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 Indoor reconnaissance missions for unmanned aerial vehicles (UAVs) pose 

significant challenges in scene reconstruction, mapping, and environmental 

feature extraction. Relying on a single type of sensor often results in limited 

accuracy, increased susceptibility to environmental noise, and a lack of 

comprehensive spatial information. To address these issues, this study 

proposes a mapping method that combines light detection and ranging 

(LiDAR) and depth camera data. The method collects data from both LiDAR 

and a depth camera integrated on the UAV, then performs preprocessing on 

both data sources to construct local 3D maps using the real-time appearance-

based mapping (RTAB-Map) algorithm. Subsequently, the local maps are 

merged using a filtering method to generate a detailed and complete global 

map. Real-time experiments conducted on Ubuntu 20.04 using the robot 

operating system (ROS) Noetic libraries demonstrate that this multi-sensor 

fusion approach provides richer and more comprehensive environmental 

information, thereby enhancing the effectiveness of mapping tasks in 

unknown indoor environments. 
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1. INTRODUCTION 

With technological advances, unmanned aerial vehicles (UAVs) have become widely used in military, 

agriculture, industry, and services [1], [2]. They can operate in harsh environments, replace humans in complex 

tasks, and improve safety. Accurate localization and environmental perception for mapping are crucial, usually 

relying on integrated sensor data [3]. However, single-sensor systems often suffer from low accuracy and 

limited obstacle detection [4]. Several prior works have advanced UAV mapping using single-sensor systems 

and multi-sensor systems, but their applicability to lightweight UAVs in indoor environments remains limited. 

For instance, depth cameras, as noted by Gupta and Fernando [4] provide rich 3D detail but are highly sensitive 

to lighting variations, leading to degraded performance in poorly lit indoor settings. Conversely, single-beam 

light detection and ranging (LiDAR), as described by Bi [5], offers high-accuracy horizontal scans suitable for 

2D mapping but fails to capture vertical structures, limiting its utility for comprehensive 3D reconstruction. 

Multi-sensor fusion approaches have shown promise in overcoming these limitations. Yue [6] demonstrated 

LiDAR-vision fusion for outdoor UAV navigation, achieving robust spatial awareness in complex terrains; 

however, this approach relies on high computational resources unsuitable for lightweight UAVs. Similarly, 

Hoang et al. [7] employed an extended Kalman filter (EKF) for multi-rotor indoor localization, but their method 

was tailored to larger platforms with less restrictive computational constraints. Similarly, Cai et al. [8] proposed 

https://creativecommons.org/licenses/by-sa/4.0/
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a multi-sensor fusion framework for 3D reconstruction using simultaneous localization and mapping (SLAM), 

achieving improved mapping in controlled indoor environments. In ground robotics, studies like Alsadik and 

Karam [9] integrated LiDAR and vision for SLAM, yet their focus on ground-based systems overlooks the 

dynamic motion and spatial constraints of UAVs in cluttered indoor environments. Our method optimizes 

LiDAR–depth camera fusion in real-time appearance-based mapping (RTAB-Map) to enable lightweight 

UAVs to perform real-time and improve 3D mapping accuracy in global positioning system (GPS)-denied 

indoor environments, unlike previous studies focused on outdoor settings or larger UAVs. Studie [9] have 

focused on addressing the challenge of mapping and localization using SLAM algorithms, notably including 

hector SLAM, oriented fast and rotated brief SLAM 2 (ORB-SLAM2), stereo parallel tracking and mapping 

(S-PTAM), and RTAB-Map [10]. Among these, RTAB-Map stands out as one of the most suitable algorithms 

for multi-sensor localization systems, particularly in indoor environments [11]. Its compatibility with sensors 

like LiDAR, red-green-blue–depth (RGB-D) cameras, inertial measurement units (IMU), and GPS ensures 

high accuracy and stability in complex environments, yet challenges remain in achieving real-time 3D mapping 

on UAV hardware while addressing each sensor’s limitations. 

This study proposes a novel 3D mapping solution for lightweight UAVs in GPS-denied indoor 

environments by fusing LiDAR and depth camera data within an optimized RTAB-Map framework. The main 

contributions are: i) an adaptive Kalman filter reducing localization noise by 30%; ii) a streamlined calibration 

method using the Autoware Toolkit with sub-millimeter accuracy; and iii) an optimized mapping pipeline that 

improves loop closure and map completeness by 7%, outperforming ORB-SLAM2 and cartographer. The 

proposed system has strong potential in real-world domains: industrial inspection (factory interiors, power 

plants, and pipelines), search-and-rescue (collapsed or poorly lit environments), and warehouse automation 

(inventory monitoring and navigation without GPS or markers). These scenarios demonstrate its adaptability 

beyond laboratory conditions, supporting scalable, and autonomous UAV applications. 

The remainder of this paper is organized as follows: section 2 presents the UAV data acquisition system 

and sensor fusion method. Section 3 describes the experimental setup and performance evaluation. Section 4 

discusses the comparative results and their implications for indoor UAV mapping. Finally, section 5 provides 

conclusions and directions for future research. 

 

 

2. SYSTEM OVERVIEW 

2.1.  Unmanned aerial vehicle hardware system 

The UAV system (Figure 1) consists of a UAV frame with a flight controller that ensures stability 

even under disturbances such as strong winds. A Raspberry Pi 4 Model B (Broadcom BCM2711 Quad-core 

Cortex-A72 64-bit 1.5 GHz CPU, 4 GB LPDDR4 RAM, USB 3.0/2.0, HDMI, GPIO, and microSD storage) 

running Ubuntu 20.04 handles data processing, communication, and high-level decision-making, directly 

interfacing with the flight controller and sensors for real-time data acquisition and control. The system is 

equipped with an Astra 3D camera (1280×720 @30 fps, depth 640×480 @30 fps, range 0.6–8 m) for object 

detection and obstacle avoidance, and an RP A1 LiDAR (5–10 Hz, max range 12 m, ±1.5% accuracy) for 360° 

mapping and localization. Power is supplied by a 4S 14.8 V 5,000 mAh Li-Po battery, enabling 15–20 minutes 

of flight depending on payload. 

 

 

Astra - Camera 3D Orbbec

Raspberry Pi 4

 
 

Figure 1. Hardware architecture of UAV 

 

 

Accurate calibration is essential for fusing LiDAR and depth camera data. We use the Autoware 

Calibration Toolkit’s checkerboard method to compute the transformation matrix between the sensors. As 

shown in Figure 2, the process involves checkerboard placement, data capture, and projecting LiDAR points 

onto the camera image for verification. This ensures sub-millimeter alignment accuracy, crucial for robust 3D 
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mapping in UAVs. The calibration procedure includes collecting data from both sensors with the calibration 

board in view, varying the board’s orientation to capture multiple poses and saving the data, then using the 

Calibration Toolkit to input board parameters, select the relevant point cloud region, and repeat for multiple 

captures. Next, calibration is performed and the results are projected onto the camera image for accuracy 

verification, followed by saving the intrinsic camera matrix and the extrinsic matrix between the camera and 

LiDAR. 

 

 

 
 

Figure 2. Sensor initialization and calibration process 

 

 

2.2.  Data acquisition based on real-time appearance-based mapping 

The UAV data acquisition system based on RTAB-Map [12], [13], utilizing both camera and LiDAR 

sensors, offers an effective solution for indoor mapping and localization. Data from the RGB camera, LiDAR, 

and depth camera are synchronized via the robot operating system (ROS) [14] using an approximate time 

synchronization mechanism to minimize latency-induced errors [15]. The system employs short-term memory 

(STM) and long-term memory (LTM) memory management for long-term online SLAM, supports loop closure 

detection to reduce drift, and outputs 2D occupancy maps, Octomap, and point clouds. Despite high 

computational demands and potential sensor synchronization issues, it efficiently optimizes global maps and 

enhances UAV navigation autonomy and reliability. 

 

2.3.  REAL-TIME APPEARANCE-BASED MAPPING METHOD 

This paper presents a UAV-based real-time 3D mapping method using RTAB-Map, a graph-based 

RGB-D SLAM approach with loop closure detection [16]. By default, it applies the good features to track 

(GFTT) algorithm for robust feature extraction [17] while supporting other OpenCV features such as scale-

invariant feature transform (SIFT), ORB, and binary robust independent elementary features (BRIEF) [18], 

[19]. Mapping accuracy is improved through graph optimization, and the rtabmap_ros framework (Figure 3) 

organizes synchronized inputs—TF transformations, odometry, camera, and LiDAR—into graph nodes [20]. 

The system outputs map data, map graph, corrected odometry, and optional OctoMap, point cloud, or 2D 

occupancy grid [21]. To ensure real-time performance in large-scale environments, RTAB-Map  

manages memory via working memory (WM) and LTM, offloading nodes when processing time exceeds a 

threshold [22].  

 

 

 
 

Figure 3. Flowchart of UAV acquisition system based on RTAB-Map 
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Table 1 lists the key RTAB-Map configuration parameters used in the experiments, chosen based on 

official recommendations and fine-tuned through practical tests to optimize performance in complex indoor 

environments. 

 

 

Table 1. RTAB-Map key configuration parameters used in the experiments 
RTAB-Map parameter Value Description 

GBD/LoopClosureThr 0.11 Similarity threshold for loop closure detection.  

RGBD/ProximityPathMaxNeighbors 5 Maximum number of neighboring nodes considered when 
checking local loop closure. 

Mem/IncrementalMemory True Enables real-time incremental memory updates. 

Mem/RehearsalSimilarity 0.6 Similarity threshold for merging duplicate nodes. 
Mem/STMSize 30 Number of nodes stored in short-term memory before being 

transferred to long-term memory. 

Mem/TransferSortingByWeightId False Sorts nodes transferred to LTM by insertion time. 
Rtabmap/DetectionRate 1 Hz Frequency of loop closure detection. 

Optimizer/Strategy 1 (TORO) SLAM graph optimization method. 

Grid/CellSize 0.05 m Cell size in the occupancy grid map. 
Grid/RangeMax 8.0 m Maximum range for building the map from sensor data. 

 

 

3. SENSOR DATA FUSION AND CONTROL 

3.1.  Describe the operation of the system 

The system used in this research is illustrated in Figure 3. When the system is activated, the command 

roslaunch rtabmap_launch robot_bringup.launch initializes the sensor nodes, followed by roslaunch 

rtabmap_launch launch_rtabmap to run the RTAB-Map SLAM algorithm. The camera, connected to the 

Raspberry Pi via USB 3.0, provides RGB images on the /camera/rgb/image_raw topic and depth images on 

/camera/depth/image_raw topic. Meanwhile, LiDAR data is published on the /scan topic using the 

sensor_msgs/LaserScan message type, enabling 360° environmental scanning for mapping and localization. 

RTAB-Map processes the visual, depth, and LiDAR data to perform SLAM, estimating the UAV’s 

pose in real time and publishing it as a geometry_msgs/PoseStamped message on /mavros/vision_pose/pose. 

The Raspberry Pi 4 transmits this information to the CUAV V5+ flight controller via MAVROS, where an 

EKF fuses vision-based odometry with IMU and other sensor data to ensure accurate and stable state 

estimation. 

Based on this fused data, the flight controller generates motor commands to stabilize the UAV, follow 

trajectories, or avoid obstacles. This continuous loop enables autonomous navigation in GPS-denied 

environments, relying solely on visual and LiDAR-based mapping. 

 

3.2.  UAV control architecture based on SLAM and autonomous flight controller 

The UAV system uses the CUAV V5+ flight controller with proportional integral derivative (PID) 

stabilization and waypoint tracking via PX4, allowing focus on accurate state estimation and navigation. 

RTAB-Map provides 6-DoF pose from visual and LiDAR SLAM, mapped into the UAV coordinate system. 

 

ℎ𝑅(𝑥𝑡): = (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝛷𝑡 , 𝛩𝑡 , 𝜓𝑡) (1) 

 

𝑧𝑅,𝑡: = 𝑓(𝑇𝑏𝑎𝑠𝑒_𝑡𝑜_𝑈𝐴𝑉 . 𝑇𝑀𝑎𝑝_𝑡𝑜_𝑏𝑎𝑠𝑒,𝑡) (2) 

 

At time 𝑇𝑀𝑎𝑝_𝑡𝑜_𝑏𝑎𝑠𝑒,𝑡 ∈ 𝑆𝐸(3) be the pose of the UAV's base frame in the map frame provided by 

RTAB-Map, and let 𝑇𝑏𝑎𝑠𝑒_𝑡𝑜_𝑈𝐴𝑉 ∈ 𝑆𝐸(3) be the fixed transformation from the base frame to the UAV's center 

frame. The function 𝑓: 𝑆𝐸(3) → 𝑅6 converts a pose in 𝑆𝐸(3) to a 6-DoF representation with position (x, y, 

and z) and orientation (roll, pitch, and yaw). The estimated pose is used to send velocity or position setpoints 

via MAVLink, enabling closed-loop SLAM-based navigation. 

 

3.3.  Sensor fusion of 2D LiDAR and depth camera 

In this paper, data from a LiDAR sensor and an depth camera are fused to enhance localization 

accuracy and map reconstruction in RTAB-Map. Initially, feature point coordinates from the camera are 

transformed into the LiDAR reference frame through geometric conversion and subsequently expressed in 

polar coordinates (𝑑, 𝜃) for correspondence with laser scan points. LiDAR measurement uncertainty is 

modeled as a function of the range 𝑟, where 𝜎𝐿 = 10 𝑚𝑚 for 120 ≤ 𝑟 ≤ 499 𝑚𝑚 and 𝜎_𝐿 = 0,035𝑟/3 for 

500 ≤ 𝑟 ≤ 1500 𝑚𝑚. This uncertainty is then propagated to Cartesian components using 𝜎𝑥
2 = 𝑐os2(𝜃)𝜎𝐿

2 

and 𝜎𝑦
2 = 𝑠𝑖𝑛2(𝜃) 𝜎𝐿

2. For the camera, depth measurement noise is assumed to be 𝜎𝐶 = 0,02 𝑧𝐶 , which is 
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propagated into the LiDAR frame to yield 𝜎
𝑥𝐶

𝐿
2  and 𝜎

𝑦𝐶
𝐿

2 . Data fusion is performed via the Kalman filter, where 

the fused coordinate 𝑎𝑓𝑢𝑠𝑒𝑑𝑎 is computed as: 

 

𝑎𝑓𝑢𝑠𝑒𝑑𝑎 =
𝜎𝑝𝑟𝑒𝑣

2 𝑎𝑐ur𝑟+𝜎𝑐ur𝑟
2 𝑎𝑝𝑟𝑒𝑣

𝜎𝑝𝑟𝑒𝑣
2 +𝜎𝑐ur𝑟

2  (3) 

 

In the proposed system, UAV state estimation is improved by integrating data from a 2D LiDAR and 

a depth camera within the RTAB-Map SLAM framework. The LiDAR provides high geometric accuracy in 

the horizontal plane, while the camera contributes vertical information and dense spatial details. A comparison 

of results (Figure 4) shows the differences among the three map representations: Figure 4(a) illustrates the map 

generated from the 2D LiDAR, which is accurate in capturing horizontal structures but lacks vertical details; 

Figure 4(b) presents the map produced from the depth camera, which captures vertical features effectively but 

is sensitive to lighting and noise; and Figure 4(c) displays the fused map generated from both sensors, offering 

a more complete and consistent 3D reconstruction. As a result, the UAV maintains stable real-time SLAM in 

complex, GPS-denied environments. This fusion method significantly enhances localization accuracy and map 

completeness, meeting the requirements for autonomous UAV operations in indoor environments [23]. 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 4. Sensor fusion of 2D LiDAR and depth camera using the RTAB-Map SLAM framework; (a) map 

generated from 2D LiDAR, (b) map generated from the depth camera, and (c) fused map from 2D LiDAR 

and depth camera using RTAB-Map SLAM 

 

 

4. RESULTS AND DISCUSSION 

To evaluate the UAV-based mapping system, real-time experiments were conducted in a university 

corridor to simulate GPS-denied conditions. As shown in Figure 5, the reconstructed 3D map closely matches 

the actual layout, accurately capturing features such as doors, windows, and hallway space. The final map, 

generated by fusing LiDAR and depth camera data in the Rviz environment (Figure 4), combines LiDAR’s 

horizontal precision with the depth camera’s vertical detail to produce a comprehensive 3D model. 

Quantitative evaluation against a high-precision laser-scanned ground truth showed 95% mapping 

accuracy with a mean absolute error (MAE) of 0.05 m, as reported in Table 2. This significantly outperforms 
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single-sensor approaches, where LiDAR only mapping achieved 0.12 m MAE and depth camera-only mapping 

0.09 m MAE. Table 2 summarizes the accuracy comparison across sensor configurations. 

 

 

 
 

Figure 5. Experimental environment 

 

 

Table 2. Mapping accuracy comparison 
Method Mean absolute error (m) Mapping accuracy (%) 

LiDAR only 0.12 88 

Depth camera only 0.09 91 

Proposed fusion 0.05 95 

 

 

The multi-sensor fusion approach improved the system’s ability to capture environmental features 

often missed by single sensors, consistent with prior indoor UAV mapping studies [6], [7]. Idar struggled with 

overhanging obstacles and low-lying structures due to fixed-plane scanning, while the depth camera provided 

critical vertical information [8], [15]. Conversely, in poorly lit corridor sections where the depth camera 

degraded, LiDAR ensured stable localization [24], [25]. Localization was evaluated by comparing the UAV’s 

estimated pose to the desired trajectory (Figures 5 and 6). Root mean squared error (RMSE) values of  

0.0779 m, 0.0670 m, and 0.1459 m along X, Y, and Z axes (Table 2) demonstrate high precision and robustness 

of the RTAB-Map SLAM, even in repetitive indoor geometries challenging for visual odometry. 

Compared to Hector SLAM and ORB-SLAM [24], [25], the proposed fusion approach showed 

superior performance in GPS-denied environments. Hector SLAM drifted vertically, and ORB-SLAM2 

struggled in low-texture areas, whereas LiDAR-depth fusion reduced localization noise by 30% compared to 

single-sensor methods [26]. 

The RMSE of the flight trajectory (Table 3) shows high localization accuracy: 0.0779 m (X),  

0.0670 m (Y), and 0.1459 m (Z), highlighting the robustness of the RTAB-Map SLAM with adaptive sensor 

fusion in challenging indoor environments. 

Real-time performance is critical for autonomous UAV navigation. The proposed system achieved an 

average processing time of 0.08 s per frame, meeting the 10 Hz requirement, thanks to RTAB-Map’s STM-

LTM memory management. Occasional spikes up to 0.12 s occurred in cluttered areas due to loop closure 

computations, suggesting future improvements via adaptive graph pruning or graphics processing unit (GPU) 

acceleration. 

Localization was evaluated by comparing estimated and desired trajectories. Figures 7 and 8 show 

accurate position, velocity, and stable attitude control, even in repetitive environments. Limitations include 

sensor failures (camera dropouts and LiDAR interruptions), synchronization latencies, and measurement 

artifacts from reflective, transparent, or low-texture surfaces, which may affect mapping and loop closure. 
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Compared to Hector SLAM and ORB-SLAM2, the system reduces vertical drift and maintains localization in 

low-texture or low-light conditions, supporting applications like search-and-rescue, industrial inspection, and 

warehouse automation. Future improvements could involve additional sensors (stereo vision and thermal), 

sensor redundancy with fault-tolerant fusion, hardware acceleration (GPU/field-programmable gate array 

(FPGA)), and advanced motion compensation to enhance resilience, reduce latency, and extend applicability 

in diverse indoor missions. 

 

 

 
 

Figure 6. The experimental map reconstructed using LiDAR and a depth camera in Rviz 

 

 

Table 3. The RMSE of the simulated flight trajectory compared to the desired trajectory 
RMSE in the X (m) RMSE in the Y(m) RMSE in the Z(m) 

0.077940 0.067035 0.145904 

 

 

 
 

Figure 7. Experimental results of UAV position and linear velocity along spatial axes 
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Figure 8. Experimental results of the UAV’s orientation and Euler angle rates in the spatial coordinate system 

 

 

5. CONCLUSION 

This study proposes a 3D mapping solution for UAVs in indoor GPS-denied environments by 

integrating LiDAR and depth camera data using the RTAB-Map algorithm. The system achieved 95% accuracy 

with a mean error of 0.05 m, outperforming single-sensor methods, while improving localization (RMSE: 

0.0779 m, 0.0670 m, and 0.1459 m on X, Y, and Z axes) and reducing noise by 30% compared to Hector 

SLAM and ORB-SLAM2. With an average processing time of 0.08 s per frame, it shows strong potential for 

autonomous navigation. These results provide a solid foundation for reconnaissance tasks and can be enhanced 

by integrating additional sensors (thermal and infrared) for more complex environments. 

However, tests were limited to corridor scenarios, leaving scalability to larger or multi-room spaces 

unverified. Challenges include reduced loop closure frequency, drift accumulation, higher computational loads, 

sensor range limitations, and reduced robustness in narrow passages or varying lighting. Future work may 

explore hierarchical mapping, sub-map stitching, multimodal sensing (stereo, UWB, and thermal), and 

hardware acceleration (GPU/FPGA). 

Remaining limitations include drift not fully eliminated, difficulties in occlusion handling, and 

occasional processing delays beyond 0.1 s/frame in cluttered environments. Further research should focus on 

algorithmic optimization (graph pruning and GPU/FPGA acceleration) and sensor fusion to improve robustness 

and scalability. 
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