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This paper presents a method for multi-target localization and vital signs
monitoring using impulse ultra-wideband (UWB) technology. A single-input
multiple-output (SIMO) sensor network is employed to enable simultaneous
signal reception, which introduces challenges in signal separation and
precise target positioning. The primary difficulty arises from the data
association problem, where measurements must be correctly assigned to
their respective targets, particularly in cases of overlapping signals or closely
spaced targets. To address this issue, a time of arrival (TOA) algorithm is
applied to estimate target ranges, while all possible measurement—target
associations are evaluated. Subsequently, true target positions are obtained
through trilateration combined with the global nearest neighbor (GNN)
method. For vital signs monitoring, the continuous-time Fourier transform
(CTFT) is utilized to estimate respiratory and cardiac rates. Experimental
results demonstrate high accuracy, with relative errors of 1.42% in distance

estimation, 2.34% in breathing rate, and 0.73% in heart rate estimation.
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1. INTRODUCTION

Vital signs, particularly respiratory and cardiac indicators, are critical for assessing an individual’s
physiological state and play a central role in diagnosis, monitoring, and clinical evaluation. They are applied
in diverse healthcare domains, including asthma management, heart failure monitoring, neonatal care, and
disaster response. Among the various technologies developed for vital sign monitoring, ultra-wideband
(UWB) radar has emerged as a leading solution due to its high resolution, energy efficiency, and ability to
capture subtle physiological movements. Nevertheless, most existing studies have primarily focused on
single-subject monitoring [1], whereas practical applications such as patient surveillance in hospitals and
victim detection in disaster scenarios demand the simultaneous monitoring of multiple individuals [1].

To address this requirement, different radar architectures have been investigated, single-input
single-output (SISO) radar [2]-[4] offers simplicity but suffers from limited spatial diversity, making it
difficult to distinguish multiple targets located at the same range. Single-input multiple-output (SIMO) radar
[1], [5], [6] enhances spatial resolution by exploiting distributed antennas, while multiple-input multiple-
output (MIMO) radar systems [7]-[9] provide improved target detection and parameter estimation through
waveform diversity. In addition, non-radar modalities such as wireless fidelity (WiFi-based) sensing and
camera-based surveillance have been explored as complementary solutions [10], [11]. Within this context,
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two main approaches have been proposed for monitoring the vital signs of multiple subjects: one based on
target direction information and the other on range information. The first solution uses angle of arrival (AoA)
to separate targets [1], [6], [12]-[14]. To achieve this, several techniques have been developed such as
mechanical scanning (MS) [12], phased array antenna (PAA) [13], metamaterial (MTM), leaky-wave antenna
(LWA) [14], and digital beamforming [1], [6]. Most of these methods effectively separate multiple targets
positioned at the same distance. The second approach focuses on separating the vital signs of individuals
based on their different distances. Several approaches have been proposed for multi-target separation and
vital sign monitoring [2], [9], [15]-[20]. Wavelet analysis (WA) [2] enables signal decomposition but may
suffer from sensitivity to noise. Through-wall UWB-MIMO radar with stepped- frequency continuous-wave
(SFCW) transmission [9], improves penetration and target detection, though at the cost of system complexity.
Variational mode decomposition (VMD) [15] effectively separates respiration components from multiple
subjects at the same distance, yet its performance degrades under strong interference. Modified cell-average
constant false alarm rate (MCA-CFAR) based processing [16] enhances detection accuracy, but remains
limited by parameter tuning in cluttered environments. UWB-MIMO with iterative adaptive approach (1IAA)
[17] achieves low side lobes and improved separation, albeit with higher computational load. Fast Fourier
transform (FFT) with variance statistics [18], and cross-correlation [19] provide simpler alternatives for
multi-subject detection, but both struggle to reliably distinguish vital signs of individuals located at the same
distance.

To overcome the limitation of time of arrival (TOA) in distinguishing multiple targets located at the
same distance, we propose a SIMO-based methodology that employs three single-antenna sensors, where one
operates as a transceiver and the other two serve as receivers. This configuration facilitates spatial diversity
by capturing multiple copies of the transmitted signal at distinct spatial locations. By analyzing the
differences in TOA across these receivers, trilateration techniques is applied to precisely estimate the
distance and spatial coordinates of each target. Such spatial information enables the effective separation of
targets even when they are positioned at similar ranges. Subsequently, the continuous-time Fourier transform
(CTFT) is performed to accurately estimate the respiratory rate and heart rate of each target.

The rest of this paper is structured as follows: section 2 introduces the mathematical model for vital
signs. Section 3 presents the proposed monitoring method for estimating the position and vital sign rates of
each target. Section 4 discusses the experimental results, while section 5 concludes the study.

2. VITAL SIGNS MODEL

UWB impulse radar has been extensively? employed for vital signs detection due to its high
resolution. The cyclical contraction and expansion of the chest cavity, induced by respiratory and cardiac
activities, generate periodic motions resembling sinusoidal waveforms. These motions cause minute
displacements in the chest position, typically on the order of a few millimeters. Such displacements result in
measurable phase variations in the radar’s received signal, thereby facilitating accurate monitoring and
assessment of vital signs.

In our approach, a SIMO sensor network is employed, comprising one active sensor operating in a
bistatic mode (simultaneously transmitting and receiving) and multiple passive sensors functioning solely as
receivers. Assuming K target, the channel response can be expressed as (1):

h(t,7) = Yfa6(t— T°0) + Tiaid(t — 1) 1)

akd(r - r"(t)) represents the time-varying components associated with human vital signs, caused by the
periodic chest movements due to respiration and heartbeat, }.; @;6(t — t;) denotes the static clutter response.

The received signal in the fast time domain can be represented as the convolution of the transmitted
UWSB the channel response, the received signal at the active antenna can be formulated as (2) [1], [21]:

r(t,7) = g(@) *h(t,7) = X a¥ g(r - 7)) + Tiaigt — 1) )

Conversely, the signal received at the passive sensors consists of the target echoes combined with the pulse
transmitted by the active antenna and can be expressed as (3):

#(t,1) = Yk a* g(r— (1) + (@) + Tiaig(t — ) @)
Where: tandt indicate respectively the fast time and slow time, ¢ is speed of light, and g(t)is the

transmitted pulse, a”andt® denote the attenuations and the TOA corresponding to the k" person,
respectively, and x(t, T) is measurement noise.
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Considering that the human chest remains stationary during the coherent processing interval, the
TOA of the signal received by the active sensor can be expressed as (4) [22]:

k  2aksin ankt 2 d¥sin ankt
() =20+ = Crse) | 20k ( i) (@)
Conversely, the TOA of the signal received by the passive sensors can be expressed as (5):
kygk  2d¥sin(2nfke) 2 afsin(2rfft
T"]f(t) — d0+dr + bsm( s b )+ hsm( s h ) (5)

c c c

Where: d¥ represents the mean distance between the active sensor and target k, d¥ represents the mean
distance between the passive sensor and target k, dX, d¥ represent the breathing and heartbeat displacement
amplitudes corresponding to the k™ person, respectively, f, fi¥ represent the breathing and heartbeat
frequencies corresponding to the k' person, respectively.

3. PROPOSED MONITORING METHOD

This section presents a SIMO radar system operating at a center frequency of 6 GHz. The system
consists of three sensor devices: one functioning in both transmission and reception modes, and two
dedicated solely to reception. The setup is designed to determine the positions of multiple targets and
includes a method for estimating vital sign rates based on the measured distances. Before presenting our
proposed localization method, it is essential to address a fundamental challenge in multi-target systems,
namely the problem of multiple-target measurement association.

3.1. Multiple targets measurements association

Data association is a fundamental step in multi-target tracking, aiming to correctly match sensor
measurements to their corresponding targets. The task becomes particularly challenging when targets are
closely spaced, leading to high ambiguity in distinguishing measurements. Several techniques have been
developed to address this problem: nearest neighbor (NN) offers simplicity and low cost but often fails under
high target density. Global nearest neighbor (GNN) improves accuracy through global optimization at the
expense of higher complexity. Multiple hypothesis tracking (MHT) provides robust performance by
maintaining parallel hypotheses, though it suffers from exponential growth in computation. Joint probabilistic
data association (JPDA) assigns probabilistic weights to all feasible associations, balancing robustness and
complexity [23].

3.2. Single-input multiple-output system

The proposed system is modeled and simulated in MATLAB/Simulink and is composed of three
main components: sensors, the propagation channel, and the targets. The sensor subsystem includes a
transmitter, multiple receivers, and a signal processing unit, as shown in Figure 1.

To separate multiple targets and monitor their vital signs, the system employs an array of three
UWB sensors and utilizes the SIMO technique to effectively differentiate between multiple targets. The
transmitter emits a sequence of UWB pulses centered at 6 GHz, within the Federal Communications
Commission (FCC) UWB range of 3.1 GHz to 10.6 GHz, generated through signal processing algorithms.
The choice of this central frequency aims to have both high penetration in human skin and tissues and high
resolution. Indeed, low UWB frequencies tend to penetrate better than high frequencies. However, the latter
offer advantages in terms of spatial resolution and antenna miniaturization, essential for our intended
application. The receivers detect the reflected echoes, which carry modulations caused by respiration and
heartbeat activity. These echoes are subsequently processed using advanced signal processing techniques to
localize multiple targets and to estimate their respiratory and cardiac frequencies. The targets are modeled as
inflection points at a distance d(t). Respiratory effects arise from thoracic and abdominal movements, with a
breathing rate of 12 to 48 breaths per minute. Thoracic displacement amplitude varies between 4 mm to
12 mm, depending on the observer's position. Cardiac displacement, caused by heart contractions, ranges
from 0.01 mm to several millimeters, with a heart rate of 60 to 120 beats per minute. The UWB signal
propagation allows high-speed data transmission, but factors like attenuation, interference, and noise impact
transmission quality. Gaussian white noise is simulated to model random interference, while attenuation
reflects the signal strength loss during propagation, as illustrated in Figure 2.
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Figure 1. Proposed system

3.2.1. Data collection

The received waveforms are sampled at discrete points in slow time, the interval between successive
acquisitions is T, = 0.02 s, corresponding to a slow-time sampling frequency of F;, = 50 Hz. The total
observation time is approximately 41 seconds, yielding 2,048 samples. For each waveform, the fast-time
sampling frequency is set to Fr = 50 GHz, which results in a fast-time resolution of T, = 20 ps.

The received signal is stored in a matrix R. For a discrete-time representation, the time indices are
defined as t = nT, and T = me,, leading to (6) [2]:

Ryxu = r(nTs,mes) = T, a g(mes — (1)) + Tiag(mes — 1) (6)

& represents the sampling interval in fast time, T, represents the sampling interval in slow time.
m=12,...,M,n=12,...,N define the discrete indices in fast and slow time, respectively.

3.3. Signal pre-processing

Since the sensors operate as receivers, they will inevitably detect the echo from the transmitting
sensor, as shown in Figure 3(a). Therefore, it is crucial to apply an effective filtering technique to suppress
this echo and accurately extract the true signals reflected from the targets. To achieve this, the time mean
subtraction (TMS) method is utilized as (7) and (8). Figure 3(b) shows the received signals after filtering.

ulm] = LI, R[i,m] U]

R[n,m] = R[n,m] — u[m] (8)

u[m] denotes the mean value of the discretely received echo matrix R[i, m].

Before suppression, the received signal is dominated by a strong component caused by transmitted
signal leakage, as illustrated in Figure 3(a). This dominant component masks the reflections from the targets
and degrades the accuracy of time-of-arrival (TOA) estimation.

After applying the suppression technique, the direct transmission component is effectively removed,
allowing the target reflections to be clearly identified, as shown in Figure 3(b). Consequently, the
performance of TOA extraction and distance estimation is significantly improved. The remaining peaks
correspond to propagation delays, which are converted into range values, thereby enhancing the accuracy and
reliability of TOA-based distance calculation and localization.
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Figure 3. Received signals from the receiving sensor; (a) before filtering and (b) after filtering

3.4. Localization multi-target

This section presents a method for localizing multiple targets using trilateration, which is based on
measuring their distances from at least three sensor nodes. Each distance is represented as the radius of a
circle centered at the corresponding sensor node and the target positions are determined from the
intersections of these circles.
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For an active sensor, the received signal yielded only a single peak when multiple targets were
located at the same distance, making their separation challenging, as shown in Figure 4(a). To overcome this
limitation, a network of sensors was employed. With three sensors, multiple targets could be localized and
separated through triangulation, as each sensor provided an independent range measurement, as shown in
Figure 4(b). Obviously, we can increase the number of sensors for more accuracy, but this in turn increases
the computational complexity inherent in the GNN algorithm.
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Figure 4. Convoluted signal; (a) active sensor and (b) passive sensor

Since each sensor captures multiple TOA measurements, the main challenge lies in accurately
associating each measurement with its corresponding target. The order of TOA values does not necessarily
indicate the target’s identity, as the closest target may differ across sensors. To resolve this ambiguity, a TOA
association algorithm is employed to reliably map each detected TOA measurement to its respective target by
systematically evaluating all possible peak—target assignment hypotheses, to accurately determine the true
locations of the targets using combination of GNN and trilateration.

For a given target k €{1,2,...,K}and I sensors, the corresponding hypothesis set H,, is defined as:

Hk = {(k, hz, h3, ""hl): h’i € {1,2, ...,K}, Vi= 2, ...,I},

Where the peak k denotes the fixed TOA peak index at sensor S, associated with the target k, while the
peaks at the other sensors vary to account for all possible TOA index assignments for sensors S, through S,.
The number of hypotheses for each target is given by:

Hk = Kl_l (9)

The estimated TOASs are then converted into distances using the speed of light, as (10):

dk =

(10)

Where dk,t* represent the estimated distance and the estimated TOA, respectively, between the active
sensor and target k.
In contrast, for passive sensor, the distance is calculated as (11):

df == —d§ (11)

Where d¥ and ¥ represent the estimated distance and the estimated TOA, respectively, between the passive
sensor and target k.

After estimating the distances, the trilateration technique was applied to determine the target
positions. The GNN approach was then employed to evaluate all hypotheses by computing the Euclidean
distance between the barycenter and the candidate locations, with the position yielding the minimum distance
selected as the most probable.

Each radar i is positionned at (x;, y;), the possible locations of a target k as (12):

(o = x)% + e — ¥)? = (dfY)? (12)
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(x;,y;) represents the known position of the radar i, (x;, v, ) represents the unknown position of target k.

The equation simply states that the distance between the radar and the target is constant d;;,, any
point (x,y) that satisfies this equation lies on a circle centered at (x;,y;) with radius d¥. For a target k, the
distances expressed as (13)-(15):

C x1)2 + (Y — y1)? = (&{()2 (13)
Ot — x2)% + (W — ¥2)? = (d§)? (14)
(e = 2%3)% + (i — ¥3)? = (d%)? (15)

The equations are independent nonlinear simultaneous equations that cannot be solved
mathematically. However, to address this problem, we use the intersection of circles. This is achieved by
subtracting (13) from (14) and (13) from (15). The coordinates x and y can then be expressed as (16):

C1B3—C2B, — A16—A2G
k A1Bz—AzBq

A1=2(x1 — x3), B1=2(y1 — ¥2), Cl=(x12 + i - dfj) - (x5 —y;— d%j)

Ay=2(x; — x3), Bo=2(y1 — ¥3), C2=(x12 + yf - dfj) - (x5 -y — d%j)

X =
k A1By—A3By’

(16)

The barycenter of the intersection triangle is determined as the arithmetic mean of the coordinates of its
vertices and is expressed as (17):

_ XgtXp+Xc _ YatYptYc
XM = 3 ' YmM= 3 17)

(Xa Ya), (xp, ¥u), (x., y.) represent the coordinates of the intersection points.
Calculate the distances from points a, b, and ¢ to point M, and identify the shortest distance.

d(a,M) = /(xq = xp)* + (Va = Yu)? (18)
d(b,M) = /(xp — xu)* + OV — Ym)? (19)
d(c, M) = /(xc — xu)? + O — Ym)? (20)

The principle of trilateration is used to determine the location of the target, as illustrated in Figure 5.

3

ensor 3 ij-y:,)

Sensor 2 (x_.y,)
2

Figure 5. Principle of trilateration

3.5. Vital sign estimation
This work focuses on estimating the vital signs of each target based on its distance. After
suppressing noise, the signal corresponding to each target can be defined as (21):
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x(t, 1) = ag(t— (0)) (21)

Our goal is to estimate the breathing and heartbeat frequencies. To achieve this, the CTFT is applied along
the slow-time axis [21].

X(f,0) = ["7x(t, e 2 dt (22)
X(f,7) can be written as (23) [21], [22]:

X(f' T) = O(ZZ?—oo ;;10;—00 Cam 6(f - nfb - mfh) (23)

& denotes the Dirac function and c,,,, is a coefficient that attains its maximum at t = z,. It is evident that the
spectrum is discrete, composed of a series of delta functions located at the harmonic frequencies of f, f3
[21], [22]. The breathing and heart rates were estimated by identifying the fundamental peaks within the
frequency ranges of [0.2-0.8] Hz and [1-2] Hz, respectively.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we describe the experiments conducted to assess the performance of the proposed
method. The experiments aimed to estimate the location, breathing rate, and heart rate of two individuals
based on simulated data. In the first experiment, the individuals were symmetrically positioned in front of the
radar. The nominal distances from the transmitted radar were d1=d>=1.8 meters, as shown in Figure 6. For the
first target, the respiratory rate was set at 0.27 Hz, and the heart rate was set at 1.2 Hz. For the second target,
the respiratory rate was set at 0.32 Hz, and the heart rate was set at 1.5 Hz.

" T

T™ T T
A A A
UWE Sensor I'WE Sensor TWE Sensor

Receiver Transmitter Receiver
Sensor and Receiver Sensor
Sensar

I - |

Figure 6. Experiment setup

In the second experiment, the individuals were positioned at different locations in front of the
sensors, with nominal distances of di1=1.4 meters and d,=1.8 meters. For the first target, the respiratory rate
was set at 0.29 Hz, and the heart rate was set at 1.6 Hz. For the second target, the respiratory rate was set at
0.35 Hz, and the heart rate was set at 1.8 Hz.

4.1. Position estimation

In this section, target localization is achieved using a combination of trilateration and GNN
techniques. Due to the straight-line alignment of sensors, each hypothesis results in two possible locations,
with one being unrealistic (the negative location) since it falls outside the feasible range. When two targets
are equidistant from at least one sensor, the hypotheses remain identical. The goal is to accurately determine
target locations by finding the common intersection of distance estimates from all sensors, which represents
the most probable target position.

Figures 7 and 8 show the hypotheses for target locations in two experiments. In the first experiment,
Hypothesis 1 and Hypothesis 4 correctly represent the positions of Target 1 (1.81 meters) and Target 2
(1.79 meters), with a 0.55% error. In the second experiment, Hypothesis 1 and Hypothesis 4 correctly
represent Target 1 (1.42 meters, 1.42% error) and Target 2 (1.81 meters, 0.55% error).
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In Experiment 1, subplots (1) and (4) in Figure 7 demonstrate that the trilateration method can
reliably identify two distinct targets, as the intersections of the circles yield two consistent solutions
corresponding to the actual target positions. In Experiment 2, subplot Figure 8(a) corresponds to the first
target, while subplot Figure 8(b) represents the second target, both illustrating accurate localization. These
results validate the effectiveness of trilateration in reliably localizing and separating multiple targets within
the sensing area. The estimated positions make it possible to separate the targets’ signals based on their
corresponding distances.
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Figure 8. All hypotheses in the second experiment; (a) Target 1 and (b) Target 2

4.2. Vital signs estimation

In this section, the vital sign rates are estimated using the CTFT, where the separation of signals is
achieved based on the estimated distances. The breathing rate corresponds to the fundamental peak within the
range of [0.2, 0.8] Hz, while the heart rate is identified by the peak within the range of [1, 2] Hz. In the first
experiment, for the first target, the breathing rate was estimated to be 0.2686 Hz with a relative error of 0.52%,
whereas the heart rate was estimated to be 1.196 Hz, with a relative error of 0.34%, as shown in Figure 9(a).

For the second target, the breathing rate was estimated to be 0.3174 Hz, with a relative error of 0.81%,
while the heart rate was estimated to be 1.489 Hz, with a relative error of 0.73%, as shown in Figure 9(b). In the
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second experiment, the breathing rate for the first target was estimated to be 0.293 Hz with a relative error of
1%, while the heart rate was estimated to be 1.611 Hz, with a relative error of 0.69% as shown in Figure 10(a).
For the second target, the breathing rate was estimated to be 0.3418 Hz, with a relative error of 2.34%, while the
heart rate was estimated to be 1.807 Hz, with a relative error of 0.39%, as shown in Figure 10(b).
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Figure 9. Breathing rate and heart rate for two persons in the first experiment; (a) Target 1 and (b) Target 2
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Figure 10. Breathing rate and heart rate for two persons in the second experiment; (a) Target 1 and

(b) Target 2

4.2.1. Comparison

Compared to existing methods, the proposed method offers higher localization accuracy and yields
lower estimation errors in both respiration rate and heart rate, as shown in Table 1.

Table 1. Comparison with the state-of-the-art research

Research Localization algorithm Vital signs algorithm Distance Respiration Heart rate
paper estimation error __ rate error (%) error (%)
[2] Permutation entropy and EEMD-WA 1.83% 4.27 6.23
K means++ clustering
[24] Improved high-precision Variational modal decomposition None 3.98 457
multi-signal classification  technique based on the sparrow
(IHAMUSIC) search algorithm (SSA-VMD)
[25] None Template matching estimation None 9.42 9.75

(TME) and multi-range bins timing

eigenvalues using neural network
This Association TOA and CTFT 1.42% 2.34 0.73
paper trilateration

5. CONCLUSION

In this study, we proposed a non-contact solution for localizing and monitoring multiple individuals
located at same distance. As a preprocessing step, we applied the TMS method to suppress signals originating
from the transmitting sensor, followed by analyzing all possible TOA hypotheses to accurately determine the
true locations of the targets using combination of Trilateration and GNN. Additionally, we employed the
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CTFT to extract both respiration and heart rates. The experimental results demonstrated that the proposed
system effectively localized multiple individuals while accurately estimating their breathing and heart rates.
Future work may integrate machine learning for improved TOA prediction and adaptive thresholding to
enhance robustness in noisy environments.
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