorithms,
supported by a comprehensive feature extraction strategy that combines DL with conventional image
processing techniques. Enhanced preprocessing methods ensure high-resolution data quality, while the
model's robust validation framework, user-friendly interface, and dynamic adaptability to various imaging
protocols facilitate seamless integration into clinical workflows. By comparing outcomes across different ML
techniques, we aim to identify the most effective strategies for lung cancer detection.

2. METHOD
This work proposed a ML model for the identification of lung cancer using a dataset of 613 CT

images that acquired from Kaggle [30]. The preprocessing stage was deployed using MATLAB in order to
enhance image quality and guarantee interoperability with ML algorithms, these steps were crucial through
leveling pixel intensity values, boosting contrast by HE, shrinking the images to a consistent size, and using
Gaussian filtering to lower noise. Due to the limited number of samples of the dataset, image extraction
becomes an essential procedure in computer vision, data mining, and image processing. Using the
lightweight convolutional neural network Squeeze Net, which employs Fire modules to extract features from
input images, the extracted features are then processed by global average pooling, convolutional, and
SoftMax layers, making it suitable for devices with limited resources. In this Python-based model, 1000
features were extracted from images, greatly improving the model's performance and accuracy [31]-[33].
However, this model integrates AdaBoost, SGD, and RF, these classification methods that were applied after
feeding the features into the suggested model. While AdaBoost improves weak classifiers, SGD maximizes
large datasets and fast convergence to improve the diagnosis of lung cancer from CT images. RF increases
prediction accuracy through the use of ensemble learning and robustness against overfitting. By providing
information on feature significance, RF helps find CT image features that influence categorization outcomes.
By addressing the complex nature of medical imaging problems, this hybrid model enhances diagnostic
accuracy in clinical settings. Figure 1 shows the classification model using Orange3.
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Figure 1. Classification model using Orange3

The model was trained and verified across several subsets of the training data using 10-fold
cross-validation, which was used to guarantee model reliability. After training, performance indicators such
as accuracy, sensitivity, precision, and F-measure were determined to provide a thorough assessment of the
model's efficacy. To help highlight incorrect classifications and areas for improvement, a confusion matrix
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was also created to show the classification findings. However, the flowchart of lung cancer detection and
classification mode is shown in Figure 2. This methodical process made it easier to create a strong model that
can reliably identify and categorize lung cancer from CT scan images into four categories: adenocarcinoma,
large.cell.carcinoma, normal, and squamous.cell.carcinoma as shown in Figure 3, Figure 3(a) displays
adenocarcinoma class, Figure 3(b) displays large cell.carcinoma class, Figure 3(c) displays normal class, and
Figure 3(d) displays squamous cell.carcinoma class.
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Figure 3. Chest CT-scan images; (a) adenocarcinoma, (b) large.cell.carcinoma, (c) normal, and
(d) squamous.cell.carcinoma

3. CLASSIFICATION METHODS
3.1. The random forest

Classifier is a stochastic method that uses a random vector to create numerous decision trees (DTs)
to improve accuracy and decrease correlations. Every DT is divided into a subset of features, and the
diversity of the tree depends on how many characteristics are considered. The best-split function to
encourage tree similarity is found at each split. For a variety of predictions, the objective is to construct an
ensemble of several DTs [34]-[36]. Here, RF (1) with equal representation, where yi is the original value used
for feature i and F; is the value acquired from the system, shows N, the number of characteristics used to find
equivalent accounts [37], [38].

Random forest = %Z%ﬂ (F — yi)2 (1)
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3.2. AdaBoost

An approach to supervised learning that divides instances into positive and negative groups is called
AdaBoost [39]. It works well with imbalanced data since it is based on weighted majority voting
standards [40], [41]. Overfitting and generalization are its main problems, though. A unique approach to
weak learning is put forward, which increases accuracy by employing numerous thresholds. With this
approach, each piece of data is given the same weight, but points that are misclassified are given additional
weight. AdaBoost is a simple, adaptable algorithm that can handle unbalanced datasets by changing weights
[42], [43]. In (2) demonstrates that when a new tree model is presented, the general tree is eliminated and
only the strongest tree is incorporated to the system. With this approach, the model's overall performance
constantly becomes better as more simulations are made.

Fn(x) = Fp_y(x) + argminhy, Y. L(y;, Fuoa (%) + h(x;) )

when the inserted tree is denoted by h(x;), the freshly inserted tree is represented by y;, the i-th tree prediction
result is represented by yi, and the overall model is represented by Fn(x) [44]. The AdaBoost classifier
procedure is shown in Figure 4.
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Figure 4. AdaBoost classifier procedure [45]

3.3. Stochastic gradient descent

Strong training techniques for linear, which estimates the cost function's gradient and updates model
parameters in response to the addition of fresh training data. Particularly when dealing with enormous
datasets, this approach produces substantially better results than traditional techniques [46]. To enhance
optimization methods, SGD is a simple and powerful ML model that has seen a lot of effort recently. In (3)
illustrates how the optimization problem often looks with i=1,2,...,n and the train data (x,y:).

min ew) = 31, £ (h (e w), y0) 3)

where h is prediction function, i is the loss function, and w is the weights in the model.

4. PERFORMANCE EVALUATION

The performance evaluation approach allows for the verification of efficiency and validity. There
are several methods to assess a classifier. For this inquiry, two sets of data test sets and a train set represent
30% and 70% of the total dataset, respectively. Using the invisible test set, the data's predicted success is
assessed following training on the training set. We used the cross-validation method of 10 folds to further
remove the over-fitting problem. Three MLML classification models were utilized in this paper: AdaBoost,
RF, and SGD. The performance of each classifier was compared. Using a sample of test data, a ML tool
called a confusion matrix indicates which predictions a classification model made correctly and inaccurately.
According to [47]-[49], this category includes false positives (FP), true negatives (TN), true positives (TP),
and false negatives (FN). Table 1 displays the confusion matrix. As can be shown in Table 2, it generates
measures such as accuracy, precision, recall/sensitivity, and F1-score. Orange3, a data mining tool, was used
to extract data. Figure 5(a) confusion matrix of the SGD classifier shows the results of testing the proposed
model and calculating the performance of each classifier by constructing a confusion matrix. AdaBoost
classifier confusion matrix (Figure 5(b)) and RF classifier confusion matrix (Figure 5(c)). Table 2 represents
classifier’s performance matrices.
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Table 1. Confusion matrix [50]
Predicted
Actual TP FN
FP__ TN

Table 2. Classifier’s performance matrices [50]

Performance matrices Equation Performance matrices Equation
Accuracy TP+TN Precision TP
TP+ TN+ FP+FN TP+ FP
Sensitivity TP F-measure 2 * Precision * Sensitivity
TP+ FN Precision + Sensitivity
Predicted Predicted
adenoc... large.c... normal squam... 3 adenoc... large.c... normal squam... >
adenoc... 192 1 0 2 195 adenoc... 195 0 0 0 195
large.c... 0 115 0 0 115 large.c... 0 115 0 0 115
2 normal 0 0 148 0 148 2 normal 0 0 148 0 148
< <
squam... 1 1 2 151 155 squam... 0 1 0 154 155
b3 193 117 150 153 613 5 195 116 148 154 613
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adenoc... 194 0 0 1 195
large.c... 0 115 (] 0 115
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<
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(©)

Figure 5. Confusion matrix of all classifier; (a) confusion matrix of SGD classifier, (b) confusion matrix of
AdaBoost classifier, and (c) confusion matrix of RF classifier

5. RESULTS AND DISCUSSION

The classification analysis's findings show a distinct difference between the AdaBoost, RF, and
SGD models' performances on the dataset. AdaBoost outperformed the other models, achieving perfect
scores for accuracy, AUC, and sensitivity, with near-perfect results (99.8%) in precision and F-measure as
shown in Table 3. This highlights AdaBoost's robustness in handling the dataset, making it the most reliable
model for this task. RF also demonstrated strong performance, with a 99.5% classification accuracy,
precision, and F-measure, and a perfect AUC score, indicating its effectiveness. However, its slightly lower
accuracy compared to AdaBoost suggests that while RF is highly reliable, it may not capture the dataset's
nuances as well as AdaBoost. In contrast, SGD showed comparatively lower performance, with a
classification accuracy of 98.9%. While this result is still robust, it indicates that SGD is less effective in this
context compared to the other models. This difference in performance could be attributed to SGD's
sensitivity to the specific characteristics of the dataset, such as its complexity and the presence of noise.

Table 3. Comparison of ML performance classifiers on the training dataset

Model AUC  Accuracy F-measure  Precision  Sensitivity
AdaBoost  1.000 0.998 0.998 0.998 1.000
RF 1.000 0.995 0.995 0.995 0.998
SGD 0.993 0.989 0.989 0.989 0.996
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Overall, the results underscore the superiority of AdaBoost and RF in this classification task, with
AdaBoost emerging as the most precise and consistent model. The lower performance of SGD suggests that
it may not be the best choice for datasets with similar characteristics, particularly when high accuracy and
reliability are crucial.

The SGD, AdaBoost, and RF classifiers' confusion matrices are analyzed to show important details
about each of their particular characteristics. The SGD classifier's confusion matrix (Figure 5(a)) shows that
it can correctly identify a significant number of scenarios, although it might have some issues with managing
misclassifications across different categories. According to this, SGD may be more vulnerable to errors in
some situations than the other models, even though it performs well overall. With fewer misclassifications
across categories, the confusion matrix of the AdaBoost classifier (Figure 5(b)) shows its exceptional
classification performance. This suggests that AdaBoost performs exceptionally well at the higher levels,
which makes it a dependable option for applications demanding high recall and precision.

The accuracy and balanced error distribution of the RF classifier are demonstrated by the confusion
matrix (Figure 5(c)). RF is a strong model that can handle a variety of complex datasets, demonstrated by its
ability to maintain low error rates across all categories. Nevertheless, depending on the particulars of the
dataset, it can perform slightly differently than AdaBoost. While all three models are successful, AdaBoost,
and RF perform better in terms of accuracy and error distribution, according to the confusion matrices, which
offer a thorough comparison of the classifiers overall. The evaluation underscores the importance of choosing
the appropriate classifier based on the specific requirements of the task at hand, with AdaBoost and RF
emerging as the more reliable options for high-stakes classification tasks.

The comparative analysis of classifier performance, as illustrated in Figure 6, offers a detailed
overview of how each model handles the dataset across key metrics such as accuracy, precision, recall, and
F1-scores. This visual representation underscores the varying strengths and weaknesses of the classifiers,
enabling a deeper understanding of their relative effectiveness.
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Figure 6. Comparative analysis of different classifiers' performances

On the other hand, the differences in accuracy among the classifiers suggest that some models are
better at correctly predicting outcomes, making them more reliable for tasks where accuracy is paramount.
Precision and recall, on the other hand, highlight the classifiers' ability to minimize FP and FN, respectively.
The variation in these metrics indicates that certain classifiers may be more suitable for tasks where either
precision or recall is particularly critical. Also, the F1-scores, which balance precision and recall, provide a
holistic view of each model's performance. The observed differences in F1-scores reflect the trade-offs each
classifier makes between precision and recall, offering insights into which model may achieve the best
overall balance for specific tasks.

Overall, the results demonstrate that no single classifier universally outperforms the others across all
metrics. Instead, the choice of classifier should be guided by the specific requirements of the task at hand.
For instance, if the priority is to minimize FP, a model with higher precision may be preferred. Conversely, if
the goal is to reduce FN, a model with higher recall would be more appropriate. The analysis in Figure 5 thus
provides a valuable tool for selecting the most suitable classifier based on the desired performance outcomes.
However, Table 4 depicts a comparison of previous studies with the proposed model.
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Table 4. Comparison of previous studies with the proposed model
Study/year Model Result

Linetal. [22] RF AUC of 0.700.

Saba [23] RF classification Utilized feature extraction (area, perimeter, and eccentricity) for effective lung
cancer detection.

Linetal. [24] SVM with texture matching Implemented LBP for superior texture matching, enhancing detection accuracy.

Gupta et al. Image preprocessing Focused on noise reduction and morphological opening to improve CT image

[25] techniques quality for better segmentation.

Sim et al. [26] SVM Categorized CT images into normal and abnormal with high accuracy in early-
stage cancer detection.

Vijayalakshmi  Histogram equalization and Emphasized the significance of classification and feature extraction using HE for

etal. [29] HE CT images.

Proposed AdaBoost, RF, and SGD AUC: 1.000, accuracy: 0.998, F-measure: 0.998.

Precision: 0.998 and sensitivity: 1.000.

Additionally, the receiver operating characteristic (ROC) curve, which illustrates the trade-offs
between TP and FP rates, is used to evaluate the effectiveness of binary classifiers in computational statistics
and ML. For assessing the effectiveness of classifiers in a variety of applications, the ROC curve is essential
[51]. The analysis provides a better understanding of the advantages and disadvantages of each classifier in
real-world situations by examining Al and actual goal results [52]. Figure 7 depicts the ROC curve that is
utilized to assess the effectiveness of classifiers: (a) ROC curve analysis according to adenocarcinoma,
(b) ROC curve analysis according to large.cell.carcinoma, (c) ROC curve analysis according to normal, and
(d) ROC curve analysis according to squamous.cell.carcinoma.
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Figure 7. ROC curves analysis of all classifiers according to target; (a) ROC curve analysis according to
adenocarcinoma, (b) ROC curve analysis according to large.cell.carcinoma, (c) ROC curve analysis
according to normal, and (d) ROC curve analysis according to squamous.cell.carcinoma

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4521-4533



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4529

In addition, this work assessed the probabilistic classifier performance to make sure the results
match reality using calibration charts that show the expected probability against the actual results in Orange
data mining tool. An accurate predictions are indicated by points near the diagonal line in a well-calibrated
model in order to make well-informed adjustments like Platt scaling or isotonic regression, calibration charts
assist in identifying any overconfidence or underconfidence in predictions [50]. However, Figure 8 depicts
the calibration plot that is utilized to assess the effectiveness of classifiers: (a) calibration plot analysis
according to adenocarcinoma, (b) calibration plot analysis according to large.cell.carcinoma, (c) calibration
plot analysis according to normal, and (d) calibration plot analysis according to squamous.cell.carcinoma.
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Figure 8. Calibration plot analysis of all classifiers according to target; (a) calibration plot analysis according
to adenocarcinoma, (b) calibration plot analysis according to large.cell.carcinoma, (c) calibration plot
analysis according to normal, and (d) calibration plot analysis according to squamous.cell.carcinoma

CONCLUSION

In conclusion, this work highlights the great potential of ML techniques for using medical imaging
data to diagnose and categorize lung cancer. According to the results, our suggested model is a potentially
very useful tool in clinical settings because it not only outperforms in accuracy but also in sensitivity and
specificity. Improving early detection can result in prompt therapies and better patient outcomes, therefore
this skill is essential. It is imperative to recognize the limits of the study, though. Future research must
concentrate on confirming the model's resilience and generalizability using bigger and more varied datasets.
Additionally, incorporating a wider array of clinical variables could further enhance predictive performance,
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making the model even more reliable for real-world applications. The exceptional results achieved by
AdaBoost reflect its potential for flawless identification, while RF and SGD also demonstrated commendable
efficacy. These findings highlight the effectiveness of ML in oncology and emphasize the need for ongoing
research and refinement. By continuing to integrate diverse data and methodologies, we can fully harness the
power of ML in lung cancer detection, ultimately advancing the field and improving patient care.

7. FUTURE WORK

In the future larger datasets from different institutions and imaging devices should be used to
validate and expand the suggested ML model. To increase classification accuracy, sophisticated DL
architectures such as ResNet, DenseNet, and EfficientNet required to be incorporated. In order to integrate
imaging findings and clinical factors, multimodal data fusion should be investigated. In addition of
integrating explainable Al methods such as SHAP, LIME, or Grad-CAM is necessary to increase
transparency and comprehension of the model's decision-making process and collaboration with hospitals for
clinical trials is important for evaluating the accuracy and usability of the model, and it should be tuned for
real-time and edge deployment. However, ethical, legal, and regulatory considerations are also essential for
the model's safe and ethical deployment. However, these limitations must be reduced to sample size,
potential biases, and generalizability in order to improve focus and clarity. Improving the model's accuracy
and applicability for a range of clinical scenarios while advancing equitable and inclusive healthcare
practices requires addressing these issues and making confident that it is continuously assessed and
improved.

8. LIMITATION

The ML model for lung cancer detection faces several limitations, including lengthy processing
times, low-quality images, irregular imaging protocols, and dependence on specific feature extraction
methods, which can hinder its applicability in clinical settings and affect reliability and flexibility.
Additionally, challenges such as small sample size, potential biases, and difficulties with generalizability
arise from variations in image quality, limited CT scans, selection bias, labeling bias, and over-reliance on
extracted features, all of which impact diagnostic accuracy. Furthermore, healthcare model development
necessitates patient privacy, HIPAA compliance, and robust security measures. Deployment barriers,
including technological infrastructure, integration challenges, and financial constraints, can complicate model
implementation. Biases resulting from skewed training data or algorithmic assumptions may lead to
inequitable treatment recommendations. Therefore, addressing these challenges and ensuring continuous
assessment and refinement are essential for improving the model's precision and suitability for diverse
clinical situations, while promoting fair and inclusive healthcare practices.
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