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 This paper proposes a novel framework for autonomous unmanned aerial 

vehicle (UAV) navigation in complex environments, seamlessly integrating 

Theta* for global path planning with a simplified modulated velocity 

obstacle avoidance (MVOA) algorithm for local obstacle avoidance. Theta* 

generates optimal, smooth paths, while MVOA processes 2D LiDAR data as 

a single obstacle block to compute modulated velocities, enabling efficient 

avoidance of static and dynamic obstacles with minimal computational 

overhead. Compared to MVOA-only navigation, the integration of Theta* 

and MVOA produced shorter trajectories and faster mission completion with 

smoother velocity adjustments, demonstrating clear improvements in 

efficiency and stability. Simulation results show the framework maintains a 

0.6 m safety distance and operates at 10 Hz, underscoring its robustness and 

reliability. The resulting control velocity is transmitted to an ArduPilot-

based flight controller via MAVLink, ensuring precise, real-time execution. 

The current implementation focuses on 2D navigation in a planar 

environment as a foundation for future 3D expansion, with all results 

obtained through high-fidelity simulation. Building on these findings, the 

framework shows strong potential for real-time applications such as swarm 

UAV coordination, terrain surveying, and indoor navigation, offering a 

scalable solution for autonomous systems in dynamic settings. 

Keywords: 

Dynamic window approach 

LiDAR 

Modulated velocity obstacle 

avoidance 

Theta* 

Unmanned aerial vehicle 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Chi Thanh Vo 

Institute of Aerospace Engineering and Technology, Duy Tan University 

Da Nang, 550000, Vietnam 

Email: vochithanh1@dtu.edu.vn 

 

 

1. INTRODUCTION 

Unmanned aerial vehicles (UAVs) are increasingly applied in terrain surveying [1], precision 

agriculture [2], disaster response [3], and swarm coordination [4]. These missions demand robust 

autonomous navigation in cluttered and dynamic environments such as narrow passages or urban areas [5], 

[6]. Effective navigation requires the integration of global path planning for optimal routing and local 

obstacle avoidance for real-time safety [7], yet achieving this balance with lightweight computation remains 

challenging [8], [9]. No single approach fully addresses the range of UAV mission requirements [10], [11]. 

Classical methods show clear trade-offs. The dynamic window approach (DWA) [12] ensures 

effective local avoidance but is computationally expensive, even with recent dual-filter safety extensions 

[13]. Vector field histogram (VFH) [14] enables fast histogram-based avoidance but suffers from local 

minima, only partially mitigated by fisheye-based object detection [15]. Global planners such as A* [16] 

provide reliable paths but generate grid-aligned trajectories unsuited to UAV maneuverability. 

To overcome these limitations, we propose a hybrid framework integrating Theta* [17], [18] and a 

modulated velocity obstacle avoidance (MVOA) algorithm [19], [20]. Theta*, an any-angle extension of A*, 

https://creativecommons.org/licenses/by-sa/4.0/
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reduces path length and improves smoothness compared to grid-constrained methods, with recent risk-aware 

and learning-based adaptations further enhancing UAV efficiency [21], [22]. MVOA complements this by 

processing raw 2D LiDAR scans into a unified obstacle block, avoiding clustering or predictive tracking 

while ensuring safe, real-time avoidance with minimal overhead [23]. 

Recent studies highlight the need to fuse global and local strategies [24], teach-repeat-replan [25], 

velocity obstacles with onboard perception [26], or hybrid DWA–potential field [27]. While these approaches 

improve reactivity, they often require costly computations [28] or sacrifice global efficiency [29]–[31]. In 

contrast, our Theta*+MVOA framework introduces three key novelties: i) a bidirectional loop where MVOA 

not only follows Theta* waypoints but also triggers replanning if blocked, ii) a lightweight velocity 

modulation using adaptive weights and predictive safety checks, and iii) direct use of raw LiDAR scans 

without dense mapping. 

Finally, a crucial step in UAV autonomy is translating paths and velocities into flight commands. 

Using ArduPilot and the MAVLink protocol provides a robust control backbone, yet their integration with 

advanced planners in ROS Noetic simulation environments (Gazebo, RViz) remains underexplored. To 

address this, we present a cohesive framework combining enhanced Theta* and simplified MVOA, validated 

in a 10 m×10 m Gazebo environment with static and dynamic obstacles. 

The remainder of this paper is organized as follows: section 2 presents the methodology; section 3 

presents the results and discussion; and section 5 concludes the paper and provides future directions. 

 

 

2. METHOD 

2.1.  System overview 

The proposed framework (Figure 1) enables autonomous UAV navigation in complex and dynamic 

environments by integrating global path planning, local obstacle avoidance, and real-time flight control. 

- Global planner: Theta* [17], [18] generates smooth waypoints wpwpwp on a 1 m×1 m occupancy grid, 

ensuring efficient, low-cost trajectories. 

- Local planner: MVOA [20] processes 2D LiDAR scans to compute a modulated velocity 𝑣mo, enabling 

safe obstacle avoidance while following Theta* waypoints. 

- Control interface: 𝑣mo is converted into MAVLink commands for ArduPilot, which adjusts UAV speed 

and orientation in real time for robust indoor/outdoor flight. 

 

 

 
 

Figure 1. System architecture for autonomous UAV navigation 

 

 

2.2.  Theta* global path planning 

Theta* is an enhanced variant of A* that allows any-angle connections via line-of-sight, producing 

shorter and smoother paths compared to grid-aligned A*. This property makes it well-suited for UAVs by 

reducing sharp turns and ensuring kinematically feasible trajectories [21], [25]. In our implementation, 

standard modules (input mapping, heuristic search, line-of-sight checks, and path smoothing [24]) are 

adapted for UAV navigation, with dynamic replanning triggered when local avoidance blocks progress [27]. 
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The cost function for a node n with parent 𝑝 and neighbor 𝑠 is 𝑔(𝑠) = min(𝑔(𝑝) + 𝑐(𝑝, 𝑠), 𝑔(𝑝′) +

𝑐(𝑝′, 𝑠)), where 𝑔(𝑠) is the cost to reach 𝑠, 𝑐(𝑝, 𝑠) is the Euclidean distance if line-of-sight exists, and 𝑝′ is 

the parent of 𝑝. The heuristic ℎ(𝑠) is ℎ(𝑠) = ‖𝜉goal − 𝑠‖. 

The algorithm outputs a sequence of waypoints 𝑤𝑝, spaced 1m apart, ensuring the UAV can follow 

the path with minimal deviation. The nominal velocity 𝑣𝑁 toward the next waypoint 𝑤𝑝𝑖  is: 

 

𝑣𝑁 = 𝑣max ⋅
𝑤𝑝𝑖−𝜉

‖𝑤𝑝𝑖−𝜉‖
, 𝑣max = 2 m/s  

 

2.3.  Modulated velocity obstacle avoidance 

The MVOA algorithm computes a modulated velocity 𝑣mo that balances waypoint tracking with 

obstacle avoidance. To remain lightweight, it treats all LiDAR points as a single obstacle block [19], [20] and 

estimates obstacle motion via centroid tracking. This enables real-time operation without clustering or 

complex prediction models. 

 

2.3.1. Algorithm implementation overview 

The MVOA algorithm is implemented as a ROS Noetic node that processes LiDAR data and 

integrates with Theta* waypoints to generate safe velocities. The workflow is: acquire LiDAR scans from 

/scan; represent all points as a single obstacle block (reference direction, minimum distance); estimate 

obstacle velocity from centroid motion; compute a modulation matrix to adjust the nominal velocity; 

integrate with Theta* using adaptive weighting and trigger replanning if blocked; perform safety checks by 

predicting a 1s trajectory with ≥0.6 m clearance and scale velocity if necessary; finally, publish the safe 

velocity to /cmd_vel (geometry_msgs/Twist) or convert to MAVLink commands for ArduPilot. 

 

2.3.2. Modulated velocity obstacle avoidance workflow 

The MVOA algorithm processes LiDAR data and computes the final velocity through a streamlined 

pipeline, incorporating obstacle representation, velocity modulation, and safety checks. Below, we describe 

the entire workflow as a unified process, with detailed explanations of each mathematical formulation to 

clarify its role in achieving safe and efficient navigation. 

Step 1: processing LiDAR data and representing obstacles 

MVOA begins by receiving a 2D LiDAR point cloud 𝒫 = {𝜉𝑖
𝑝

= (𝑥𝑖 , 𝑦𝑖) ∣ 𝑖 = 1, … , 𝑁𝑝}, where 

each point 𝜉𝑖
𝑝
 denotes the position of an obstacle relative to the UAV. To reduce complexity, all LiDAR 

points are aggregated into a single obstacle block, described by four quantities: 

a. Unified obstacle block position: r(𝜉) = mean (
𝜉𝑖

𝑝
−𝜉

‖𝜉
𝑖
𝑝

−𝜉‖ ∣
∣
∣

𝜉𝑖
𝑝

∈ 𝒫 ), where 𝜉 is the UAV position. Each 

vector 𝜉𝑖
𝑝

− 𝜉 points from the UAV to a LiDAR return, and the mean provides a representative direction. 

This approximates the centroid direction of the obstacle block. 

b. Distance to obstacle block: 𝐷(ξ) = min
ξ

𝑖
𝑝

∈𝒫
‖𝜉𝑖

𝑝
− 𝜉‖ − (𝑅 + 𝑅margin), with UAV radius 𝑅 = 0.5 m and 

safety margin 𝑅margin = 0.05 m. This gives a conservative estimate of clearance between the UAV and 

the closest obstacle. 

c. Weight calculation: 𝑤 = (
1

𝐷(ξ)
)

2

. Closer obstacles yield higher weights, ensuring that imminent threats 

dominate the avoidance behaviors. 

d. Reference direction: 𝑟̂(ξ) =
𝑟(ξ)

‖𝑟(ξ)‖
, if 𝑤≤100. If 𝑤>100, normalization is enforced to avoid numerical 

instability. The unit vector 𝑟̂(ξ) thus provides a stable avoidance direction toward the obstacle centroid. 

Step 2: estimating dynamic obstacle motion 

To handle dynamic obstacles, MVOA estimates their velocity 𝜉obs
̇  by tracking the centroid of the 

obstacle block across two consecutive LiDAR scans separated by Δ𝑡=100 ms (10 Hz): 

 

ξobs
̇ =

centroid(𝒫,𝑡)−centroid(𝒫,𝑡−Δ𝑡)

Δ𝑡
  

 

here, centroid (𝒫, 𝑡) corresponds to the obstacle position computed in step 1. This method assumes locally 

constant velocity, suitable for moderately moving objects such as UAVs. If no previous scan exists, ξobs
̇  is set 

to zero, treating the obstacle as static. This lightweight estimation enables efficient short-term avoidance 

without requiring complex prediction models. 

Step 3: constructing the modulation matrix for static obstacles 
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For static obstacles (𝜉obs
̇ = 0), MVOA constructs a modulation matrix 𝑀(𝜉, 𝑣𝑁) to adjust the 

nominal velocity 𝑣𝑁, steering the UAV away from obstacles while preserving motion in safe directions. The 

matrix is defined as: 𝐸(𝜉) = [𝑟̂(𝜉), 𝑒1(𝜉)], 𝑒1(𝜉) =
(−𝑟𝑦̂,𝑟𝑥̂)

√𝑟𝑥
2̂+𝑟𝑦

2̂
, where 𝑟̂(𝜉) is the normalized direction to the 

obstacle, pointing from the UAV to the obstacle centroid, 𝑒1(𝜉) is the perpendicular vector, forming an 

orthogonal basis with 𝑟̂(𝜉) for velocity modulation. 

The eigenvalues 𝜆𝑟 and λ𝑒  control the modulation strength: 

 

𝜆𝑟 = {
cos(

𝜋

2
‖𝒓̂(𝜉)‖) if ‖𝒓̂(𝜉)‖<2

−1 otherwise
, λ𝑒 = {

1+sin(
π

2
‖𝑟̂(ξ)‖) if ‖𝑟̂(ξ)‖<1

2 sin(
π

2‖𝑟̂(ξ)‖
) otherwise

  

 

Assuming ‖𝑟̂(𝜉)‖ represents the distance 𝐷(ξ), 𝜆𝑟 reduces velocity toward the obstacle as 𝐷(ξ) decreases 

below 2m, λ𝑒  amplifies tangential motion to maneuver around the obstacle, especially when 𝐷(ξ) < 1 m. 

The modulation matrix is: 𝑀(𝜉, 𝑣𝑁) = 𝐸(𝜉)diag(𝜆𝑟 , 𝜆𝑒)𝐸(𝜉)−1. This matrix adjusts the velocity by 

scaling its radial and tangential components, ensuring the UAV avoids the obstacle while maintaining smooth 

motion. 

Step 4: computing modulation term 

The modulation term ξ̇ is computed to avoid obstacles while following the nominal velocity 𝑣𝑁. For 

static obstacles (𝜉obs
̇  =  0): ξ̇ = 𝑀(ξ, 𝑣𝑁)𝑣𝑁. This adjusts 𝑣𝑁 using the modulation matrix 𝑀(ξ, 𝑣𝑁), 

reducing the velocity toward the obstacle while promoting motion around it. For dynamic obstacle:  

ξ̇ = 𝑀(ξ, 𝑣𝑁)(𝑣𝑁 − ξobs
̇ ) + ξobs

̇ . Here, 𝑣𝑁 − ξobs
̇  is the relative velocity, adjusted by 𝑀(ξ, 𝑣𝑁) to avoid 

collision, then converted back to the global frame by adding ξobs
̇ . This ensures the UAV steers clear of the 

obstacle’s predicted path. 

Step 5: balancing global and local objectives with adaptive weighting 

MVOA combines the modulation term ξ̇ with the nominal velocity 𝑣𝑁 to balance global path 

tracking and local obstacle avoidance: 𝑣mo = 𝑤𝑔𝑣𝑁 + 𝑤𝑙 ξ̇, 𝑤𝑙 = 1 − 𝑤𝑔, 𝑤𝑔 = exp (−
𝑑min

𝐷scal
⋅

𝑁close

𝑁𝑝 ), where 

𝑑min = 𝐷(ξ), 𝑁close is number of LiDAR points with 𝐷𝑖(ξ) < 1𝑚, 𝐷scal is calling factor to adjust the 

sensitivity of 𝑤𝑔. The weight 𝑤𝑔 prioritizes 𝑣𝑁 (global path) when obstacles are far (𝑣𝑁→1), and ξ̇ (local 

avoidance) when obstacles are close (𝑤𝑔→0). If 𝑑min < 0.6 𝑚 and no progress is made toward the waypoint 

for 2 seconds, MVOA triggers Theta* replanning. 

Step 6: enforcing safety and dynamic constraints 

MVOA ensures safety by predicting the UAV’s trajectory over T=1s is  

𝑑traj = min
𝑡∈[0,𝑇],𝑖

‖ξ𝑖
𝑝

− ξ‖ − (𝑅 + 𝑅margin). If 𝑑traj < 𝑑safe = 0.6, scale 𝑣 = 𝑣mo ⋅
𝑑traj

𝑑safe
. Dynamic constrain are also 

applied: 𝑣 = min(‖𝑣‖, 𝑣max). These limit the velocity magnitude to 𝑣max, ensuring feasible maneuvers. 

 

2.4.  Integration of Theta* and modulated velocity obstacle avoidance 

The integration of Theta* and MVOA combines global optimality with local reactivity. Theta* 

generates smooth waypoints, while MVOA ensures real-time avoidance using 2D LiDAR [24], [25]. This is 

achieved through: 

- Waypoint tracking: Theta* outputs waypoints, and MVOA computes velocities 𝑣𝑁. Adaptive weights 

(𝑤𝑔, 𝑤𝑙) balance global guidance with local avoidance, keeping the UAV on the global path unless 

obstacles force deviation. 

- Dynamic replanning: if MVOA detects danger (𝑑𝑚𝑖𝑛  <0.6 m and no progress for 2 s), it signals Theta* to 

replan with updated LiDAR data, improving robustness in dynamic environments. 

- Narrow passages: in tight spaces (≈1.5 m wide), MVOA’s safety checks prevent collisions while Theta*’s 

any-angle paths avoid overly conservative routing [27]. 

- Dynamic obstacles: MVOA estimates obstacle velocity 𝜉obs and shares it with Theta*, enabling paths that 

avoid predicted collision zones. 

 

2.5.  ArduPilot integration via MAVLink 

The framework integrates with ArduPilot via MAVLink to execute MVOA’s modulated velocity 

commands. The 2D velocity 𝑣mo = (𝑣𝑥 , 𝑣𝑦) is converted into the North-East-Down (NED) frame as  

𝑣north = 𝑣𝑥 , 𝑣east = 𝑣𝑦 . These components are encoded into a SET_POSITION_TARGET_LOCAL_NED 

message with type mask 0b0000111111000111, enabling velocity-only control. The message, transmitted at 

10 Hz through a ROS Noetic MAVROS node, is aligned with ArduPilot’s local NED system. Upon 

reception, ArduPilot’s internal PID controller translates the velocity inputs into roll, pitch, yaw, and thrust 
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commands, ensuring that high-level planning and local avoidance are accurately executed in real or simulated 

flights. 

 

 

3. RESULTS AND DISCUSSION 

The proposed framework integrates Theta* for global planning, MVOA for local avoidance, and 

ArduPilot control via MAVLink, all implemented on Ubuntu with ROS Noetic. Real-time tests were 

conducted in a Gazebo 10 m×10 m environment with static and dynamic obstacles. 

Theta*, implemented as a C++ ROS node, generates smooth any-angle paths on a 1 m grid using 

Bresenham’s line-of-sight and cubic spline smoothing, with a 0.6 m obstacle buffer. It subscribes to /map and 

/scan for occupancy and LiDAR data, publishing waypoints to /waypoints. MVOA, running at 10 Hz, 

processes 360 LiDAR points as a unified obstacle block [19], [20], tracking waypoints via nominal velocities 

modulated for obstacle proximity. Safety checks maintain 0.6 m clearance, and blocked progress (>2 s) 

triggers Theta* replanning. 

Two experiments compared MVOA-only navigation with the combined Theta*+MVOA approach. 

Using an Iris quadrotor with LiDAR, both trials aimed to reach a predefined goal. Results in RViz and 

trajectory plots showed that while MVOA alone achieved obstacle avoidance, the integrated Theta*+MVOA 

system produced smoother, shorter, and more efficient trajectories, demonstrating the benefits of global–local 

integration. 

In the first experiment, using only MVOA, the UAV successfully avoided all static and dynamic 

obstacles by computing real-time velocities from LiDAR data. However, without global guidance, it followed 

reactive, locally optimal trajectories [14], leading to detours, oscillations, and inefficiencies in cluttered areas 

or narrow passages (≈1.5 m) [6], [27]. The resulting path measured 20.4 m with a completion time of 35.3 s, 

as shown in Figure 2. The trajectories in Gazebo (Figure 2(a)) and RViz (Figure 2(b)) appear jagged and 

circuitous, reflecting the limitations of purely local navigation. Figure 3 further illustrates the reactive 

velocity commands (𝑣𝑥 , 𝑣𝑦) generated by MVOA during flight. 

 

 

    
(a) (b) 

 

Figure 2. UAV trajectory using MVOA-only navigation; (a) simulated flights in the Gazebo environment and 

(b) UAV trajectories visualized in RViz 

 

 

 
 

Figure 3. Velocity guide of MVOA-only navigation 
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The second experiment evaluated the integration of Theta* with MVOA, where Theta* provided 

optimized waypoints and MVOA computed safe velocities for execution. This combination allowed the UAV 

to follow a more direct and efficient trajectory, reducing unnecessary detours while ensuring reliable obstacle 

avoidance. 

As a result, the total path length decreased to 14.3 m, and the completion time was shortened to  

24.2 s. The resulting trajectory, shown in Figure 4, is notably smoother and closer to the optimal path while 

respecting safety constraints. Figure 4(a) illustrates the simulated flight in Gazebo, and Figure 4(b) presents 

the corresponding RViz visualization, both confirming the improved navigation performance. Figure 4(c) 

further depicts the velocity commands (𝑣𝑥 , 𝑣𝑦) over time, highlighting the coordinated effect of Theta*’s 

global guidance and MVOA’s reactive adjustments. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 4. UAV trajectory using Theta* and MVOA integrated navigation; (a) UAV operation in the Gazebo 

environment, (b) UAV trajectories visualized in Rviz, and (c) velocity guide of Theta* and MVOA integrated 

navigation 

 

 

To further validate the consistency of both navigation strategies, we conducted five repeated trials 

for each method under identical conditions. The resulting trajectories are shown in Figure 5, where  

Figure 5(a) presents the paths generated by MVOA-only navigation, and Figure 5(b) shows the trajectories 

obtained using the integrated Theta* and MVOA navigation. The overlayed paths demonstrate the 

repeatability of the experiments. In all cases, Theta*+MVOA provided shorter and smoother paths than 

MVOA-Only. Quantitative results are summarized in Table 1. For MVOA-only navigation, the average path 

length was 20.4 m (±0.2 m) with a mean completion time of 35.3 s (±0.7 s), confirming the inefficiencies 

observed in the trajectories. By comparison, the Theta*+MVOA integration reduced the average path length 

to 14.4 m (±0.3 m) and the mean completion time to 24.6 s (±1.2 s). These results demonstrate not only 

significant improvements in efficiency but also high repeatability, as indicated by the small standard 

deviations across runs. 

The superior performance of the combined Theta* and MVOA framework stems from their 

complementary strengths. Theta* provides a global perspective, using line-of-sight checks and cubic spline 

interpolation to produce efficient, UAV-friendly paths. MVOA enhances this by handling local dynamics, 

such as sudden obstacle movements, with rapid velocity modulation and safety checks. The integration, 

facilitated by ROS Noetic and MAVLink, ensures seamless communication between planning and control, as 
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evidenced by the consistent 10 Hz command rate to the Arduipilot. The results also validate the system’s 

robustness across diverse scenarios, including narrow passages and dynamic obstacle interactions, making it 

suitable for applications like swarm UAV coordination and terrain surveying. 

 

 

 
(a) 

 
(b) 

 

Figure 5. Comparison of UAV trajectories; (a) MVOA-only navigation and (b) Theta* and MVOA integrated 

navigation 

 

 

Table 1. Experimental results over 5 runs for each method 

Method 

Run 1: 

path 
length 

(m) 

Run 

1: 
time 

(s) 

Run 2: 

path 
length 

(m) 

Run 

2: 
time 

(s) 

Run 3: 

path 
length 

(m) 

Run 

3: 
time 

(s) 

Run 4: 

path 
length 

(m) 

Run 

4: 
time 

(s) 

Run 5: 

path 
length 

(m) 

Run 

5: 
time 

(s) 

Mean 

path 

(m)±Std 

Mean 

time 

(s)±Std 

MVOA-only 20.1 34.2 20.5 35.8 20.6 35.6 20.2 34.8 20.5 35.9 20.4±0.2 35.3±0.7 

Theta+MVOA* 14.1 23.6 14.5 24.5 14.3 23.4 14.6 25.4 14.7 26.1 14.4±0.3 24.6±1.2 

 

 

4. CONCLUSION 

This study presented a hybrid framework for autonomous UAV navigation that integrates Theta* for 

global path planning with a simplified MVOA for local obstacle avoidance. Simulation results in a  

10 m×10 m Gazebo environment with static and dynamic obstacles demonstrated that the framework 

maintained a 0.6 m safety margin at 10 Hz and significantly outperformed MVOA-only navigation, reducing 

path length from 20.4 m to 14.3 m and mission time from 35.3 s to 24.2 s. Velocity analysis further showed 

smoother and more stable trajectories, confirming both computational efficiency and operational benefits. 

While effective, the current work is limited to 2D navigation in simulation. The single-obstacle-

block assumption of MVOA, although lightweight, may struggle in highly cluttered environments. Moreover, 

hardware validation was not included, as the focus was on controlled simulation experiments. Future work 

will address these gaps by extending the framework to 3D navigation with stereo LiDAR or RGB-D sensing, 

performing robustness testing under sensor noise and dynamic disturbances, and validating performance on 

real UAV platforms with proper sensor calibration and communication constraints. 

Taken together, the findings establish the proposed framework as both efficient and practical, 

providing shorter, faster, and smoother trajectories while ensuring safety. These contributions lay a strong 

foundation for diverse UAV applications, including terrain surveying, indoor navigation, and swarm 

coordination, and pave the way for scalable real-world deployment in more complex 3D environments. 

 

 

ACKNOWLEDGMENTS 

The authors would like to thank Duy Tan University (DTU), Vietnam for the support. 

 

 

FUNDING INFORMATION 

Authors state no funding involved. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Path planning and obstacle avoidance for UAVs using Theta* and modulated … (Hoang Thuan Tran) 

4375 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Hoang Thuan Tran  ✓  ✓   ✓   ✓  ✓  ✓ 

Dong LT. Tran  ✓  ✓  ✓ ✓   ✓   ✓  

Chi Thanh Vo ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓  

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT 

The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

 

 

DATA AVAILABILITY 

The data supporting the findings of this study are available from the corresponding author, Chi 

Thanh Vo, upon reasonable request. Public disclosure is restricted to protect research privacy and security. 

However, the author is willing to share the relevant data for justified academic or research purposes. 

 

 

REFERENCES 
[1] S. Manfreda et al., “On the use of unmanned aerial systems for environmental monitoring,” Remote Sensing, vol. 10, no. 4, pp. 1–

28, Apr. 2018, doi: 10.3390/rs10040641. 
[2] F. Toscano et al., “Unmanned Aerial Vehicle for Precision Agriculture: A Review,” IEEE Access, vol. 12, pp. 69188–69205, 

2024, doi: 10.1109/ACCESS.2024.3401018. 

[3] M. Erdelj, M. Król, and E. Natalizio, “Wireless Sensor Networks and Multi-UAV systems for natural disaster management,” 
Computer Networks, vol. 124, pp. 72–86, Sep. 2017, doi: 10.1016/j.comnet.2017.05.021. 

[4] D. L. T. Tran, T. C. Vo, H. T. Tran, M. T. Nguyen, and H. T. Do, “Design Optimal Backstepping Controller for Quadrotor Based 

on Lyapunov Theory for Disturbances Environments,” arXiv preprint, pp. 3–7, 2024, doi: 10.48550/arXiv.2503.06824. 
[5] J. Kumar, Himanshu, H. Kandath, and P. Agrawal, “Vision based UAV Navigation through Narrow Passages,” arXiv preprint, 

2023, doi: 10.48550/arXiv.2303.15803. 

[6] D. N. Bui, T. H. Khuat, M. D. Phung, T. H. Tran, and D. L. T. Tran, “Model Predictive Control for Optimal Motion Planning of 
Unmanned Aerial Vehicles,” in 2024 International Conference on Control, Robotics and Informatics (ICCRI), Danang, Vietnam: 

IEEE, Jul. 2024, pp. 103–108, doi: 10.1109/ICCRI64298.2024.00025. 

[7] J. Tordesillas and J. P. How, “PANTHER: Perception-Aware Trajectory Planner in Dynamic Environments,” IEEE Access, vol. 
10, pp. 22662–22677, 2022, doi: 10.1109/ACCESS.2022.3154037. 

[8] D. Palossi, F. Conti, and L. Benini, “An open source and open hardware deep learning-powered visual navigation engine for 

autonomous nano-UAVs,” in 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), 
Santorini, Greece: IEEE, May. 2019, pp. 604–611, doi: 10.1109/DCOSS.2019.00111. 

[9] B. Lindqvist, S. S. Mansouri, J. Haluška, and G. Nikolakopoulos, “Reactive Navigation of an Unmanned Aerial Vehicle with 

Perception-Based Obstacle Avoidance Constraints,” IEEE Transactions on Control Systems Technology, vol. 30, no. 5, pp. 1847–
1862, Sep. 2022, doi: 10.1109/TCST.2021.3124820. 

[10] F. Ahmed, J. C. Mohanta, A. Keshari, and P. S. Yadav, “Recent Advances in Unmanned Aerial Vehicles: A Review,” Arabian 

Journal for Science and Engineering, vol. 47, no. 7, pp. 7963–7984, Jul. 2022, doi: 10.1007/s13369-022-06738-0. 
[11] D. T. Tran, V. Q. Nguyen, C. V. Nguyen, D. L. T. Tran, H. T. Tran, and N. D. Anh, “Improved Accuracy of Path System on 

Creating Intelligence Base,” in International Conference on Advances in Information and Communication Technology, Cham: 

Springer Nature Switzerland, 2023, pp. 194–205, doi: 10.1007/978-3-031-49529-8_21. 
[12] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics and Automation 

Magazine, vol. 4, no. 1, pp. 23–33, Mar. 1997, doi: 10.1109/100.580977. 

[13] Y. Cao and N. M. Nor, “An improved dynamic window approach algorithm for dynamic obstacle avoidance in mobile robot 
formation,” Decision Analytics Journal, vol. 11, pp. 1–14, Jun. 2024, doi: 10.1016/j.dajour.2024.100471. 

[14] J. Borenstein and Y. Koren, “The Vector Field Histogram—Fast Obstacle Avoidance for Mobile Robots,” IEEE Transactions on 

Robotics and Automation, vol. 7, no. 3, pp. 278–288, Jun. 1991, doi: 10.1109/70.88137. 
[15] H. Rashed et al., “Generalized object detection on fisheye cameras for autonomous driving: Dataset, representations and 

baseline,” Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 2272–2280, doi: 

10.1109/WACV48630.2021.00232. 
[16] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” IEEE 

Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968, doi: 10.1109/TSSC.1968.300136. 

[17] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path planning on grids,” Journal of Artificial Intelligence 
Research, vol. 39, pp. 533–579, Oct. 2010, doi: 10.1613/jair.2994. 

[18] D. Harabor and A. Grastien, “An optimal any-angle pathfinding algorithm,” Proceedings of the International Conference on 

Automated Planning and Scheduling, vol. 23, pp. 308–311, Jun. 2013, doi: 10.1609/icaps.v23i1.13609. 
[19] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,” International Journal of Robotics 

Research, vol. 17, no. 7, pp. 760–772, Jul. 1998, doi: 10.1177/027836499801700706. 

[20] W. Xia, F. Song, and Z. Peng, “Dynamic Obstacle Perception Technology for UAVs Based on LiDAR,” Drones, vol. 9, no. 8, pp. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4368-4376 

4376 

1–15, Jul. 2025, doi: 10.3390/drones9080540. 

[21] S. Primatesta, G. Guglieri, and A. Rizzo, “A Risk-Aware Path Planning Strategy for UAVs in Urban Environments,” Journal of 
Intelligent and Robotic Systems: Theory and Applications, vol. 95, no. 2, pp. 629–643, Aug. 2019, doi: 10.1007/s10846-018-

0924-3. 

[22] J. Liu, W. Luo, G. Zhang, and R. Li, “Unmanned Aerial Vehicle Path Planning in Complex Dynamic Environments Based on 
Deep Reinforcement Learning,” Machines, vol. 13, no. 2, pp. 1–26, Feb. 2025, doi: 10.3390/machines13020162. 

[23] Z. Xu, H. Shen, X. Han, H. Jin, K. Ye, and K. Shimada, “LV-DOT: LiDAR-visual dynamic obstacle detection and tracking for 

autonomous robot navigation,” arXiv preprint, 2025, doi: 10.48550/arXiv.2502.20607. 
[24] Y. Zhou, L. Yan, Y. Han, H. Xie, and Y. Zhao, “A Survey on the Key Technologies of UAV Motion Planning,” Drones, vol. 9, 

no. 3, pp. 1–37, Mar. 2025, doi: 10.3390/drones9030194. 

[25] F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen, “Teach-repeat-replan: A complete and robust system for aggressive 
flight in complex environments,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1526–1545, 2020, doi: 

10.1109/TRO.2020.2993215. 

[26] Z. Xu, X. Zhan, Y. Xiu, C. Suzuki, and K. Shimada, “Onboard Dynamic-Object Detection and Tracking for Autonomous Robot 
Navigation With RGB-D Camera,” IEEE Robotics and Automation Letters, vol. 9, no. 1, pp. 651–658, Jan. 2024, doi: 

10.1109/LRA.2023.3334683. 

[27] Z. Huang, C. Jiang, C. Shen, B. Liu, T. Huang, and M. Zhang, “A Hybrid Dynamic Path-Planning Method for Obstacle 
Avoidance in Unmanned Aerial Vehicle-Based Power Inspection,” World Electric Vehicle Journal, vol. 16, no. 1, p. 22, Jan. 

2025, doi: 10.3390/wevj16010022. 

[28] Z. Xu, X. Zhan, B. Chen, Y. Xiu, C. Yang, and K. Shimada, “A real-time dynamic obstacle tracking and mapping system for 
UAV navigation and collision avoidance with an RGB-D camera,” in 2023 IEEE International Conference on Robotics and 

Automation (ICRA), London, United Kingdom, IEEE, May. 2023, pp. 10645–10651, doi: 10.1109/ICRA48891.2023.10161194. 

[29] L. Zhang, Y. Hu, Y. Deng, F. Yu, and D. Zou, “Mapless Collision-Free Flight via MPC using Dual KD-Trees in Cluttered 
Environments,” arXiv preprint, 2025, doi: 10.48550/arXiv.2503.10141. 

[30] J. Li, X. Xu, Z. Liu, S. Yuan, M. Cao, and L. Xie, “AEOS: Active Environment-aware Optimal Scanning Control for UAV 
LiDAR-Inertial Odometry in Complex Scenes,” arXiv preprint, 2025, doi: 10.48550/arXiv.2509.09141. 

[31] Z. Jian et al., “Dynamic Control Barrier Function-based Model Predictive Control to Safety-Critical Obstacle-Avoidance of 

Mobile Robot,” arXiv preprint, 2022, doi: 10.48550/arXiv.2209.08539. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Hoang Thuan Tran     earned a B.E. in System Measurement and Control from 

Danang University of Science and Technology (1998), an M.S. in Network and Electrical 

Systems from the University of Danang (2009), and a Ph.D. in Electronics and 

Communication Technology from the University of Technology - VNU, Hanoi (2016). His 

research focuses on data sensors, wireless networks, and control automation. He is currently 

the Dean of the Institute of Aerospace Technology and Engineering at Duy Tan University, Da 

Nang. He can be contacted at email: tranthuanhoang@duytan.edu.vn. 

  

 

Dong LT. Tran     received the B.S. degree from the Duy Tan University, Da Nang, 

Vietnam, in 2009, the M.S. degree from the Duy Tan University, Da Nang, Vietnam, in 2012, 

and became a Ph.D. student at Thai Nguyen University from 2022 to the present. He is 

currently the Vice Dean of the Institute of Aerospace Technology and Engineering at Duy Tan 

University, Da Nang and the Lecture of the Faculty of Electronic Engineering, Duy Tan 

University, Da Nang, Vietnam. His main research interests are object-oriented system design, 

embedded systems, drones, and mobile robots. He can be contacted at email: 

tranthangdong@duytan.edu.vn. 

  

 

Chi Thanh Vo     received a degree in Mechatronic Engineering from Danang 

University of Technology, Vietnam in 2013. He is currently an expert at Center for Electrical 

and Electronic Engineering, Duy Tan University, Vietnam (CEE). He has interest and 

expertise in research topics in the field of embedded programming, automatic control, drones, 

and mobile robots. He can be contacted at email: vochithanh1@dtu.edu.vn. 

 

 

https://orcid.org/0000-0002-7682-7739
https://scholar.google.com/citations?user=vnx1dHkAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57212636591
https://orcid.org/0000-0003-0420-8194
https://scholar.google.com/citations?user=AIX9pngAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57767955200
http://www.webofscience.com/wos/author/record/HDO-7814-2022
https://orcid.org/0000-0002-6584-6125
https://scholar.google.com/citations?hl=vi&user=6wly0bgAAAAJ&view_op=list_works&authuser=1&sortby=pubdate

