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1. INTRODUCTION

The rapid adoption of electric vehicles (EVs) is being driven by concerns over fossil fuel depletion
and the urgent need to reduce greenhouse gas emissions [1]. The transportation sector accounts for nearly a
quarter of global energy-related CO: emissions, with road transport alone contributing almost 20% [2].
Without substantial mitigation measures, transport-related energy use is projected to double by 2050, leading
to significant increases in emissions [3], [4]. As part of the solution, governments worldwide have
implemented measures such as subsidies, customs exemptions, and tax rebates to accelerate EV uptake [5],
[6]. Consequently, EV sales reached 17.1 million units globally in 2024, representing a 25% year-on-year
increase, with China, Europe, and the United States comprising over 90% of the market [7], [8]. While this
transition promises substantial environmental benefits, the large-scale integration of EVs into existing
residential distribution networks introduces significant technical and operational challenges [9]. The
additional and often unpredictable charging demand from a growing EV fleet can substantially alter the
traditional load profile, creating new peaks that strain network capacity [10]. Uncoordinated charging can
exacerbate peak demand [11], cause transformer overloading [12], degrade power quality [13], increase
harmonic distortion [14], and result in voltage drops [15]. To address these issues, two primary charging
coordination models have been developed: decentralized charging, where EVs are charged independently at
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homes, offices, and public facilities, and centralized charging, where a central controller schedule charging
across multiple EVs [16]. Although decentralized charging offers high user flexibility, its uncoordinated
nature can cause unanticipated load spikes that exceed operational and thermal limits [17]. Centralized
coordination, in contrast, enables optimized charging schedules by leveraging real-time grid data, electricity
tariffs, and user preferences, and can incorporate vehicle-to-grid (V2G) technology, allowing EVs to
discharge energy back to the grid to enhance stability and reliability [18], [19].

In recent years, extensive research has focused on centralized coordination of EV charging,
targeting objectives such as cost minimization, overload prevention, and customer satisfaction. For example,
[20] presents a stochastic optimization framework to reduce charging costs by considering day-ahead
electricity prices, battery degradation, and uncertainties in vehicle arrival/departure times. While effective for
cost optimization, this work does not address overload control or user preference integration. Similarly, [21]
develops an aggregative game-theoretic model to schedule EV charging while accounting for EV interactions
and their influence on electricity prices. However, this approach excludes V2G functionalities and overload
mitigation. Other studies have emphasized user engagement and load balancing. In [22], a web application is
proposed to collect user energy requirements, manage charging schedules, and prevent overloads by
providing feedback on costs and time-slot availability. Despite its usability, V2G integration is absent,
limiting its ability to provide bidirectional grid support. A valley-filling technique is employed to shift EV
charging loads based on a priority factor, effectively reducing overload but risking customer dissatisfaction
due to potential deviations from preferred charging times in [23]. Furthermore, [24] proposes a centralized
charging scheme that adjusts charging activities based on battery energy level and kWh rating though V2G
operations are again omitted, leaving potential flexibility unexploited. Overall, these works can be grouped
into three main categories:

— Cost-focused approaches [20], [21] that optimize economic performance but neglect overload
management and bidirectional energy exchange.

— User engagement frameworks [22] that enhance participation but lack technical integration of V2G.

— Overload management strategies [23], [24] that improve grid stability but may compromise user
satisfaction and still omit V2G integration.

These limitations reveal a research gap in the absence of a unified approach that simultaneously
addresses overload prevention, integrates V2G operations for grid support, and preserves customer
satisfaction. This gap presents a significant barrier to achieving both grid stability and user acceptance in
large-scale EV adoption.

To address these limitations, this paper proposes a day-ahead EV charging framework for a
centralized residential charging facility. The approach combines a valley-filling strategy for off-peak load
shifting, a risk threshold mechanism to identify suitable charging slots, and a genetic algorithm (GA)-based
optimization process for allocating EVs during VV2G discharging operations. A discharge threshold of 30%
state of charge (SOC) is applied to protect battery health. The proposed framework ensures effective overload
mitigation while respecting user preferences, thereby bridging the gap between technical efficiency and
customer-centric service. The main contributions of this work are summarized as follows:

— Proposes a day-ahead centralized EV charging framework for residential charging facilities that integrates
overload prevention, V2G operations, and user preference preservation.

— Employs a valley-filling strategy to shift EV charging loads to off-peak hours, flattening the load curve
and improving grid efficiency.

— Collects user-preferred charging times and vehicle details to ensure customer satisfaction is maintained
alongside technical optimization.

— Utilizes a GA to allocate EVs in overloaded slots during VV2G operation, ensuring optimal discharging to
mitigate network stress.

The remainder of this paper is organized as follows: section 2 details the proposed methodology,
mathematical modelling, and flowchart representation. Section 3 presents simulation results and performance
analysis. Section 4 concludes the paper with key findings and future research directions.

2. PROPOSED METHOD

The coordinated charging structure for EVs must implement an efficient charging scheme to address
complex challenges including grid stress, user convenience, and limited resources in centralized facilities. A
visual representation of this coordinated approach within a centralized charging station is illustrated in
Figure 1. The diagram illustrates an EV charging ecosystem. Power from the grid is supplied through a
distribution transformer to an EV charging station. The charging station serves both customer-owned EVs
and a dedicated EV fleet for V2G operation. An aggregator manages the system, performing tasks such as
mathematical modeling, tariff setting, and charging scheme control.
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Figure 1. lllustrative overview of the coordinated charging framework in a centralized charging station

The proposed methodology is structured with two consecutive stages. In the beginning, it involves
the development of mathematical models and workflow to facilitate parameter computation related to
charging slot identification, EV allocation, overload detection, and V2G operation. The second stage
represents the deployment of GA for optimal allocation of EVs into the overloaded slots to resolve
overloading and ease burden on the transformer.

2.1. Mathematical modelling and workflow

Figure 2 illustrates the flowchart of the proposed day-ahead charging framework implemented at a
centralized charging facility. In this approach, it is assumed that the charging station is outfitted with N fast
charging ports each having an equivalent power rating. The charging station is designed to accommodate

charging for k € {1, 2, 3, ..., 50} number of EVs. Additionally, an EV fleet comprising p € {1, 2, 3, ..., 10}

vehicles is designated to provide additional energy support at the time of overloading. In this research, the

entire day is divided into 24 discrete time slots as n € {1, 2, 3, ..., 24}, each representing a one-hour interval.

The proposed methodology follows a structured process comprising four sequential steps which are described

below:

a. Step-1 (charging timeslot identification): in the initial step of the framework, the forecasted day-ahead
demand curve is obtained, assuming a reliable and accurate load forecasting technique is already in place
to predict the energy demand for the following day. Subsequently, the excess energy for each timeslot is
calculated using (1). Once the excess energy in each timeslot is derived, possible timeslots for charging are
identified using (2), considering a risk threshold to adopt for any sudden changes in demand pattern [25].

Pe?ccess = supply ~— Pc?emand (1)
t?harging = f(Plcess thr) (2

where, PJ}c.ss represents the excess energy in the ‘n-th’ slot, Pg,,,;, denotes the maximum supply capacity

of the residential distribution feeder, P}, ;.4 indicates the electricity demand in the ‘n-th’ slot, t

represents the available timeslots for EV charging, and thr denotes the risk threshold.

After the identification of charging timeslots, EV users are notified of these slots along with the
applicable charging tariff set by the respective regulatory body. Users are then requested to provide their
vehicle information and preferred charging timeslot.

b. Step-2 (collection of EV data and allocation): in this step, EV user data including battery capacity, present
SOC, required final SOC and timeslot preference is collected. Based on this information, the needed kWh
for charging is calculated using (3) [23]. After that, the EVs are allocated to their preferred timeslots and
the total needed kWh by the EVs in each identified timeslot is calculated.

n
charging

k k

SOCp—S0C

kWhk,, = ——E==C
k hrated

®)

where, kWhy,, represents the required kWh for ‘k-th’ EV, SOC¥ denotes the final required SOC level for
‘k-th’ EV, SOC¥ is the present SOC level of ‘k-th> EV, and kWh¥ .4 refers to the kWh rating of ‘k-th’ EV.
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Figure 2. Flowchart of the proposed scheduling framework

Step-4

c. Step-3 (detection of overloading): in this step, the algorithm evaluates the energy balance in each timeslot
to identify any potential case of overloading. A timeslot is considered overloaded if the energy required
by the EVs is greater than the available kWh in that slot. If no overloading is found, indicating that all
slots have sufficient energy to accommodate the scheduled EVs and the day ahead scheduling is
completed. However, if any or multiple slots are found to be overloaded, the algorithm identifies the
overloaded timeslots and quantifies the energy shortfall that is, the additional kwWh required to meet the
demand through V2G operation.

d. Step-4 (additional kwWh support through V2G operation): in this step, to address the deficit in overloaded
timeslots, V2G operation is enabled. EV users are informed about the overloaded timeslots, and relevant
vehicle data such as present SOC and battery capacity are collected. The dischargeable kwh of the EVs is
then calculated using (4):

kWhh,. = kWRE,, ., x SOCY,. (4)

where, kWh? represents the rated battery capacity of the ‘p-th> EV and SOCE represents the

rated

dischargeable SOC by the ‘p-th’ EV.

2.2. Optimal allocation of EVs to overloaded timeslots for V2G operation by GA

The optimum allocation of EVs for discharging is determined through GA- based optimization so
that there is no loss of energy. GA is a nature inspired metaheuristic optimization technique that mimics the
process of natural selection to solve complex optimization problems [26]. In recent years, such algorithms
have gained widespread acceptance across various domains related to engineering, politics, management and
economics due to their robustness and adaptability [27]. The reason for choosing GA over alternatives like
particle swarm optimization (PSO) and mixed-integer linear programming (MILP) is its ability to handle
combinatorial assignments through permutation-based evolution where PSO (designed for continuous
optimization) and MILP (limited by scalability) often struggle [28]. Additionally, GA offers better
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computational efficiency for moderate sized problems, making it a practical trade-off between performance
and complexity.

The objective function of the GA in the V2G operation is to minimize the total surplus energy (the
excess energy after covering the deficit) over all overloaded slots and can be mathematically formulated
as (5):

ming Znes[kWhp(n) — kWhgeficie] Q)

dis

Subject to constraints (6)-(8):

p(n) €{1,2,..,10};V, €S )
p(n) # p(n); Vo mE€ S,n #m o
kWRE > kWA ficiei Vi € S (®)

where, kthi(:) is dischargeable kWh of the ‘p-th” EV assigned to slot n, kWhg, ., is deficit kWh of slot
n, S is set of overloaded slots with deficit D,, > 0, and m is number of overloaded slots.
The algorithm follows the sequential steps below:

— Initialization of parents and fitness function: the GA starts by gathering data on both the overloaded
timeslots and the available EV fleet. For each overloaded slot, the algorithm records the deficit kwWh that
must be supplied through discharging. For each EV, the algorithm collects the corresponding
dischargeable kWh, the amount of energy that can be safely discharged without compromising the
vehicle's operation. These values form the foundation of the allocation process. Next, two parent solutions
are denoted as p; ) and p, ) that are randomly initialized. Each parent is a list of EV identifiers (such as
EV 1 and EV 3), with the list length equal to the number of overloaded slots. The parents are generated
by randomly selecting n EVs from the full fleet, ensuring that each EV is uniquely assigned and meets the
minimum energy requirement for its respective slot. The fitness function is then defined. In this
algorithm, the fitness of a solution is measured by how closely the assigned EVs meet (but do not
significantly exceed) the energy deficits of the corresponding slots. Solutions where the energy supplied
perfectly matches the required deficits with minimal surplus are considered optimal. A secondary
constraint is also defined that is no EV may be assigned to more than one slot, and each overloaded slot
must be served by exactly one EV.

— Evaluation of fitness and crossover operation: in this phase, the algorithm evaluates the two parent
solutions to determine whether either satisfies the termination condition, which involves matching the
overloaded slots with energy supply values that meet or slightly exceed the deficits without redundancy.
If both parent sets are feasible, the algorithm calculates the total energy surplus of each and retains the
one with the minimum surplus. If neither parent set satisfies the constraints, the algorithm initiates a
crossover process. A single-point crossover is performed by selecting a random position in the parent lists
and exchanging segments of EV identifiers between p;,,, and p,,) beyond this crossover point. This
operation creates new combinations of EV-slot pairings by combining elements from both parents, which
may result in improved solutions in subsequent iterations. After crossover, the new parents are checked
and corrected to ensure feasibility: duplicated EVs are replaced, and energy constraints are enforced.

— Mutation: following crossover, the algorithm proceeds with a two-stage mutation process to inject
diversity into the population and help escape local optima. In the first stage of mutation, a position within
each parent list is randomly selected with a probability of 40%. The EV assigned at this position is
temporarily removed (set to null or 0), effectively "deleting"” it. In the second stage, a new paosition is
again randomly selected based on a 30% probability. The vacant or mutable slot is then filled with a
randomly selected EV from the overall pool, ensuring that this EV has not already been assigned and has
sufficient disposable energy to serve the new time slot.

— lterative termination and optimal solution selection: after crossover and mutation, the updated parent sets
are re-evaluated. The algorithm checks if either of the parent solutions now satisfies the termination
conditions indicating that all slots are covered by unique EVs whose dischargeable energy meets or
slightly exceeds the respective deficits. If the condition is met, the iterative loop halts. The final selection
of the "best" or near-optimal solution is made using a greedy method: the algorithm compares the total
dischargeable energy provided by each parent and selects the one with the smallest surplus over the slot
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deficits. This selection ensures minimal waste of energy and efficient use of the EV fleet. The solution is
then stored as the finalized allocation strategy for the current overload scenario.

— Termination and output storage: once a valid solution is identified and stored, the algorithm proceeds to
terminate. The selected EV to slot mapping is saved for execution or later review, and the process may
repeat for other overloaded slots in the broader system, if any exist. By iterating over all such scenarios,
the GA ensures that each time slot is optimally supported by discharging EVs in a way that respects
energy limitations and maximizes system efficiency.

3. RESULTS AND DISCUSSION

The proposed methodology is implemented and simulated in MATLAB using the optimization and
computational toolboxes. A total of 50 EVs are considered for charging, with an additional 10 EVs allocated
for V2G operation during periods of overloading. A centralized residential EV charging station is considered
where there are three fast chargers each having an identical power rating of 50 kW. Among them, one
charger is equipped with bi-directional power transfer capability, allowing only one EV to discharge at any
given time slot. Furthermore, a discharge threshold of 30% is considered to prevent battery degradation
during V2G operation.

Figure 3 presents the charging slot identification process and the applicable tariff structure for EV
charging. Specifically, Figure 3(a) illustrates the forecasted day-ahead demand curve alongside the maximum
supply capacity, corresponding to the 180 kW transformer rating of the residential feeder considered in this
study [29]. The peak demand occurs between 11:00 PM and 12:00 AM, reaching up to 176 kW. Figure 3(b)
shows the excess power available in each timeslot, computed using (1), while Figure 3(c) depicts the
identified available timeslots for charging as derived from (2). To mitigate the impact of sudden load
fluctuations, a risk threshold of 15% of the maximum supply capacity equal to 27 kW is applied. Based on
this threshold, charging is permitted from 12:00 AM to 6:00 PM, whereas the remaining slots are restricted
due to insufficient excess power. Finally, Figure 3(d) presents the time-of-use charging tariff for the
MT-11 kV line as set by the Bangladesh energy regulatory commission (BERC) [30].
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Figure 3. Charging slot identification and applicable tariff for charging; (a) day-ahead demand curve with
maximum supply capacity, (b) excess power in each timeslot of the day, (c) identified timeslots for charging,
and (d) applicable BERC tariff in BDT per kWh for charging
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Figure 4 illustrates the detection of overloading in the identified charging timeslots. Once the
charging timeslots are identified, the EV users are notified of the available slots along with the applicable
charging tariff. Subsequently, user-specific data including battery capacity, present SOC, required final SOC
and timeslot preference is collected. Based on these preferences, EVs are initially allocated to their preferred
timeslot and the total energy required by the EVs are calculated to identify any potential case of overloading
as illustrated in Figure 4(a). Figure 4(b) depicts the overloading scenario of the timeslots where the 7%
timeslot (6:00 AM-7:00 AM), 10™ timeslot (9:00 AM-10:00 AM) and 15" timeslot (2:00 PM-3:00 PM) are
identified as overloaded by the algorithm.
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Figure 4. Detection of overloading; (a) total required kWh by the EVs in each identified timeslot for charging
and (b) overloaded scenario of the timeslots after the allocation of EVs

The methodology then schedules for the V2G operation to compensate for the deficit in the
overloaded slots. The whole V2G operation process in illustrated in Figure 5. During this process, the users
in the EV fleet are informed about the schedule for discharging. The users in return provide information
about their battery capacity and present SOC from which the dischargeable kWh by the EVs is calculated
using (4) as shown in Figure 5(a). This information is then utilized by the GA for optimal allocation of EVs
in the overloaded slots to meet the identified deficit. Figure 5(b) indicates the identified EV data with
required kWh by the GA for V2G operation. In this case, allocation of EV5 in the 7™ slot resolves the
overloading by providing additional kWh support to meet the deficit. The same optimization algorithm is
subsequently applied to the 10" and 15™ time slot where similar overloaded conditions are observed. The GA
identifies EV2 and EV8 as the optimal candidates for discharging in the 10" and 15" timeslots, respectively.
Figures 5(c) and (d) indicates these optimal allocations and corresponding energy contributions by GA for
resolving the overloading scenarios.

The execution of the V2G operation successfully resolves the overloading in the 7™, 10", and 15™
timeslot. This outcome demonstrates that the support provided by the optimally allocated EVs through
controlled discharging has effectively mitigated the energy deficits in the overloaded slots. As a result, the
network is stabilized, and the charging demand is redistributed within the operational and thermal limits of
the distribution system. With the overloaded condition addressed, the day-ahead charging schedule is now
considered as completed and the EV users are informed about their corresponding charging and discharging
timeslot in accordance with the optimized allocation strategy. Figure 6 compares the demand curve before
and after EV integration. A noticeably flatter profile with a more uniform distribution of the demand across
the timeslots is obtained after EV integration. The load factor defined as the ratio of average to peak demand
is significantly improved from 70.68% to 82.24%. This enhancement directly results from the optimal
allocation of charging and discharging activities indicating better utilization of the available energy resources
and underscores the effectiveness of smart charging coordination. A higher load factor enables utilities to
defer or avoid costly investments in transformer, feeders and generation capacity, while consumers are
benefitted from cheaper charging rates by shifting demand to off-peak periods. Besides, since no users are
rejected or deferred from charging, the customer satisfaction index remains at 100% which is a key objective
of this research. Moreover, users participating in the \V2G operation can obtain financial incentives, provided
a well-structured discharging tariff is implemented that incorporates dynamic pricing, compensation for
battery degradation and differentiates value on grid services.
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To evaluate the robustness of the proposed charging scheme, a sensitivity analysis is performed by
varying the risk threshold by +5% from its base value. A 5% increase in the risk threshold reduces the
number of available charging slots by 21%, leading to higher occurrence of overloaded slots and requiring
more EVs to participate in the V2G operation to meet the deficit. Conversely, a 5% decrease in the risk
threshold increases the number of available charging timeslots by 10%, thereby reducing the frequency of
overloaded slots and lowering the V2G participation requirement. This analysis demonstrates the
effectiveness of the proposed charging scheme under varying operational constraints while highlighting the
trade-off between charging slot availability and V2G demand.

Overall, this coordinated approach presents a valuable contribution by addressing network stress and
customer satisfaction simultaneously, which are gaps that have remained largely unaddressed in prior
literature. The proposed framework can be scaled for larger EV fleets or multiple charging stations via fleet
aggregation and adaptive tariff mechanisms. However, implementation of this framework into the existing
system entails certain constraints. The frameworks deployment depends on the development of a robust,
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secure and low latency communication infrastructure capable of enabling bi-directional data exchange
between EV users and grid operators. Additionally, the charging stations need to be equipped with bi-
directional power transfer capability to physically support V2G operations, which may require substantial
investment and regulatory alignment. These infrastructural and technological prerequisites represent critical
areas for future work, including the exploration of cost-effective communication protocols, interoperability
standards, and phased hardware upgrades to facilitate broader adoption. From a modeling perspective, the
study assumes accurate load forecasting, a fixed TOU tariff structure that does not account for dynamic
pricing variations, and a fixed SOC threshold for charging slot identification, factors that may influence real-
world performance. Addressing these infrastructural, technological, and modeling constraints in future work
through advanced forecasting methods, adaptive pricing schemes, flexible SOC thresholds, and cost-effective
communication and hardware solutions will further enhance the practicality and robustness of the proposed
framework.

4. CONCLUSION

This study introduces a comprehensive day-ahead EV charging framework that provides a scalable
and user-friendly solution for EV charging coordination, effectively balancing grid stability with consumer
autonomy. Simulation results verify its capability to mitigate network stress while ensuring user convenience,
achieving an 11% improvement in load factor and thereby enhancing the utilization of available energy
resources. From the utility perspective, this improvement can yield both technical and economic benefits by
deferring costly infrastructure upgrades, such as transformer or generator replacements. For the EV users, the
valley-filling strategy enables access to lower charging tariffs by shifting demand to off-peak periods.
Furthermore, users participating in V2G operations can obtain additional tariff incentives provided that a
well-designed pricing framework is implemented. By aligning grid stress management with enhanced
customer satisfaction, a dimension often overlooked in prior studies, the proposed framework delivers a
balanced benefit to both stakeholders. Future work may focus on real time adaptive scheduling, integration
with renewable generation forecasts and block chain-based user participation incentives.
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