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This paper proposes a novel framework for autonomous unmanned aerial
vehicle (UAV) navigation in complex environments, seamlessly integrating
Theta* for global path planning with a simplified modulated velocity
obstacle avoidance (MVOA) algorithm for local obstacle avoidance. Theta*
generates optimal, smooth paths, while MVOA processes 2D LiDAR data as
a single obstacle block to compute modulated velocities, enabling efficient
avoidance of static and dynamic obstacles with minimal computational
overhead. Compared to MVVOA-only navigation, the integration of Theta*
and MVOA produced shorter trajectories and faster mission completion with
smoother velocity adjustments, demonstrating clear improvements in
efficiency and stability. Simulation results show the framework maintains a
0.6 m safety distance and operates at 10 Hz, underscoring its robustness and
reliability. The resulting control velocity is transmitted to an ArduPilot-
based flight controller via MAVLink, ensuring precise, real-time execution.
The current implementation focuses on 2D navigation in a planar

environment as a foundation for future 3D expansion, with all results
obtained through high-fidelity simulation. Building on these findings, the
framework shows strong potential for real-time applications such as swarm
UAV coordination, terrain surveying, and indoor navigation, offering a
scalable solution for autonomous systems in dynamic settings.
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1. INTRODUCTION

Unmanned aerial vehicles (UAVSs) are increasingly applied in terrain surveying [1], precision
agriculture [2], disaster response [3], and swarm coordination [4]. These missions demand robust
autonomous navigation in cluttered and dynamic environments such as narrow passages or urban areas [5],
[6]. Effective navigation requires the integration of global path planning for optimal routing and local
obstacle avoidance for real-time safety [7], yet achieving this balance with lightweight computation remains
challenging [8], [9]. No single approach fully addresses the range of UAV mission requirements [10], [11].

Classical methods show clear trade-offs. The dynamic window approach (DWA) [12] ensures
effective local avoidance but is computationally expensive, even with recent dual-filter safety extensions
[13]. Vector field histogram (VFH) [14] enables fast histogram-based avoidance but suffers from local
minima, only partially mitigated by fisheye-based object detection [15]. Global planners such as A* [16]
provide reliable paths but generate grid-aligned trajectories unsuited to UAV maneuverability.

To overcome these limitations, we propose a hybrid framework integrating Theta* [17], [18] and a
modulated velocity obstacle avoidance (MVVOA) algorithm [19], [20]. Theta*, an any-angle extension of A*,
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reduces path length and improves smoothness compared to grid-constrained methods, with recent risk-aware
and learning-based adaptations further enhancing UAV efficiency [21], [22]. MVVOA complements this by
processing raw 2D LiDAR scans into a unified obstacle block, avoiding clustering or predictive tracking
while ensuring safe, real-time avoidance with minimal overhead [23].

Recent studies highlight the need to fuse global and local strategies [24], teach-repeat-replan [25],
velocity obstacles with onboard perception [26], or hybrid DWA—potential field [27]. While these approaches
improve reactivity, they often require costly computations [28] or sacrifice global efficiency [29]-[31]. In
contrast, our Theta*+MVOA framework introduces three key novelties: i) a bidirectional loop where MVOA
not only follows Theta* waypoints but also triggers replanning if blocked, ii) a lightweight velocity
modulation using adaptive weights and predictive safety checks, and iii) direct use of raw LiDAR scans
without dense mapping.

Finally, a crucial step in UAV autonomy is translating paths and velocities into flight commands.
Using ArduPilot and the MAVLink protocol provides a robust control backbone, yet their integration with
advanced planners in ROS Noetic simulation environments (Gazebo, RViz) remains underexplored. To
address this, we present a cohesive framework combining enhanced Theta* and simplified MVOA, validated
in a 10 mx10 m Gazebo environment with static and dynamic obstacles.

The remainder of this paper is organized as follows: section 2 presents the methodology; section 3
presents the results and discussion; and section 5 concludes the paper and provides future directions.

2. METHOD
2.1. System overview
The proposed framework (Figure 1) enables autonomous UAV navigation in complex and dynamic

environments by integrating global path planning, local obstacle avoidance, and real-time flight control.

- Global planner: Theta* [17], [18] generates smooth waypoints wpwpwp on a 1 mx1 m occupancy grid,
ensuring efficient, low-cost trajectories.

- Local planner: MVOA [20] processes 2D LiDAR scans to compute a modulated velocity v, enabling
safe obstacle avoidance while following Theta* waypoints.

- Control interface: v,,, is converted into MAVLink commands for ArduPilot, which adjusts UAV speed
and orientation in real time for robust indoor/outdoor flight.

Global Planner: )
Theta*
Map generates a sequence of
waypoints w; within a 2D grid

~— & of 1m x 1m resolution
Local Planner:
SR
MVOA

compute a modulated
velocity from 2D LiDAR,
avoiding obstacles while

tracking Theta*'s waypoints

Control Interface:
Converts v, to MAVLink
commands

Arduipilot

Figure 1. System architecture for autonomous UAV navigation

Triggers replanning
when MVOA detects
impassable obstacles
or significant
deviations

Lidar

b4

2.2. Theta* global path planning

Theta* is an enhanced variant of A* that allows any-angle connections via line-of-sight, producing
shorter and smoother paths compared to grid-aligned A*. This property makes it well-suited for UAVs by
reducing sharp turns and ensuring kinematically feasible trajectories [21], [25]. In our implementation,
standard modules (input mapping, heuristic search, line-of-sight checks, and path smoothing [24]) are
adapted for UAV navigation, with dynamic replanning triggered when local avoidance blocks progress [27].
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The cost function for a node n with parent p and neighbor s is g(s) = min(g(p) + c(p,s), g(@") +
c(p’, s)), where g(s) is the cost to reach s, c(p, s) is the Euclidean distance if line-of-sight exists, and p' is
the parent of p. The heuristic h(s) is h(s) = ||€ga — s||-

The algorithm outputs a sequence of waypoints wp, spaced 1m apart, ensuring the UAV can follow
the path with minimal deviation. The nominal velocity v¥ toward the next waypoint wp; is:

N _ wp;—§

vV =vp —_t
0 Jwp =€l

y Umax = 21/8

2.3. Modulated velocity obstacle avoidance

The MVOA algorithm computes a modulated velocity v,,, that balances waypoint tracking with
obstacle avoidance. To remain lightweight, it treats all LIDAR points as a single obstacle block [19], [20] and
estimates obstacle motion via centroid tracking. This enables real-time operation without clustering or
complex prediction models.

2.3.1. Algorithm implementation overview

The MVOA algorithm is implemented as a ROS Noetic node that processes LiDAR data and
integrates with Theta* waypoints to generate safe velocities. The workflow is: acquire LiDAR scans from
/scan; represent all points as a single obstacle block (reference direction, minimum distance); estimate
obstacle velocity from centroid motion; compute a modulation matrix to adjust the nominal velocity;
integrate with Theta* using adaptive weighting and trigger replanning if blocked; perform safety checks by
predicting a s trajectory with >0.6 m clearance and scale velocity if necessary; finally, publish the safe
velocity to /cmd_vel (geometry_msgs/Twist) or convert to MAVLink commands for ArduPilot.

2.3.2. Modulated velocity obstacle avoidance workflow

The MVOA algorithm processes LiDAR data and computes the final velocity through a streamlined
pipeline, incorporating obstacle representation, velocity modulation, and safety checks. Below, we describe
the entire workflow as a unified process, with detailed explanations of each mathematical formulation to
clarify its role in achieving safe and efficient navigation.
Step 1: processing LiDAR data and representing obstacles

MVOA begins by receiving a 2D LiDAR point cloud P = {£f = (x;, ;) | i = 1,..., NP}, where
each point &’ denotes the position of an obstacle relative to the UAV. To reduce complexity, all LiDAR
points are aggregated into a single obstacle block, described by four quantities:

p_
a. Unified obstacle block position: r(§) = mean(ﬁ | {f’ € ?), where ¢ is the UAV position. Each

vector ff — & points from the UAV to a LiDAR return, and the mean provides a representative direction.
This approximates the centroid direction of the obstacle block.
b. Distance to obstacle block: D(§) = min|[¢f — &|| = (R + Rpargin), With UAV radius R = 0.5m and
§ EP

safety margin R, = 0.05 m. This gives a conservative estimate of clearance between the UAV and
the closest obstacle.

2
¢. Weight calculation: w = (%E)) . Closer obstacles yield higher weights, ensuring that imminent threats

dominate the avoidance behaviors.

Cei L acey _ TE)
d. Reference direction: #(€) = ol

instability. The unit vector #(€) thus provides a stable avoidance direction toward the obstacle centroid.
Step 2: estimating dynamic obstacle motion
To handle dynamic obstacles, MVOA estimates their velocity &, by tracking the centroid of the
obstacle block across two consecutive LiDAR scans separated by At=100 ms (10 Hz):

if w<100. If w>100, normalization is enforced to avoid numerical

centroid(P,t) —centroid (P,t —At)
At

Eobs =

here, centroid (P, t) corresponds to the obstacle position computed in step 1. This method assumes locally
constant velocity, suitable for moderately moving objects such as UAVs. If no previous scan exists, €. is set
to zero, treating the obstacle as static. This lightweight estimation enables efficient short-term avoidance
without requiring complex prediction models.

Step 3: constructing the modulation matrix for static obstacles
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For static obstacles (&,,, = 0), MVOA constructs a modulation matrix M(&,v") to adjust the
nominal velocity v, steering the UAV away from obstacles while preserving motion in safe directions. The

matrix is defined as: E(&) = [f(§), e, ()], e, (§) = (\/@ where #(&) is the normalized direction to the
rE+T)

obstacle, pointing from the UAV to the obstacle centroid, e, (&) is the perpendicular vector, forming an

orthogonal basis with #(&) for velocity modulation.

The eigenvalues 4, and A, control the modulation strength:

1 = feosGrr@n)inir@n<e , _ +sin(ZIFE@N) if IF@II<1
T —1 otherwise e T Zsin(

ZH?L(E)”) otherwise
Assuming ||7#(&)]| represents the distance D(£), A, reduces velocity toward the obstacle as D () decreases
below 2m, A, amplifies tangential motion to maneuver around the obstacle, especially when D(§) <1 m.

The modulation matrix is: M(&,vN) = E(&)diag(A,, A,)E(&)~1. This matrix adjusts the velocity by
scaling its radial and tangential components, ensuring the UAV avoids the obstacle while maintaining smooth
motion.

Step 4: computing modulation term

The modulation term £ is computed to avoid obstacles while following the nominal velocity v". For
static obstacles (&,,s = 0): € = M(EvV)v"N. This adjusts vV using the modulation matrix M (&, v"),
reducing the velocity toward the obstacle while promoting motion around it. For dynamic obstacle:
E=ME V) (VN — Eups) + Eops. Here, vV — & is the relative velocity, adjusted by M(E v")to avoid
collision, then converted back to the global frame by adding . This ensures the UAV steers clear of the
obstacle’s predicted path.

Step 5: balancing global and local objectives with adaptive weighting
MVOA combines the modulation term & with the nominal velocity vV to balance global path

. . : Amin N,
tracking and local obstacle avoidance: v, = w,v" + wi§w; =1 —wy, w, = exp (—DLI%) where
scal

dmin = D(&), Ngoee 1S number of LIiDAR points with D;(§) < 1m, Dy, is calling factor to adjust the
sensitivity of w,. The weight w, prioritizes vV (global path) when obstacles are far (v¥—1), and £ (local
avoidance) when obstacles are close (w,—0). If d,,;, < 0.6 m and no progress is made toward the waypoint
for 2 seconds, MVOA triggers Theta* replanning.
Step 6: enforcing safety and dynamic constraints

MVOA  ensures safety by predicting the UAV’s trajectory over T=ls is

d .
— : /4 — _ traj H H
digj = nin i||§l. —&|| = (R + Ruargin)- If diraj < diase = 0.6, sCale v = v, - d:;'e. Dynamic constrain are also

applied: v = min(||v||, v.,.). These limit the velocity magnitude to v,,,,, ensuring feasible maneuvers.

2.4. Integration of Theta* and modulated velocity obstacle avoidance

The integration of Theta* and MVOA combines global optimality with local reactivity. Theta*
generates smooth waypoints, while MVOA ensures real-time avoidance using 2D LiDAR [24], [25]. This is
achieved through:

- Waypoint tracking: Theta* outputs waypoints, and MVOA computes velocities vV. Adaptive weights
(wg,w;) balance global guidance with local avoidance, keeping the UAV on the global path unless
obstacles force deviation.

- Dynamic replanning: if MVOA detects danger (d,;,, <0.6 m and no progress for 2 s), it signals Theta* to
replan with updated LiDAR data, improving robustness in dynamic environments.

- Narrow passages: in tight spaces (=1.5 m wide), MVOA’s safety checks prevent collisions while Theta*’s
any-angle paths avoid overly conservative routing [27].

- Dynamic obstacles: MVVOA estimates obstacle velocity &, and shares it with Theta*, enabling paths that
avoid predicted collision zones.

2.5. ArduPilot integration via MAVLink

The framework integrates with ArduPilot via MAVLink to execute MVOA’s modulated velocity
commands. The 2D velocity v, = (v, v,) is converted into the North-East-Down (NED) frame as
Vnorth = Vx» Veast = Vy. These components are encoded into a SET_POSITION_TARGET_LOCAL_NED
message with type mask 0b0000111111000111, enabling velocity-only control. The message, transmitted at
10 Hz through a ROS Noetic MAVROS node, is aligned with ArduPilot’s local NED system. Upon
reception, ArduPilot’s internal PID controller translates the velocity inputs into roll, pitch, yaw, and thrust
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commands, ensuring that high-level planning and local avoidance are accurately executed in real or simulated
flights.

3. RESULTS AND DISCUSSION

The proposed framework integrates Theta* for global planning, MVOA for local avoidance, and
ArduPilot control via MAVLink, all implemented on Ubuntu with ROS Noetic. Real-time tests were
conducted in a Gazebo 10 mx10 m environment with static and dynamic obstacles.

Theta*, implemented as a C++ ROS node, generates smooth any-angle paths on a 1 m grid using
Bresenham’s line-of-sight and cubic spline smoothing, with a 0.6 m obstacle buffer. It subscribes to /map and
/scan for occupancy and LiDAR data, publishing waypoints to /waypoints. MVOA, running at 10 Hz,
processes 360 LiDAR points as a unified obstacle block [19], [20], tracking waypoints via nominal velocities
modulated for obstacle proximity. Safety checks maintain 0.6 m clearance, and blocked progress (>2 s)
triggers Theta* replanning.

Two experiments compared MVOA-only navigation with the combined Theta*+MVOA approach.
Using an Iris quadrotor with LiDAR, both trials aimed to reach a predefined goal. Results in RViz and
trajectory plots showed that while MVVOA alone achieved obstacle avoidance, the integrated Theta*+MVOA
system produced smoother, shorter, and more efficient trajectories, demonstrating the benefits of global—local
integration.

In the first experiment, using only MVOA, the UAV successfully avoided all static and dynamic
obstacles by computing real-time velocities from LiDAR data. However, without global guidance, it followed
reactive, locally optimal trajectories [14], leading to detours, oscillations, and inefficiencies in cluttered areas
or narrow passages (~1.5 m) [6], [27]. The resulting path measured 20.4 m with a completion time of 35.3 s,
as shown in Figure 2. The trajectories in Gazebo (Figure 2(a)) and RViz (Figure 2(b)) appear jagged and
circuitous, reflecting the limitations of purely local navigation. Figure 3 further illustrates the reactive
velocity commands (v, vy,) generated by MVOA during flight.

(@)

Figure 2. UAV trajectory using MVOA-only navigation; (a) simulated flights in the Gazebo environment and
(b) UAV trajectories visualized in RViz

—— vx(mm/s) | Min: -39.13  Max: 79.55  Mean: 25.23
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Figure 3. Velocity guide of MVOA-only navigation

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4368-4376



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4373

The second experiment evaluated the integration of Theta* with MVOA, where Theta* provided
optimized waypoints and MVOA computed safe velocities for execution. This combination allowed the UAV
to follow a more direct and efficient trajectory, reducing unnecessary detours while ensuring reliable obstacle
avoidance.

As a result, the total path length decreased to 14.3 m, and the completion time was shortened to
24.2 s. The resulting trajectory, shown in Figure 4, is notably smoother and closer to the optimal path while
respecting safety constraints. Figure 4(a) illustrates the simulated flight in Gazebo, and Figure 4(b) presents
the corresponding RViz visualization, both confirming the improved navigation performance. Figure 4(c)
further depicts the velocity commands (v, v),) over time, highlighting the coordinated effect of Theta*’s
global guidance and MVOA’s reactive adjustments.

@ (b)

—— vx(mm/s) | Min: -0.44  Max: 74.77  Mean: 35.30
——— vy(mm/s) | Min: 0.00  Max: 50,00 Mean: 33.85

GUID.¥X
D

anv1

01:25.000 01:30.000 01:35.000 01:40.000 01:45,000

(©

Figure 4. UAV trajectory using Theta* and MVOA integrated navigation; (a) UAV operation in the Gazebo
environment, (b) UAV trajectories visualized in Rviz, and (c) velocity guide of Theta* and MVOA integrated
navigation

To further validate the consistency of both navigation strategies, we conducted five repeated trials
for each method under identical conditions. The resulting trajectories are shown in Figure 5, where
Figure 5(a) presents the paths generated by MVVOA-only navigation, and Figure 5(b) shows the trajectories
obtained using the integrated Theta* and MVOA navigation. The overlayed paths demonstrate the
repeatability of the experiments. In all cases, Theta*+MVOA provided shorter and smoother paths than
MVOA-Only. Quantitative results are summarized in Table 1. For MVOA-only navigation, the average path
length was 20.4 m (£0.2 m) with a mean completion time of 35.3 s (0.7 s), confirming the inefficiencies
observed in the trajectories. By comparison, the Theta*+MVOA integration reduced the average path length
to 14.4 m (0.3 m) and the mean completion time to 24.6 s (x1.2 s). These results demonstrate not only
significant improvements in efficiency but also high repeatability, as indicated by the small standard
deviations across runs.

The superior performance of the combined Theta* and MVOA framework stems from their
complementary strengths. Theta* provides a global perspective, using line-of-sight checks and cubic spline
interpolation to produce efficient, UAV-friendly paths. MVOA enhances this by handling local dynamics,
such as sudden obstacle movements, with rapid velocity modulation and safety checks. The integration,
facilitated by ROS Noetic and MAVLink, ensures seamless communication between planning and control, as

Path planning and obstacle avoidance for UAVs using Theta* and modulated ... (Hoang Thuan Tran)
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evidenced by the consistent 10 Hz command rate to the Arduipilot. The results also validate the system’s
robustness across diverse scenarios, including narrow passages and dynamic obstacle interactions, making it
suitable for applications like swarm UAV coordination and terrain surveying.

(b)

Figure 5. Comparison of UAV trajectories; (2) MVOA-only navigation and (b) Theta* and MVOA integrated
navigation

Table 1. Experimental results over 5 runs for each method

Runl: Run  Run2: Run Run3: Run Run4: Run Run5: Run
path 1: path 2: path 3: path 4: path 5: ath time
length  time length  time length time length  time length  time P

m © Mm@ m  ®  m (5  (m (5 (MSHd s

Mean Mean
Method

MVOA-only 20.1 34.2 20.5 35.8 20.6 35.6 20.2 34.8 20.5 359 204402 35.3+0.7
ThetatMVOA* 14.1 23.6 14.5 24.5 14.3 23.4 14.6 25.4 14.7 26.1 144403 24.6%1.2

4. CONCLUSION

This study presented a hybrid framework for autonomous UAV navigation that integrates Theta* for
global path planning with a simplified MVOA for local obstacle avoidance. Simulation results in a
10 mx10 m Gazebo environment with static and dynamic obstacles demonstrated that the framework
maintained a 0.6 m safety margin at 10 Hz and significantly outperformed MVVOA-only navigation, reducing
path length from 20.4 m to 14.3 m and mission time from 35.3 s to 24.2 s. Velocity analysis further showed
smoother and more stable trajectories, confirming both computational efficiency and operational benefits.

While effective, the current work is limited to 2D navigation in simulation. The single-obstacle-
block assumption of MVVOA, although lightweight, may struggle in highly cluttered environments. Moreover,
hardware validation was not included, as the focus was on controlled simulation experiments. Future work
will address these gaps by extending the framework to 3D navigation with stereo LIiDAR or RGB-D sensing,
performing robustness testing under sensor noise and dynamic disturbances, and validating performance on
real UAV platforms with proper sensor calibration and communication constraints.

Taken together, the findings establish the proposed framework as both efficient and practical,
providing shorter, faster, and smoother trajectories while ensuring safety. These contributions lay a strong
foundation for diverse UAV applications, including terrain surveying, indoor navigation, and swarm
coordination, and pave the way for scalable real-world deployment in more complex 3D environments.
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