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ST-elevation or ST-depression are markers of an abnormal heart condition
detected through an electrocardiogram (ECG) where the tracing in the ST-
segment is unusually elevated above the TP-segment (baseline). Identifying
the localization of the ST-segment on an ECG is difficult because even a
minor change in the ST-segment can be obscured by filtering processes. The
12-lead ECG signal is a non-invasive tool in the early detection of ST-
elevation based on ST- and TP-segment, with quick and accurate
interpretation. This study proposes a standard 12-lead ECG delineation
model using deep learning (DL). The ECG signal has been segmented to
Pstart—Pend, Pend-QRSstart, QRSstart-Rpeak, Rpeak—QRSend, QRSend-
Tstart, Tstart-Tend, and Tend-Pstart. The study interpreted ST-elevation or
-depression using an ECG delineation approach guided by medical rules.
The findings revealed that the DL model achieved an average accuracy of
99.18%, sensitivity of 92.55%, specificity of 99.55%, precision of 92.61%,
and F1-score of 92.52% in limb leads. Similarly, in chest leads, the DL
model attained an accuracy of 99.16%, sensitivity of 93.10%, specificity of
99.53%, precision of 93.32%, and Fl1-score of 93.11%. This study also
validated the DL-predicted results by a cardiologist from Mohammad
Hoesin Hospital, Indonesia.
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1. INTRODUCTION

ST-elevation is a criterion for abnormal cardiac conditions, such as occlusion of coronary arteries in
cases of acute myocardial infarction [1]. ST-elevation is not only associated with total thrombus blockage of
the coronary vessels in myocardial infarction but is also associated with other conditions, such as ST-
elevation in left bundle branch block (LBBB), pericarditis, and myocarditis [2], [3]. Consequently, its
presence can lead to false-positive diagnoses in ST-elevation changes related to abnormal heart conditions

[4].

Several deployed methods have been proposed for detecting ST-elevation, such as coronary
angiography and echocardiography [4], [5]. However, the initial rule-out phase for ST-elevation is
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inappropriate, as it can only be assessed for a brief period or requires invasive and/or resource-intensive
methods [6], [7]. Twelve-lead electrocardiogram (ECG) signal is a non-invasive tool in the early detection of
ST-elevation based on ST- and TP-segment, with quick and accurate interpretation [8], [9]. Different from
arrhythmia detection, 12-lead or 15-lead ECG (standard 12-lead and three Frank leads ECG) observation is
necessary for ST-elevation detection [10], [11]. Every lead of the ECG signal has information on three main
waveforms, i.e., P, T-waves, and QRS-complexes. If the ST-segment is elevated, locating the J-point can be
essential. The J-point is the junction of the QRS complex and the ST-segment. Therefore, the precise
delineation of ECG is highly required to start, peak, and end of waveform localization for the ST-segment.
ECG delineation plays a crucial role in determining the critical points that indicate the interval and amplitude
locations in each wave morphology [12]. ECG delineation to ST-segment localization is challenging due to a
slight alteration in the ST-segment that a filtering process could easily obliterate. In addition, the amplitude
of ST-elevation may also be impacted by adjustments to the axis, QRS width, incorrect high-pass filter
settings, and lead location [13].

However, prompt treatment depends on early detection and accurate diagnosis. Despite the
established criteria for ST-elevation diagnosis, emergency clinicians still face a significant barrier to quickly
identifying the condition. According to earlier studies, ranging from 2 to 30% of patients had an incorrect
diagnosis of ST-elevation in myocardial infarction on the first medical contact [14]-[17]. Patients with ST-
elevation who have high-risk ECG abnormalities not identified receive worse care and have more
unfavorable outcomes. Misinterpreting a diagnostic test was found to be one of the main reasons for missed
identification during the diagnostic procedure [14], [15]. Therefore, systematic methods to enhance ECG
interpretation may significantly affect diagnosis. Since the 12-lead ECG is the primary diagnostic tool for ST
elevation, a more thorough examination of the ECG could expedite the process considerably.

The current deep learning (DL) revolution has provided us with an opportunity to be effective in
medical applications [4]-[6]. Many recent studies have explored ST-elevation with DL [8], [16]-[19].
However, the studies were only concerned with detecting or classifying the abnormalities, not observing the
ST-segment changes to detect ST-elevation. For example, Choi et al. [8] proposed DL to train with
ST-segment elevation myocardial infarction (STEMI) and normal sinus rhythm ECG for external validation.
Tseng et al. [16] proposed DL to detect STEMI patients who underwent primary percutaneous coronary
intervention (PCI). Wu et al. [17] detected the early diagnosis of acute STEMI with a convolutional neural
network-long short-term memory. Gibson et al. [18] also proposed DL and compared DL-based 12-lead and
one-lead ECGs to identify STEMI. Herman et al. [19] evaluated in an international cohort and compared with
STEMI criteria and ECG experts in detecting occlusion myocardial infarction using the DL approach.

A signal delineation approach can be used to identify abnormalities in the ST-segment. In the
previous study, a 12-lead ECG delineation model employing DL was proposed, which yielded exceptional
performance outcomes [20]. To our knowledge, no studies have been conducted focusing on and addressing
ST-segment changes for the assessment of ST-elevation or -depression condition through an ECG delineation
approach. Therefore, in this study, the contributions and novelty are as follows:

— Generalizing the 12-lead ECG delineation approach using a DL model.

— Applying medical guidelines for accurate ST- and TP-segment localization and J-point determination to
identify ST-elevation or -depression condition.

— Comparing DL-predicted ST-elevation, or -depression across the 12-lead with evaluations from two
cardiologists at an Indonesian hospital.

2. MATERIAL AND METHODS

The research methodology of this study can be presented in Figure 1. The figure illustrates the overall
workflow of an automated system for ECG abnormal interpretation and detection using DL methods. The
process begins with the input of ECG 12-lead raw data, which captures the electrical activity of the heart over
time. Since raw ECG signals often contain noise and variability, the data undergoes a pre-processing stage.
After pre-processing, the signals proceed to the ECG waveform classification stage, which employs a
ConvBIiLSTM architecture. This architecture integrates convolutional neural network (CNN) with bidirectional
long short-term memory (BiLSTM) networks to capture both spatial and temporal features of the ECG signals.

2.1. Data preparation

Twelve-lead ECG signals with annotations for P, T, and QRS-complexes are included in the
Lobachevsky University Electrocardiography Database (LUDB) [21]. Total of 500 samples per second are
used to digitize the 200 10-second records. 19,666 T-waves, 21,966 QRS-complexes, and 16,797 P-waves are
annotated. This study has generated the 12-lead ECG delineation model with 200 records and a complete
P-QRS-T waveform. Figure 2 presents a sample of ST-elevation conditions in ECG records.
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Figure 2. The sample of the ST-elevation [21]

2.2. Electrocardiogram signal processing
There are steps to process the ECG signal so that its information is well-represented. The processing
of ECG signals is described below:

— ECG denoising: ECG is susceptible to noises due to it representing varying morphological waves. It leads
to a false diagnosis and improper patient treatment. Discrete wavelet transforms (DWT) have been
proposed in previous literature to handle ECG denoising problems [20], [22], [23]. This study has
explored several mother functions to obtain the highest signal-to-noise ratio (SNR) value, i.e., haar,
bior5.5, bior3.3, bior6.8, coif2, coif4, coif5, sym4, sym5, sym6, sym7, db8, db9, coif3, db7, and db6.
Among explored mother functions, the highest SNR value achieves 34.71 decibels (dB), with bior6.8
mother function, soft thresholding, and seven levels of decomposition. The sample of ECG denoising can
be presented in Figure 3.
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Figure 3. The sample of ECG denoising

— ECG segmentation: this study has segmented the ECG signal in 12-lead by beat-to-beat, with the
maximum nodes in all ECG leads being 816, as the minimum beat among all records. This study has only
segmented the complete P-QRS-T waveforms (normal beat). If the beat segment is less than 816 nodes,
we used the zero-padding technique. This study has added zeros to the end of the input sequence so that
the beat segmentation has a fixed length.

2.3. The modified ConvBiLSTM model

Our previous study introduced a 12-lead ECG delineation model using DL, which demonstrated
outstanding performance [20], [23], [24]. However, the study focused solely on delineating the P-QRS-T
waves with four classes (i.e., P-wave, QRS-complex, T-wave, and isoelectric line), without addressing ST-
elevation or -depression. This omission is significant, as these conditions are critical indicators of various
heart diseases like STEMI. Building upon this foundation [20], this study has refined the previous
methodology CNN-BIiLSTM in terms of ST- and TP-segments localization for detecting both ST-elevation
and -depression. The generalization of the previous model was called modified ConvBiLSTM. To carry out
this process, the classification is changed into eight classes (i.e., Pstar—Pend, Pend—QR Sstart, QR Sstar—Rpeak, Rpeak—
QRSend, QRSend—Tstart, Tstar—Tend, Tend—Pstart, @nd isoelectric line) to determine the J-point as seen from the ST-
segment and TP-segment. A total of 816 nodes, which was the beat-to-beat segmentation in a 12-lead ECG
signal was used for input. One-dimensional CNNs have seven convolutional layers, with a kernel size of five
with stride one. The rectified linear unit (ReLU) function was adopted with 8, 16, 32, 64, 128, 256, and 512
filters. The other hyperparameters tuning are RMSprop optimizer, batch size of 32, 300 epochs, and 10
learning rate. Table 1 lists the details of the modified model.

Table 1. The description of the modified ConvBiLSTM model

Layer Input nodes  Number of filters  Kernel size/dropout rate  Output nodes  Kernel regularizer
Input 816x1 - - - -
Convolution 1 816x1 8 5x1, stride 1 816x8
Normalization 1 816x%8 - - 816x%8
ReLU 1 816x8 - - 816x8
Convolution 2 816x8 16 5x1, stride 1 816x16
Normalization 2 816%16 - - 816x16
RelLU 2 816x16 - - 816x16
Convolution 3 816x16 32 5x1, stride 1 816x32
Normalization 3 816x32 - - 816x32
ReLU 3 816x32 - - 816x32
Convolution 4 816%32 64 5x1, stride 1 816x64
Normalization 4 816x64 - - 816x64
ReLU 4 816x64 - - 816x64
Convolution 5 816x64 128 5x1, stride 1 816x128
Normalization 5 816x128 - - 816x128
ReLU 5 816x128 - - 816x128 -
Convolution 6 816x128 256 7x1, stride 1 816x256 L2(0=0.0001)
Normalization 6 816x256 - - 816%256 -
ReLU 6 816x256 - - 816x256 -
Convolution 7 816x256 512 7x1, stride 1 816x512 L2(0=0.0001)
Normalization 7 816x512 - - 816x512 -

ReLU 7 816x512 - - 816x512

Dropout 1 816x512 - 0.3 816x512 -
BiLSTM 816x512 - - 816x1556 L2(a=0.0001)
Fully connected  816x1556 - - 816x512 L2(e=0.0001)
Dropout 2 816x512 - 0.3 816x512 -
Output 816x512 - - 816%8
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2.4. ST-elevation or ST-depression decision
The medical rules of ST-elevation or ST-depression [25], [26], this study has summarized as below:
— ST-elevation is measured at the J-point (QRScs and the beginning of ST-segment) compared to the
baseline which is TP-segment (Toft—Pon). TP segment is between the end of the T wave and the next P
wave. TP segment is truly isoelectric and hence the true baseline for all ECG measurements, while the
other two segments may have deviations from the baseline. In conclusion, if J-point is higher than the
baseline by 0.1 mV, it is called ST-elevation.
— ST-depression is measured by the J-point is below the baseline.
To adjust those rules, this study has followed a basic principle of ECG analysis, in which each 1
millimeter (mm) in an ECG small square corresponds to 0.04 seconds (40 milliseconds) [25]. The amplitude
of waveforms will be expressed as: 0.1 mV=1 mm=1 small square [26].

2.5. Platform

Two NVIDIA GeForce RTX 2070 SUPER 24GB GPUs (8 GB Dedicated and 16 GB Shared) and an
Intel(R) Core (TM) 17-10700K CPU operating at 3.80 GHz (16 CPUs) ~3.8 GHz are used in the experiments
to create the 12-lead ECG delineation model. Python programming with Visual Studio Code version 1.86.1
on Windows 10 Pro 64 Bit was used in this study. Numpy, pandas, matplotlib, seaborn, wfdb, pywavelets,
SciPy, and TensorFlow are among the libraries.

3. RESULTS AND DISCUSSION

Total of 200 records in all have been divided into beat-to-beat categories. There are 14,615 normal
beats in total, divided into 1,470 beats for the validation set, 1,468 beats for the testing set (unseen), and
11,677 beats for the training set (see Table 2). Table 2 presents the total number of segmented ECG beats
across 12 standard leads (1, I, Ill, aVR, aVL, aVF, and V1-V6), categorized into training, validation, and
testing datasets. The dataset shows a well-structured segmentation of ECG beats, with a dominant portion
allocated for training and equal-sized portions for validation and testing. The beat distribution is fairly
uniform across all leads, supporting robust and unbiased model training and evaluation. To analyze the
performance results of the modified ConvBiLSTM model, this study has discussed two approaches:
i) 12-lead ECG delineation and ii) ST-elevation detection.

Table 2. The total number of beat-to-beat segmentation
Total number of beats segmentation
I Il Il avR _avVL aVF Vi V2 V3 V4 V5 V6
Training set 977 975 979 975 977 975 967 967 971 967 975 972
Validationset 123 123 123 123 123 123 122 122 122 122 122 12
Testing set 123 122 123 123 123 123 122 121 122 122 122 122
Total beats 1,223 1,220 1,225 1,221 1,223 1,221 1211 1210 1,215 1211 1219 1,216

Data

3.1. Delineation result

The myocardial mass may have an impact on the waveform's amplitude in any lead. Six limb leads
(I, 11, 111, aVR, aVL, and aVF) plus six chest leads (VI-V6) make up a typical 12-lead ECG. The vertical
heart view is produced by six limb leads, whereas the horizontal heart image is presented by six chest leads
[27]. In this study, we have analyzed the performance results of limb and chest leads, respectively (refer to
Tables 3 and 4). On average, the performance results of the chest lead outperformed the limb leads in
sensitivity, precision, and F1-score with 93.10%, 93.32%, and 93.11%, respectively. However, in accuracy
and specificity, the limb leads outperformed. In limb leads, leads I-111 show better performance than lead
aVR, aVL, and aVF with above 92.53% accuracy, sensitivity, specificity, precision, and F1-score. Lead aVR
shows poor performance, with only 88.87% F1-score. In chest leads, lead V1 only obtains 91.19%
sensitivity, while in lead V2-V3 is well-performed. As anatomical relations of lead in 12-lead ECG, leads
aVR and V1 have the same anatomy which presents the right atrium and cavity of the left ventricle. In some
cases, lead aVR is ignored, due to its locations displaying reciprocal information covered by leads aVL, I,
V5, and V6.

In all 12-ECG leads, Ton—Tot and Tos—Pon had the highest misclassification rates, as seen in the
confusion matrix (CM) in Figures 4(a) to (I) (see Appendix). From both the mathematical and the
cardiological points of view, the maximal error is noted for the T, whose delineation is a well-known hard
problem. A normal T-wave to overlap with other T-wave classes: inverted, only upwards, only downwards,
biphasic negative-positive, or biphasic positive-negative. The T-wave on an ECG is significant because it
shows cardiac repolarization. The correct interpretation of T-waves can aid in the prediction of cardiac events
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in patients. Though the misclassification mostly occurs in Ton—Tofr and Tos—Pon, this study has minimized the
error classification in ST-segment (QRSoi—Ton) and PR-segment (Poi—QRSon). Both segments are significant
features for ST-elevation detection.

Table 3. The performance results of limb lead delineation
Performance results (%)
I Il Il avVR _aVL _ aVF
Accuracy  99.36  99.3 9911 99.05 9911 9912  99.18
Sensitivity 94.43 9433 9331 8891 91.26 93.05 9255
Specificity 99.65 99.62 9951 99.49 995 9951  99.55
Precision 9428 9391 9253 89.02 9246 9348 9261
Flscore 9434 9408 9281 8887 9179 9324 9252

Metrics Average

Table 4. The performance results of chest lead delineation
Performance results (%
vi va o e e Average
Accuracy  98.95 99.08 99.28 99.02 99.3 99.34  99.16
Sensitivity  91.52 91.64 9401 93.01 9401 9438  93.10
Specificity 99.43 995 996 9944 996 99.63  99.53
Precision 9119 917 937 9332 952 9479  93.32
Flscore 9124 9159 0377 9301 0447 9455 9311

Metrics

Figure 5 shows the ECG delineation results of Pswart—Pend, Pend—QRSstart, QRSstar—Rpeak, Rpeak—QRSend,
QRSeng—Tstart, Tstar—Tend, @Nd Tena—Pstart in limb and chest leads, respectively. All lead's physical characteristics
affect how well delineation works. The degree of morphological alterations depends on the shift's magnitude,
displacement's direction, and the ECG segment chosen for analysis. Each lead represents the difference in
electrical potentials between two places in space.
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Figure 5. The comparison of ECG signal classification between ground truth (annotation) and predicted
ConvBiLSTM results in limb leads
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3.2. ST-elevation or ST-depression condition

We have implemented the medical rules for ST-elevation or ST-depression in ECG signals. We
have only used the medical rules for several annotated records of LUDB. For ST-elevation or ST-depression
detection, we used the eight LUDB records, i.e., records 7, 21, 24, 33, 55, 64, 69, and 86. The records have
patient information, including demography and medical data, with the ST-elevation myocardial infarction
condition. A detailed description of the used records for ST-elevation or -depression detection is listed in
Table 5. The sample results of ST-elevation (red color) as E, ST-depression (green color) as D, and neither
(blue color) as N in records 7, 24, and 33 of the 12-lead ECG signals (only sample visualized). For ST-
elevation, the J-point is higher than the baseline by 0.1 mV, and for ST-depression, the J-point is below the
baseline. ST-elevation is measured at the J-point (QRSes and the beginning of the ST-segment) compared to
the baseline, which is the TP-segment (Tof+—Pon).

Table 5. The sample of ST-elevation or -depression decision by medical rules with DL localization

Records  Sex  Age Results
7 Male 50 Record 7 - Lead aVR
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The study has validated the DL-predicted results against those of a cardiologist from Mohammad
Hoesin Hospital, Indonesia. As a result, we have taken four records as samples, among the 48 ECG signals from
eight records (records 7, 21, 24, and 33) in 12-lead ECG signals, 35 records showed interpretation results that
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matched those of the cardiologist. The validation results are listed in Table 6. There were six false
interpretations, specifically, in record 7, at leads aVR and V2, in record 24, at leads V4 and V5, and in record
33, at leads Il and V2. In the automatic delineation process, for the QRS complex, a relatively simple task, the
performance of all methods is next to perfect. However, the most significant error occurs in delineating the T-
wave start and end, a widely recognized challenging task from both mathematical and cardiological standpoints
[21]. The presence of T-wave inversion can be the main challenge for ST-segment localization in this study.

Table 6. The validation results by an Indonesian cardiologist of 12-lead ECG signal decision
Records Lead Indonesian cardiologist DL-predicted  Results

7 aVF N N True
aVvL D D True
avR N E False

| D D True

] N N True
11 N N True
V1 E E True
V2 E N False
V3 E E True
V4 E E True
V5 N N True
V6 D D True
21 aVF N D False
avL N D False
aVvVR N N True
| N D False

] N N True
11 N D False
V1 E N False
V2 E N False
V3 E E True
V4 E N False
V5 E E True
V6 N N True
24 aVF N N True
avL D D True
aVvVR E E True
| D D True

] D D True
11 N N True
V1 E E True
V2 E E True
V3 E E True
V4 D E False
V5 D N False
V6 D D True
33 aVF N N True
avL D D True
aVvVR N N True
| D D True

1} N D False
11 N N True
V1 E E True
V2 E N False
V3 N N True
V4 N N True
V5 N N True
V6 N N True

The 12-lead ECG delineation in Table 7 has been the subject of prior research [9], [20], [28]. CNN-
BiLSTM wias initially proposed by S. and B. [20] for 12-lead ECG delineation. They outperformed 95% for
beat-based segmentation and 93% for patient-based segmentation in terms of accuracy, sensitivity,
specificity, precision, and F1-score, based on a total of 14,588 beats. The W-Net architecture, which applies a
second U-Net with the input being the first U-Net's output, was examined by Jimenez-Perez et al. [9]. They
used the efficient channel attention (ECA) method to address the trade-off between complexity and
performance. They experimented with both single-lead and multi-lead methods for ECG delineation. The
precision for P, QRS, and T waves in the single-lead configuration was 99.27%, 99.31%, and 98.73%,
respectively. The precision decreased to 98.90%, 99.24%, and 98.24% for P, QRS, and T waves,
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respectively, when the model was used with the multi-lead technique. Chen et al. [28] used a one-
dimensional UNet architecture (1D-UNet) to define three primary ECG waveforms. They achieved a 98.86%
sensitivity.

Table 7. The comparison results of multi-lead or 12-lead ECG delineation based on DL architectures
Performance results (%)

Authors Dataset Lead Method ACC  SEN SPE PRE =
[9] LUDB  Multi-lead  W-Net - 99.93 - 99.87 -
[20] LubB 12 CNN-BIiLSTM 98.82 9593 99.21 9594 9593
[28] LubB 12 1D-UNet - 98.86 - - -
Thisstudy LUDB Limblead A modified ConvBiLSTM 99.18 9255 99.55 92.61 92.52
Chest lead 99.16 93.10 9953 93.32 93.11

Prior studies demonstrated excellent performance in ECG wave delineation but were limited to
P-QRS-T wave analysis. They did not focus on segments crucial for detecting abnormalities, such as
ST-elevation and ST-depression, which are essential indicators of conditions like myocardial infarction. The
study extends ECG segmentation beyond just P-QRS-T waves by defining finer wave intervals and segments;
Pstart_Pend, Pend—QRSstart, QRSstart_Rpeah Rpeak—QRSend, QRSend_Tstart, Tstart_Tend, and Tend_Pstart- The findings
revealed that the DL model achieved an average accuracy of 99.18%, sensitivity of 92.55%, specificity of
99.55%, precision of 92.61%, and F1-score of 92.52% in limb leads. Similarly, in chest leads, the DL model
attained an accuracy of 99.16%, sensitivity of 93.10%, specificity of 99.53%, precision of 93.32%, and
Fl-score of 93.11%. These refined segments allow for a more detailed understanding of ECG morphology,
improving abnormality detection. Interpretation of ST-elevation or -depression is guided by medical rules,
ensuring that the model aligns with clinical practices. This study enhances ECG segmentation by
incorporating additional clinically relevant segments for abnormality detection. The DL model exhibits
strong accuracy and reliability, with high specificity, indicating a low false-positive rate.

4. CONCLUSION

ST-elevation or ST-depression are conditions of ST-segment of the lead with the injured area as a
positive and negative electrode, respectively. With the 12-lead ECG delineation approach, this study is
concerned with detecting the ST-elevation or -depression based on ST- and TP-segment localization. Both
ECG segments have been compared to J-point localization, with a standard amplitude of 0.1 mV. To reach
the aim of this study, we modified the ECG processing to ST-segment localization for ST-elevation or -
depression detection in 12-lead ECG (limb and chest leads). For ST-elevation, the J-point is higher than the
baseline by 0.1 mV, and for ST-depression, the J-point is below the baseline. We segment the ECG signal to
Pstar—Pend, Pend—QRSstarty QRSstar—Rpeak, Rpeak—QRSend, QRSend—Tstart, Tstart—T end, and Teng—Pstart. AS a results, on
average, the performance results of ECG delineation in the chest lead outperformed the limb leads in
sensitivity, precision, and Fl-score with 93.10%, 93.32%, and 93.11%, respectively. Future work may
involve integrating the proposed ST-segment delineation method with automated diagnostic systems to assist
clinicians in real-time detection of myocardial infarction or ischemia.

ACKNOWLEDGMENTS

We thank the Intelligent System Research Group (ISysRG), Faculty of Computer Science and
Artificial Intelligence-Medical Center of Excellence, Universitas Sriwijaya, 30139, Palembang, Indonesia,
for the DL infrastructure.

FUNDING INFORMATION

This study is funded by Universitas Sriwijaya, Indonesia under a Professional Grant 2024 Number
0125.035/UN9/SB3.LP2M.PT/2024. This study is also funded by the Indonesian Endowment Fund for
Education (LPDP) on behalf of the Indonesian Ministry of Higher Education, Science and Technology and
managed under the EQUITY Program (Contract Numbers 4316/B3/DT.03.08/2025 and 66/UN9/PKS/2025
which made this research process possible.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Delineating 12-lead ECG for automated ST-elevation and ST-depression detection ... (Bambang Tutuko)



854 a ISSN: 2302-9285
Name of Author C M S Va Fo | R D O E Vi Su P Fu
Bambang Tutuko v v
Annisa Darmawahyuni v v
Alexander Edo Tondas v v
Muhammad Naufal v v v
Rachmatullah
Firdaus v v v
Ade Iriani Sapitri v v v
Anggun Islami v v v
Sukemi v v v
Muhammad v v v
Fachrurrozi
Siti Nurmaini v v v v
Rendy Isdwanta v v v v
Jordan Marcelino v v v
C . Conceptualization I Investigation Vi : Visualization
M : Methodology R : Resources Su : Supervision
So : Software D : Data Curation P : Project administration
Va : Validation O : writing - Original Draft Fu : Funding acquisition
Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT

The authors have no conflicts of interest.

DATA AVAILABILITY

The datasets generated and/or analysed during the current study are available in the

PhysioNet:Lobachevsky University Electrocardiography Database repository
(https://physionet.org/content/ludb/1.0.1/).

REFERENCES

[1]
[2]
[3]
4
[5]

[6]
[71
(8]
[9]

[10]
[11]
[12]
[13]
[14]

[15]

M. G. Del Buono et al., “Heart Failure After ST-Elevation Myocardial Infarction: Beyond Left Ventricular Adverse Remodeling,”
Current Problems in Cardiology, vol. 48, no. 8, p. 101215, Aug. 2023, doi: 10.1016/j.cpcardiol.2022.101215.

K. Nikus, Y. Birnbaum, M. Fiol-Sala, J. Rankinen, and A. B. de Luna, “Conduction Disorders in the Setting of Acute STEML,”
Current Cardiology Reviews, vol. 17, no. 1, pp. 41-49, Jan. 2021, doi: 10.2174/1573403x16666200702121937.

L. H. Mughal and S. Sastry, “Advances in the treatment of ST Elevation Myocardial Infarction in the UK,” JRSM Cardiovascular
Disease, vol. 11, Jan. 2022, doi: 10.1177/20480040221075519.

E. Radwa, H. Ridha, and B. Faycal, “Deep learing-based approaches for myocardial infarction detection: A comprehensive review recent
advances and emerging challenges,” Medicine in Novel Technology and Devices, vol. 23, 2024, doi: 10.1016/j.medntd.2024.100322.

N. lwahashi et al., “Global Strain Measured by Three-Dimensional Speckle Tracking Echocardiography Is a Useful Predictor for
10-Year Prognosis after a First ST-Elevation Acute Myocardial Infarction,” Circulation Journal, vol. 85, no. 10, pp. 1735-1743,
Sep. 2021, doi: 10.1253/circj.CJ-21-0183.

R. Xiao, Y. Xu, M. M. Pelter, D. W. Mortara, and X. Hu, “A Deep Learning Approach to Examine Ischemic ST Changes in
Ambulatory ECG Recordings,” in AMIA Joint Summits on Translational Science Proceedings, 2018, vol. 2017, pp. 256-262.

J. O. Emakhu, “Acute Coronary Syndrome Prediction: A Data-Driven Machine Learning Modeling Approach in Emergency
Care,” M.S. thesis, Wayne State University, Detroit, M1, USA, 2022.

H. Y. Choi et al., “Diagnostic Accuracy of the Deep Learning Model for the Detection of ST Elevation Myocardial Infarction on
Electrocardiogram,” Journal of Personalized Medicine, vol. 12, no. 3, p. 336, Feb. 2022, doi: 10.3390/jpm12030336.

G. Jimenez-Perez, J. Acosta, A. Alcaine, and O. Camara, “Generalising electrocardiogram detection and delineation: training
convolutional neural networks with synthetic data augmentation,” Frontiers in Cardiovascular Medicine, vol. 11, Jul. 2024, doi:
10.3389/fcvm.2024.1341786.

Y. Zhao et al., “Early detection of ST-segment elevated myocardial infarction by artificial intelligence with 12-lead
electrocardiogram,” International Journal of Cardiology, vol. 317, pp. 223-230, Oct. 2020, doi: 10.1016/j.ijcard.2020.04.089.

A. Darmawahyuni et al., “Deep learning with a recurrent network structure in the sequence modeling of imbalanced data for
ECG-rhythm classifier,” Algorithms, vol. 12, no. 6, p. 118, Jun. 2019, doi: 10.3390/a12060118.

S. Varaganti, R. L. Manisha, and S. Muvvala, “From Waves to Diagnoses: Decoding Electrocardiogram for Improved Cardiac
Care,” Archives of Medicine and Health Sciences, vol. 12, no. 1, pp. 88-96, Jan. 2024, doi: 10.4103/amhs.amhs_169_23.

S. J. Perkins et al., “Vectorcardiography Predicts Heart Failure in Patients Following ST Elevation Myocardial Infarction,” Annals
of Noninvasive Electrocardiology, vol. 29, no. 5, Sep. 2024, doi: 10.1111/anec.70013.

J. McLaren, J. N. de Alencar, E. K. Aslanger, H. P. Meyers, and S. W. Smith, “From ST-Segment Elevation Ml to Occlusion MI: The
New Paradigm Shift in Acute Myocardial Infarction,” JACC: Advances, vol. 3, no. 11, 2024, doi: 10.1016/j.jacadv.2024.101314.

M. Ayyad et al., “Reevaluating STEMI: The Utility of the Occlusive Myocardial Infarction Classification to Enhance Management of

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 845-859


https://physionet.org/content/ludb/1.0.1/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 855

Acute Coronary Syndromes,” Current Cardiology Reports, vol. 27, no. 1, p. 75, 2025, doi: 10.1007/511886-025-02217-8.

[16] L. M. Tseng, C. Y. Chuang, S. K. Chua, and V. S. Tseng, “Identification of Coronary Culprit Lesion in ST Elevation Myocardial
Infarction by Using Deep Learning,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 70-79,
2023, doi: 10.1109/JTEHM.2022.3227204.
[17] L. Wu et al., “Deep Learning Networks Accurately Detect ST-Segment Elevation Myocardial Infarction and Culprit Vessel,”
Frontiers in Cardiovascular Medicine, vol. 9, Mar. 2022, doi: 10.3389/fcvm.2022.797207.
[18] C. M. Gibson et al., “Evolution of single-lead ECG for STEMI detection using a deep learning approach,” International Journal
of Cardiology, vol. 346, pp. 47-52, Jan. 2022, doi: 10.1016/j.ijcard.2021.11.039.
[19] R. Herman et al., “International evaluation of an artificial intelligence-powered electrocardiogram model detecting acute coronary
occlusion myocardial infarction,” European Heart Journal - Digital Health, vol. 5, no. 2, pp. 123-133, 2024, doi: 10.1093/ehjdh/ztad074.
[20] S.V.S.and M.-P. T.B., “Meta-Heuristic Enhanced Deep Learning Model for Mango Blossom and Stem Disease Classification,”
Journal of Artificial Intelligence and Capsule Networks, vol. 7, no. 2, pp. 94-106, Jun. 2025, doi: 10.36548/jaicn.2025.2.001.
[21] A. Darmawahyuni et al., “Improved delineation model of a standard 12-lead electrocardiogram based on a deep learning
algorithm,” BMC Medical Informatics and Decision Making, vol. 23, no. 1, p. 139, Jul. 2023, doi: 10.1186/s12911-023-02233-0.]
[22] A.I. Kalyakulina et al., “LUDB: A new open-access validation tool for electrocardiogram delineation algorithms,” IEEE Access,
vol. 8, pp. 186181-186190, 2020, doi: 10.1109/ACCESS.2020.3029211.
[23] S. Nurmaini et al., “Beat-to-Beat Electrocardiogram Waveform Classification Based on a Stacked Convolutional and
Bidirectional Long Short-Term Memory,” IEEE Access, vol. 9, pp. 92600-92613, 2021, doi: 10.1109/ACCESS.2021.3092631.
[24] S. Nurmaini et al., “Robust electrocardiogram delineation model for automatic morphological abnormality interpretation,”
Scientific Reports, vol. 13, no. 1, p. 13736, Aug. 2023, doi: 10.1038/s41598-023-40965-1.
[25] A. H. Kashou et al., “ECG Interpretation Proficiency of Healthcare Professionals,” Current Problems in Cardiology, vol. 48, no.
10, p. 101924, Oct. 2023, doi: 10.1016/j.cpcardiol.2023.101924.
[26] C. J. Breen, G. P. Kelly, and W. G. Kernohan, “ECG interpretation skill acquisition: A review of learning, teaching and
assessment,” Journal of Electrocardiology, vol. 73, pp. 125-128, Jul. 2022, doi: 10.1016/j.jelectrocard.2019.03.010.
[27] A. L. Goldberger, Z. D. Goldberger, and A. Shvilkin, Goldberger’s Clinical Electrocardiography: A Simplified Approach, 9th ed. 2017.
[28] Z. Chen, M. Wang, M. Zhang, W. Huang, H. Gu, and J. Xu, “Post-processing refined ECG delineation based on 1D-UNet,”
Biomedical Signal Processing and Control, vol. 79, p. 104106, Jan. 2023, doi: 10.1016/j.bspc.2022.104106.
APPENDIX
Confusion Matrix Heatmap Confusion Matrix Heatmap
Pon-Poff - 5149 228 1] ] o o o o Pon-Poff - 6393 180 0 0 0 o o o
40000 40000
Poff-QRSon - 143 2611 130 '] o 0 o 0 Poff-QRSon - 294 2342 174 0 0 0 0 ]
QRSon-Rpeak - o 15 2354 35 [ o o o ‘QRSen-Rpeak - 0 47 2688 15 0 0 0 1]
30000 30000
_ Rpeak—ORSOﬂ- o 0 20 2786 244 1] 0 1] _ Rpeak-QRSoff - 0 0 32 2829 169 0 1] o
4 QRSoff-Ton - o o o m 5728 460 o 0 - 20000 * ORSoff-Ton - 0 0 0 235 6074 264 o o - 20000
Ton-Toff - 0 o o ] 311 10602 84 o Ton-Toff - o o o 0 617 10426 91 o
Toff-Pon2 - o 1] o 4] 634 0 10000 Toff-Pon2 - 0 0 0 0 0 683 20994 2 10000

Zero padding- 0 0 0 0 0 0 0 Zero padding- 0 0 0 0 (] 0 0 45819
' ' " " ' ' -0 ' ' " " " o

= c x T+ 13 & o = = e x = 3 &= o~ =
2 g H 32 [ 2 5 H £ 3 3 3 [ 2 5 §
T < -3 z = < & 3 £ 4 I3 4 & & : °
g g E ¢ 8 *° 5 z g @ g 3 & 35 B

< 5 2 g 8 £ t I 9 8
& a F] e & @ ] =4 4
2 £ 2 g &
=] g N S & N

Predicted Predicted
Confusion Matrix Heatmap Confusion Matrix Heatmap
Pon-Poff - 5303 219 0 ] 0 0 0 0 Pon-Poff - 6099 165 0 0 o o o

40000 40000

Poff-QRSon - 222 3537 146 0 0 [ 0 0 Poff-QRSon - 305 2258 374 ] [} o 0

QRSon-Rpeak - 0 121 2295 80 0 0 o 0 QRSon-Rpeak - 0 87 1456 537 L] [ [}

30000 30000

Rpeak-QRSoff - 0 0 86 2518 109 [ 0 0 Rpeak-QRSoff - 0 0 251 2893 235 0 [

Actual

Actual

QRsoffon- O ] 1 376 6895 922 0 0 -20000 QRsoffTon - 0 [ 1 310 6144 310 ] - 20000

TonToff- 0

D
s
3
2

8711 276 0 TonToff- 0

o
o
o
a
&
3
®
5]
a

- 10000
776 | 21850 1 ToffPon2- 0

- 10000
Toft-Ponz- 0

B
B
a
B
°
o
o
°
&
3

Zero padding - Zero padding -

Pon-Poff
Ton-Toff

Pon-Poff -

Toff-Ponz -

o
5
s
o
5
o
5
-
A
°
o
o
o
o
5
o
o
meﬂ C e e e e e e
B

Paff-QRSon -
QRSon-Rpeak -
Rpeak-QRSoff -

QRSoffTon -

Toff-Pon2 -
Zero padding

POf-QRSON -
ORSon-Rpeak -
peak-QRSoff -

ORSoffTon

2
Predicted Predicted

(© (d)

Figure 4. Confusion matrix of validation set in 12-lead ECG; (a) Lead I, (b) Lead Il, (c) Lead Ill, and
(d) Lead aVR
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Figure 4. Confusion matrix of validation set in 12-lead ECG; (e) Lead aVL, (f) Lead aVF, (g) Lead V1,
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