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 ST-elevation or ST-depression are markers of an abnormal heart condition 

detected through an electrocardiogram (ECG) where the tracing in the ST-

segment is unusually elevated above the TP-segment (baseline). Identifying 

the localization of the ST-segment on an ECG is difficult because even a 

minor change in the ST-segment can be obscured by filtering processes. The 

12-lead ECG signal is a non-invasive tool in the early detection of ST-

elevation based on ST- and TP-segment, with quick and accurate 

interpretation. This study proposes a standard 12-lead ECG delineation 

model using deep learning (DL). The ECG signal has been segmented to 

Pstart–Pend, Pend–QRSstart, QRSstart–Rpeak, Rpeak–QRSend, QRSend–

Tstart, Tstart–Tend, and Tend–Pstart. The study interpreted ST-elevation or 

-depression using an ECG delineation approach guided by medical rules. 

The findings revealed that the DL model achieved an average accuracy of 

99.18%, sensitivity of 92.55%, specificity of 99.55%, precision of 92.61%, 

and F1-score of 92.52% in limb leads. Similarly, in chest leads, the DL 

model attained an accuracy of 99.16%, sensitivity of 93.10%, specificity of 

99.53%, precision of 93.32%, and F1-score of 93.11%. This study also 

validated the DL-predicted results by a cardiologist from Mohammad 

Hoesin Hospital, Indonesia. 
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1. INTRODUCTION 

ST-elevation is a criterion for abnormal cardiac conditions, such as occlusion of coronary arteries in 

cases of acute myocardial infarction [1]. ST-elevation is not only associated with total thrombus blockage of 

the coronary vessels in myocardial infarction but is also associated with other conditions, such as ST-

elevation in left bundle branch block (LBBB), pericarditis, and myocarditis [2], [3]. Consequently, its 

presence can lead to false-positive diagnoses in ST-elevation changes related to abnormal heart conditions 

[4]. 

Several deployed methods have been proposed for detecting ST-elevation, such as coronary 

angiography and echocardiography [4], [5]. However, the initial rule-out phase for ST-elevation is 

https://creativecommons.org/licenses/by-sa/4.0/
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inappropriate, as it can only be assessed for a brief period or requires invasive and/or resource-intensive 

methods [6], [7]. Twelve-lead electrocardiogram (ECG) signal is a non-invasive tool in the early detection of 

ST-elevation based on ST- and TP-segment, with quick and accurate interpretation [8], [9]. Different from 

arrhythmia detection, 12-lead or 15-lead ECG (standard 12-lead and three Frank leads ECG) observation is 

necessary for ST-elevation detection [10], [11]. Every lead of the ECG signal has information on three main 

waveforms, i.e., P, T-waves, and QRS-complexes. If the ST-segment is elevated, locating the J-point can be 

essential. The J-point is the junction of the QRS complex and the ST-segment. Therefore, the precise 

delineation of ECG is highly required to start, peak, and end of waveform localization for the ST-segment. 

ECG delineation plays a crucial role in determining the critical points that indicate the interval and amplitude 

locations in each wave morphology [12]. ECG delineation to ST-segment localization is challenging due to a 

slight alteration in the ST-segment that a filtering process could easily obliterate. In addition, the amplitude 

of ST-elevation may also be impacted by adjustments to the axis, QRS width, incorrect high-pass filter 

settings, and lead location [13]. 

However, prompt treatment depends on early detection and accurate diagnosis. Despite the 

established criteria for ST-elevation diagnosis, emergency clinicians still face a significant barrier to quickly 

identifying the condition. According to earlier studies, ranging from 2 to 30% of patients had an incorrect 

diagnosis of ST-elevation in myocardial infarction on the first medical contact [14]-[17]. Patients with ST-

elevation who have high-risk ECG abnormalities not identified receive worse care and have more 

unfavorable outcomes. Misinterpreting a diagnostic test was found to be one of the main reasons for missed 

identification during the diagnostic procedure [14], [15]. Therefore, systematic methods to enhance ECG 

interpretation may significantly affect diagnosis. Since the 12-lead ECG is the primary diagnostic tool for ST 

elevation, a more thorough examination of the ECG could expedite the process considerably. 

The current deep learning (DL) revolution has provided us with an opportunity to be effective in 

medical applications [4]-[6]. Many recent studies have explored ST-elevation with DL [8], [16]–[19]. 

However, the studies were only concerned with detecting or classifying the abnormalities, not observing the 

ST-segment changes to detect ST-elevation. For example, Choi et al. [8] proposed DL to train with  

ST-segment elevation myocardial infarction (STEMI) and normal sinus rhythm ECG for external validation. 

Tseng et al. [16] proposed DL to detect STEMI patients who underwent primary percutaneous coronary 

intervention (PCI). Wu et al. [17] detected the early diagnosis of acute STEMI with a convolutional neural 

network-long short-term memory. Gibson et al. [18] also proposed DL and compared DL-based 12-lead and 

one-lead ECGs to identify STEMI. Herman et al. [19] evaluated in an international cohort and compared with 

STEMI criteria and ECG experts in detecting occlusion myocardial infarction using the DL approach. 

A signal delineation approach can be used to identify abnormalities in the ST-segment. In the 

previous study, a 12-lead ECG delineation model employing DL was proposed, which yielded exceptional 

performance outcomes [20]. To our knowledge, no studies have been conducted focusing on and addressing 

ST-segment changes for the assessment of ST-elevation or -depression condition through an ECG delineation 

approach. Therefore, in this study, the contributions and novelty are as follows: 

− Generalizing the 12-lead ECG delineation approach using a DL model. 

− Applying medical guidelines for accurate ST- and TP-segment localization and J-point determination to 

identify ST-elevation or -depression condition. 

− Comparing DL-predicted ST-elevation, or -depression across the 12-lead with evaluations from two 

cardiologists at an Indonesian hospital. 

 

 

2. MATERIAL AND METHODS 

The research methodology of this study can be presented in Figure 1. The figure illustrates the overall 

workflow of an automated system for ECG abnormal interpretation and detection using DL methods. The 

process begins with the input of ECG 12-lead raw data, which captures the electrical activity of the heart over 

time. Since raw ECG signals often contain noise and variability, the data undergoes a pre-processing stage. 

After pre-processing, the signals proceed to the ECG waveform classification stage, which employs a 

ConvBiLSTM architecture. This architecture integrates convolutional neural network (CNN) with bidirectional 

long short-term memory (BiLSTM) networks to capture both spatial and temporal features of the ECG signals. 

 

2.1.  Data preparation 

Twelve-lead ECG signals with annotations for P, T, and QRS-complexes are included in the 

Lobachevsky University Electrocardiography Database (LUDB) [21]. Total of 500 samples per second are 

used to digitize the 200 10-second records. 19,666 T-waves, 21,966 QRS-complexes, and 16,797 P-waves are 

annotated. This study has generated the 12-lead ECG delineation model with 200 records and a complete  

P-QRS-T waveform. Figure 2 presents a sample of ST-elevation conditions in ECG records. 
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Figure 1. The research method 
 
 

 

 

 
 

Figure 2. The sample of the ST-elevation [21] 

 

 

2.2.  Electrocardiogram signal processing 

There are steps to process the ECG signal so that its information is well-represented. The processing 

of ECG signals is described below: 

− ECG denoising: ECG is susceptible to noises due to it representing varying morphological waves. It leads 

to a false diagnosis and improper patient treatment. Discrete wavelet transforms (DWT) have been 

proposed in previous literature to handle ECG denoising problems [20], [22], [23]. This study has 

explored several mother functions to obtain the highest signal-to-noise ratio (SNR) value, i.e., haar, 

bior5.5, bior3.3, bior6.8, coif2, coif4, coif5, sym4, sym5, sym6, sym7, db8, db9, coif3, db7, and db6. 

Among explored mother functions, the highest SNR value achieves 34.71 decibels (dB), with bior6.8 

mother function, soft thresholding, and seven levels of decomposition. The sample of ECG denoising can 

be presented in Figure 3. 
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Figure 3. The sample of ECG denoising 
 

 

− ECG segmentation: this study has segmented the ECG signal in 12-lead by beat-to-beat, with the 

maximum nodes in all ECG leads being 816, as the minimum beat among all records. This study has only 

segmented the complete P-QRS-T waveforms (normal beat). If the beat segment is less than 816 nodes, 

we used the zero-padding technique. This study has added zeros to the end of the input sequence so that 

the beat segmentation has a fixed length. 

 

2.3.  The modified ConvBiLSTM model 

Our previous study introduced a 12-lead ECG delineation model using DL, which demonstrated 

outstanding performance [20], [23], [24]. However, the study focused solely on delineating the P-QRS-T 

waves with four classes (i.e., P-wave, QRS-complex, T-wave, and isoelectric line), without addressing ST-

elevation or -depression. This omission is significant, as these conditions are critical indicators of various 

heart diseases like STEMI. Building upon this foundation [20], this study has refined the previous 

methodology CNN-BiLSTM in terms of ST- and TP-segments localization for detecting both ST-elevation 

and -depression. The generalization of the previous model was called modified ConvBiLSTM. To carry out 

this process, the classification is changed into eight classes (i.e., Pstart–Pend, Pend–QRSstart, QRSstart–Rpeak, Rpeak–

QRSend, QRSend–Tstart, Tstart–Tend, Tend–Pstart, and isoelectric line) to determine the J-point as seen from the ST-

segment and TP-segment. A total of 816 nodes, which was the beat-to-beat segmentation in a 12-lead ECG 

signal was used for input. One-dimensional CNNs have seven convolutional layers, with a kernel size of five 

with stride one. The rectified linear unit (ReLU) function was adopted with 8, 16, 32, 64, 128, 256, and 512 

filters. The other hyperparameters tuning are RMSprop optimizer, batch size of 32, 300 epochs, and 10-3 

learning rate. Table 1 lists the details of the modified model. 
 

 

Table 1. The description of the modified ConvBiLSTM model 
Layer Input nodes Number of filters Kernel size/dropout rate Output nodes Kernel regularizer 

Input 816×1 - - - - 

Convolution 1 816×1 8 5×1, stride 1 816×8 - 

Normalization 1 816×8 - - 816×8 - 
ReLU 1 816×8 - - 816×8 - 

Convolution 2 816×8 16 5×1, stride 1 816×16 - 

Normalization 2 816×16 - - 816×16 - 
ReLU 2 816×16 - - 816×16 - 

Convolution 3 816×16 32 5×1, stride 1 816×32 - 

Normalization 3 816×32 - - 816×32 - 
ReLU 3 816×32 - - 816×32 - 

Convolution 4 816×32 64 5×1, stride 1 816×64 - 

Normalization 4 816×64 - - 816×64 - 
ReLU 4 816×64 - - 816×64 - 

Convolution 5 816×64 128 5×1, stride 1 816×128 - 
Normalization 5 816×128 - - 816×128 - 

ReLU 5 816×128 - - 816×128 - 

Convolution 6 816×128 256 7×1, stride 1 816×256 L2(α=0.0001) 
Normalization 6 816×256 - - 816×256 - 

ReLU 6 816×256 - - 816×256 - 

Convolution 7 816×256 512 7×1, stride 1 816×512 L2(α=0.0001) 
Normalization 7 816×512 - - 816×512 - 

ReLU 7 816×512 - - 816×512 - 

Dropout 1 816×512 - 0.3 816×512 - 
BiLSTM 816×512 - - 816×1556 L2(α=0.0001) 

Fully connected 816×1556 - - 816×512 L2(α=0.0001) 

Dropout 2 816×512 - 0.3 816×512 - 

Output 816×512 - - 816×8 - 
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2.4.  ST-elevation or ST-depression decision 

The medical rules of ST-elevation or ST-depression [25], [26], this study has summarized as below: 

− ST-elevation is measured at the J-point (QRSoff and the beginning of ST-segment) compared to the 

baseline which is TP-segment (Toff–Pon). TP segment is between the end of the T wave and the next P 

wave. TP segment is truly isoelectric and hence the true baseline for all ECG measurements, while the 

other two segments may have deviations from the baseline. In conclusion, if J-point is higher than the 

baseline by 0.1 mV, it is called ST-elevation. 

− ST-depression is measured by the J-point is below the baseline. 

To adjust those rules, this study has followed a basic principle of ECG analysis, in which each 1 

millimeter (mm) in an ECG small square corresponds to 0.04 seconds (40 milliseconds) [25]. The amplitude 

of waveforms will be expressed as: 0.1 mV=1 mm=1 small square [26]. 

 

2.5.  Platform 

Two NVIDIA GeForce RTX 2070 SUPER 24GB GPUs (8 GB Dedicated and 16 GB Shared) and an 

Intel(R) Core (TM) I7-10700K CPU operating at 3.80 GHz (16 CPUs) ~3.8 GHz are used in the experiments 

to create the 12-lead ECG delineation model. Python programming with Visual Studio Code version 1.86.1 

on Windows 10 Pro 64 Bit was used in this study. Numpy, pandas, matplotlib, seaborn, wfdb, pywavelets, 

SciPy, and TensorFlow are among the libraries. 

 

 

3. RESULTS AND DISCUSSION 

Total of 200 records in all have been divided into beat-to-beat categories. There are 14,615 normal 

beats in total, divided into 1,470 beats for the validation set, 1,468 beats for the testing set (unseen), and 

11,677 beats for the training set (see Table 2). Table 2 presents the total number of segmented ECG beats 

across 12 standard leads (I, II, III, aVR, aVL, aVF, and V1–V6), categorized into training, validation, and 

testing datasets. The dataset shows a well-structured segmentation of ECG beats, with a dominant portion 

allocated for training and equal-sized portions for validation and testing. The beat distribution is fairly 

uniform across all leads, supporting robust and unbiased model training and evaluation. To analyze the 

performance results of the modified ConvBiLSTM model, this study has discussed two approaches:  

i) 12-lead ECG delineation and ii) ST-elevation detection. 

 

 

Table 2. The total number of beat-to-beat segmentation 

Data 
Total number of beats segmentation 

I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 

Training set 977 975 979 975 977 975 967 967 971 967 975 972 
Validation set 123 123 123 123 123 123 122 122 122 122 122 122 

Testing set 123 122 123 123 123 123 122 121 122 122 122 122 

Total beats 1,223 1,220 1,225 1,221 1,223 1,221 1,211 1,210 1,215 1,211 1,219 1,216 

 

 

3.1.  Delineation result 

The myocardial mass may have an impact on the waveform's amplitude in any lead. Six limb leads 

(I, II, III, aVR, aVL, and aVF) plus six chest leads (VI–V6) make up a typical 12-lead ECG. The vertical 

heart view is produced by six limb leads, whereas the horizontal heart image is presented by six chest leads 

[27]. In this study, we have analyzed the performance results of limb and chest leads, respectively (refer to 

Tables 3 and 4). On average, the performance results of the chest lead outperformed the limb leads in 

sensitivity, precision, and F1-score with 93.10%, 93.32%, and 93.11%, respectively. However, in accuracy 

and specificity, the limb leads outperformed. In limb leads, leads I-III show better performance than lead 

aVR, aVL, and aVF with above 92.53% accuracy, sensitivity, specificity, precision, and F1-score. Lead aVR 

shows poor performance, with only 88.87% F1-score. In chest leads, lead V1 only obtains 91.19% 

sensitivity, while in lead V2–V3 is well-performed. As anatomical relations of lead in 12-lead ECG, leads 

aVR and V1 have the same anatomy which presents the right atrium and cavity of the left ventricle. In some 

cases, lead aVR is ignored, due to its locations displaying reciprocal information covered by leads aVL, II, 

V5, and V6. 

In all 12-ECG leads, Ton–Toff and Toff–Pon had the highest misclassification rates, as seen in the 

confusion matrix (CM) in Figures 4(a) to (l) (see Appendix). From both the mathematical and the 

cardiological points of view, the maximal error is noted for the Toff, whose delineation is a well-known hard 

problem. A normal T-wave to overlap with other T-wave classes: inverted, only upwards, only downwards, 

biphasic negative-positive, or biphasic positive-negative. The T-wave on an ECG is significant because it 

shows cardiac repolarization. The correct interpretation of T-waves can aid in the prediction of cardiac events 
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in patients. Though the misclassification mostly occurs in Ton–Toff and Toff–Pon, this study has minimized the 

error classification in ST-segment (QRSoff–Ton) and PR-segment (Poff–QRSon). Both segments are significant 

features for ST-elevation detection. 
 

 

Table 3. The performance results of limb lead delineation 

Metrics 
Performance results (%) 

Average 
I II III aVR aVL aVF 

Accuracy 99.36 99.3 99.11 99.05 99.11 99.12 99.18 

Sensitivity 94.43 94.33 93.31 88.91 91.26 93.05 92.55 

Specificity 99.65 99.62 99.51 99.49 99.5 99.51 99.55 
Precision 94.28 93.91 92.53 89.02 92.46 93.48 92.61 

F1-score 94.34 94.08 92.81 88.87 91.79 93.24 92.52 

 
 

Table 4. The performance results of chest lead delineation 

Metrics 
Performance results (%) 

Average 
V1 V2 V3 V4 V5 V6 

Accuracy 98.95 99.08 99.28 99.02 99.3 99.34 99.16 
Sensitivity 91.52 91.64 94.01 93.01 94.01 94.38 93.10 

Specificity 99.43 99.5 99.6 99.44 99.6 99.63 99.53 

Precision 91.19 91.7 93.7 93.32 95.2 94.79 93.32 
F1-score 91.24 91.59 93.77 93.01 94.47 94.55 93.11 

 

 

Figure 5 shows the ECG delineation results of Pstart–Pend, Pend–QRSstart, QRSstart–Rpeak, Rpeak–QRSend, 

QRSend–Tstart, Tstart–Tend, and Tend–Pstart in limb and chest leads, respectively. All lead's physical characteristics 

affect how well delineation works. The degree of morphological alterations depends on the shift's magnitude, 

displacement's direction, and the ECG segment chosen for analysis. Each lead represents the difference in 

electrical potentials between two places in space. 
 

 

 
 

Figure 5. The comparison of ECG signal classification between ground truth (annotation) and predicted 

ConvBiLSTM results in limb leads 
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3.2.  ST-elevation or ST-depression condition 

We have implemented the medical rules for ST-elevation or ST-depression in ECG signals. We 

have only used the medical rules for several annotated records of LUDB. For ST-elevation or ST-depression 

detection, we used the eight LUDB records, i.e., records 7, 21, 24, 33, 55, 64, 69, and 86. The records have 

patient information, including demography and medical data, with the ST-elevation myocardial infarction 

condition. A detailed description of the used records for ST-elevation or -depression detection is listed in 

Table 5. The sample results of ST-elevation (red color) as E, ST-depression (green color) as D, and neither 

(blue color) as N in records 7, 24, and 33 of the 12-lead ECG signals (only sample visualized). For ST-

elevation, the J-point is higher than the baseline by 0.1 mV, and for ST-depression, the J-point is below the 

baseline. ST-elevation is measured at the J-point (QRSoff and the beginning of the ST-segment) compared to 

the baseline, which is the TP-segment (Toff–Pon). 
 

 

Table 5. The sample of ST-elevation or -depression decision by medical rules with DL localization 
Records Sex Age Results 

7 Male 50 

 

 
24 Male 64 

 

 
33 Male 53 

 
 
 

The study has validated the DL-predicted results against those of a cardiologist from Mohammad 

Hoesin Hospital, Indonesia. As a result, we have taken four records as samples, among the 48 ECG signals from 

eight records (records 7, 21, 24, and 33) in 12-lead ECG signals, 35 records showed interpretation results that 
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matched those of the cardiologist. The validation results are listed in Table 6. There were six false 

interpretations, specifically, in record 7, at leads aVR and V2, in record 24, at leads V4 and V5, and in record 

33, at leads II and V2. In the automatic delineation process, for the QRS complex, a relatively simple task, the 

performance of all methods is next to perfect. However, the most significant error occurs in delineating the T-

wave start and end, a widely recognized challenging task from both mathematical and cardiological standpoints 

[21]. The presence of T-wave inversion can be the main challenge for ST-segment localization in this study. 
 

 

Table 6. The validation results by an Indonesian cardiologist of 12-lead ECG signal decision 
Records Lead Indonesian cardiologist DL-predicted Results 

7 aVF N N True 

aVL D D True 
aVR N E False 

I D D True 

II N N True 
III N N True 

V1 E E True 

V2 E N False 
V3 E E True 

V4 E E True 

V5 N N True 
V6 D D True 

21 aVF N D False 

aVL N D False 
aVR N N True 

I N D False 

II N N True 
III N D False 

V1 E N False 

V2 E N False 
V3 E E True 

V4 E N False 

V5 E E True 
V6 N N True 

24 aVF N N True 

aVL D D True 
aVR E E True 

I D D True 

II D D True 
III N N True 

V1 E E True 

V2 E E True 
V3 E E True 

V4 D E False 

V5 D N False 
V6 D D True 

33 aVF N N True 

aVL D D True 
aVR N N True 

I D D True 
II N D False 

III N N True 

V1 E E True 

V2 E N False 

V3 N N True 

V4 N N True 
V5 N N True 

V6 N N True 

 

 

The 12-lead ECG delineation in Table 7 has been the subject of prior research [9], [20], [28]. CNN-

BiLSTM was initially proposed by S. and B. [20] for 12-lead ECG delineation. They outperformed 95% for 

beat-based segmentation and 93% for patient-based segmentation in terms of accuracy, sensitivity, 

specificity, precision, and F1-score, based on a total of 14,588 beats. The W-Net architecture, which applies a 

second U-Net with the input being the first U-Net's output, was examined by Jimenez-Perez et al. [9]. They 

used the efficient channel attention (ECA) method to address the trade-off between complexity and 

performance. They experimented with both single-lead and multi-lead methods for ECG delineation. The 

precision for P, QRS, and T waves in the single-lead configuration was 99.27%, 99.31%, and 98.73%, 

respectively. The precision decreased to 98.90%, 99.24%, and 98.24% for P, QRS, and T waves, 
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respectively, when the model was used with the multi-lead technique. Chen et al. [28] used a one-

dimensional UNet architecture (1D-UNet) to define three primary ECG waveforms. They achieved a 98.86% 

sensitivity. 
 

 

Table 7. The comparison results of multi-lead or 12-lead ECG delineation based on DL architectures 

Authors Dataset Lead Method 
Performance results (%) 

ACC SEN SPE PRE F1 

[9] LUDB Multi-lead W-Net - 99.93 - 99.87 - 

[20] LUDB 12 CNN-BiLSTM  98.82 95.93 99.21 95.94 95.93 
[28] LUDB 12 1D-UNet - 98.86 - - - 

This study LUDB Limb lead A modified ConvBiLSTM 99.18 92.55 99.55 92.61 92.52 

Chest lead 99.16 93.10 99.53 93.32 93.11 

 
 

Prior studies demonstrated excellent performance in ECG wave delineation but were limited to  

P-QRS-T wave analysis. They did not focus on segments crucial for detecting abnormalities, such as  

ST-elevation and ST-depression, which are essential indicators of conditions like myocardial infarction. The 

study extends ECG segmentation beyond just P-QRS-T waves by defining finer wave intervals and segments; 

Pstart–Pend, Pend–QRSstart, QRSstart–Rpeak, Rpeak–QRSend, QRSend–Tstart, Tstart–Tend, and Tend–Pstart. The findings 

revealed that the DL model achieved an average accuracy of 99.18%, sensitivity of 92.55%, specificity of 

99.55%, precision of 92.61%, and F1-score of 92.52% in limb leads. Similarly, in chest leads, the DL model 

attained an accuracy of 99.16%, sensitivity of 93.10%, specificity of 99.53%, precision of 93.32%, and  

F1-score of 93.11%. These refined segments allow for a more detailed understanding of ECG morphology, 

improving abnormality detection. Interpretation of ST-elevation or -depression is guided by medical rules, 

ensuring that the model aligns with clinical practices. This study enhances ECG segmentation by 

incorporating additional clinically relevant segments for abnormality detection. The DL model exhibits 

strong accuracy and reliability, with high specificity, indicating a low false-positive rate. 

 

 

4. CONCLUSION 

ST-elevation or ST-depression are conditions of ST-segment of the lead with the injured area as a 

positive and negative electrode, respectively. With the 12-lead ECG delineation approach, this study is 

concerned with detecting the ST-elevation or -depression based on ST- and TP-segment localization. Both 

ECG segments have been compared to J-point localization, with a standard amplitude of 0.1 mV. To reach 

the aim of this study, we modified the ECG processing to ST-segment localization for ST-elevation or -

depression detection in 12-lead ECG (limb and chest leads). For ST-elevation, the J-point is higher than the 

baseline by 0.1 mV, and for ST-depression, the J-point is below the baseline. We segment the ECG signal to 

Pstart–Pend, Pend–QRSstart, QRSstart–Rpeak, Rpeak–QRSend, QRSend–Tstart, Tstart–Tend, and Tend–Pstart. As a results, on 

average, the performance results of ECG delineation in the chest lead outperformed the limb leads in 

sensitivity, precision, and F1-score with 93.10%, 93.32%, and 93.11%, respectively. Future work may 

involve integrating the proposed ST-segment delineation method with automated diagnostic systems to assist 

clinicians in real-time detection of myocardial infarction or ischemia. 
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APPENDIX 
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(c) (d) 

 

Figure 4. Confusion matrix of validation set in 12-lead ECG; (a) Lead I, (b) Lead II, (c) Lead III, and  

(d) Lead aVR 
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(e) (f) 

 

  
(g) (h) 

 

  
(i) (j) 

 

Figure 4. Confusion matrix of validation set in 12-lead ECG; (e) Lead aVL, (f) Lead aVF, (g) Lead V1,  

(h) Lead V2, (i) Lead V3, and (j) Lead V4 (continued) 
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(k) (l) 

 

Figure 4. Confusion matrix of validation set in 12-lead ECG; (k) Lead V5 and (l) Lead V6 (continued) 
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