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 As autonomous electric vehicles (AEVs) continue to evolve, the demand for 

robust obstacle detection systems becomes increasingly critical to ensure 

safety, efficiency, and adaptability in real-world environments. This review 

presents a comprehensive synthesis of recent advancements in sensor fusion 

technologies, emphasizing the integration of light detection and ranging 

(LiDAR), radar, and camera-based vision systems. It highlights the role of 

deep learning architectures—such as you only look once (YOLO), 

convolutional neural networks (CNNs), and related neural models—in 

enhancing object detection, classification, and segmentation. The review 

categorizes key research themes, including fusion methodologies, real-time 

processing, edge computing, performance in adverse weather conditions, 

pedestrian detection, and sensor calibration. Special attention is paid to 

techniques that merge spatial, velocity, and semantic data to mitigate 

individual sensor limitations. The paper also discusses hardware-accelerated 

solutions for low-latency inference and the use of lightweight models for 

deployment on edge devices. Benchmark datasets, of vehicle-to-everything 

(V2X) and internet of thing (IoT)-based infrastructure, and calibration 

challenges are examined for their roles in ensuring accuracy and reliability. 

Drawing from over 100 referenced studies, this work serves as a foundational 

resource for researchers and developers aiming to advance artificial 

intelligence (AI)-based sensor fusion systems in next-generation AEVs. 
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1. INTRODUCTION 

Electric vehicles (EVs) and autonomous technologies have progressed significantly because of the 

global push towards cleaner transportation and innovative mobility systems. Autonomous electric vehicles 

(AEVs), with safety, efficiency, and environmental sustainability at the forefront of this revolution, are 

expected to perform in pristine conditions in urban, suburban, and rural real-world settings under a vast array 

of frequently unpredictable circumstances. Robust and accurate obstacle sensing is a fundamental ability that 

makes EVs autonomous. It guarantees pedestrian safety, path planning, collision avoidance, and real-time 

navigation [1]-[3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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While tremendous advancement has been made, obstacle detection is still a difficult task since driving 

conditions are dynamic and commonly involve occlusions, low illumination, heterogeneous objects, dense 

populations, and unfavorable weather conditions like fog, rain, or snow [3]. The sensor fusion approach, 

acquiring data from numerous disparate sensors for the purpose of improving perception reliability, accuracy, 

and fault-tolerance, has gained increased attention as a result of these issues [4], [5]. 

Radar, light detection and ranging (LiDAR), and vision-based (camera) sensors each bring something 

unique to the perception stack. Radar measures long-range velocity and is immune to weather, LiDAR provides 

high-accuracy 3D spatial data, and vision systems provide rich contextual and semantic awareness [5], [6]. 

These sensors do have their limitations when utilized in isolation, however. Radar has low angular resolution, 

LiDAR accuracy can be compromised by rain or dust, and cameras are light-sensitive [6], [7]. Strong obstacle 

sensing systems that greatly outperform unimodal solutions are now being generated by researchers as a result 

of combining these cross-modal senses [8]. 

The AEVs must operate reliably across diverse environments, ranging from dense urban traffic to 

rural roads, under varying and often adverse weather and lighting conditions. Reliable obstacle detection is 

fundamental to pedestrian safety, collision avoidance, and optimal route planning. However, the use of 

individual sensing modalities—such as LiDAR, radar, or camera systems—presents significant limitations: 

radar offers long-range velocity measurement but low angular resolution; LiDAR delivers high-precision 3D 

mapping but is susceptible to performance degradation in fog, rain, or dust; and cameras provide rich semantic 

context yet are highly dependent on illumination. These sensor-specific weaknesses directly threaten 

perception reliability and, consequently, vehicle safety in real-world conditions. 

The overview of the frame of this paper is represented in Figure 1. Sensor data interpretation with 

deep learning methodologies has also, at the same time, grown extremely trendy across the discipline. Thanks 

to segmentation networks like U-Net and Deep Lab, as well as object detection frameworks like you only look 

once (YOLO), faster region-based convolutional neural network (R-CNN), and Mobile Net, real-time 

recognition and localization at high precision for obstacles, pedestrians, bicycles, and vehicles have been made 

easy [9]. By combining these artificial intelligence (AI) models with sensor fusion frameworks, rule-based 

perception systems have been turned into intelligent, adaptive systems with the ability to provide data-driven, 

and context-based decisions [9], [10]. 

 

 

 
 

Figure 1. Overview of the framework of this study: the main aspects of obstacle avoidance explored in this 

work are marked with solid arrows 
 

 

With the development of algorithms and sensors, researchers now know how much processing power 

in real-time is required, particularly in edge deployment where low resources are present. To address the 

stringent latency requirements of autonomous driving, recent solutions more and more include model 

compression techniques, edge computing, and hardware acceleration (e.g., graphics processing units (GPUs) 

and tensor processing units (TPUs)) [11]. 

Environmental resilience, where systems must still perform reliably in conditions of reduced visibility 

due to rain, fog, darkness, or sensor obscuration, is also a vital area of research. In such adverse conditions, 

studies have shown that multi-sensor fusion, especially using radar and thermal imaging, substantially enhances 

perception [11]. Pedestrian identification is also a critical safety concern and a new field of study, particularly 

in low-visibility or high-traffic scenarios [11]. 
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Besides, expansion of obstacle detection outside line-of-sight is enabled by the evolution of vehicle-

to-everything (V2X) communication, which allows vehicles to ex-change sensor data and intention with the 

roadside infrastructure and other vehicles [11]. By reducing blind spots and enhancing response time, such 

platforms, in conjunction with IoT-based systems, can offer a view around the world [12]. Consensus standards 

and public datasets are integral to the creation and validation of these systems. Datasets such as KITTI, scenes, 

and Waymo Open Dataset have enabled reproducible research by publishing annotated sensor data across a 

variety of driving situations [12]. The accuracy and integrity of combined outputs also rely on the careful 

calibration and synchronization of multi-modal sensors, an ongoing fundamental technical requirement [12]. 

Making available a thorough and organized overview of the research landscape in AI-based sensor 

fusion for EV obstacle detection is the aim of this review. It addresses the following critical dimensions: 

- Camera, radar, LiDAR, and newer sensor fusion techniques such as thermal imagers and ultrasonic devices. 

Sensor fusion with deep learning algorithms for detection, segmentation, and classification . 

- Techniques to achieve robust perception in poor weather and nighttime. Edge and embedded platforms for 

real-time implementation methods. 

- Vulnerable road user and pedestrian detection methods. IoT, V2X communication, and cooperative sensing 

all assist with enhanced perception. 

- Sensor temporal synchronization, calibration, and misalignment problems. 

- The role played by annotated benchmark datasets in the training and validation of sensor fusion models. 

The summary of the major contributors of their work and their key findings are listed in the literature 

survey and the same is explained in Table 1. 

 

 

Table 1. Summary of related literature 
Ref. What they did Main findings 

Zhang et al. [13] Proposed an intelligent obstacle detection system for 
autonomous mining locomotives using cellular V2X 

communication and vehicular edge computing. 

Demonstrated fast and reliable obstacle detection 
in mining environments, showing that edge-

assisted C-V2X improves latency and safety. 

Park et al. [14] Designed an optimal driving control framework for 
AEVs using in-wheel motors and artificial potential field 

(APF) methods. 

Achieved smoother path tracking and efficient 
torque distribution, improving vehicle stability and 

energy performance. 

AlZu’bi and 
Jararweh [15] 

Conducted a literature review on data fusion in 
autonomous vehicles from conceptual ideas to modern 

smart-environment applications. 

Highlighted evolution of sensor fusion techniques 
and showed the increasing importance of edge 

computing and IoT in autonomous driving. 

Aroulanandam 
et al. [16] 

Developed a regression-based sensor fusion model to 
enhance robotic navigation using an IoT-enabled sensing 

system. 

Improved navigation accuracy by optimally 
combining multi-sensor data, demonstrating 

effectiveness for real-time mobile robot navigation. 

Alatise and 
Hancke [17] 

Provided a comprehensive review of challenges in 
autonomous mobile robots and existing sensor fusion 

frameworks. 

Identified major issues (noise, uncertainty, 
dynamic environments) and showed how fusion 

methods mitigate perception and navigation errors. 

 

 

The relevance of this review is demonstrated through a systematic structure that connects the identified 

research gaps with a detailed synthesis of existing solutions. Following this introduction, section 2 describes 

the methodology used to select, categorize, and analyze relevant studies, ensuring transparency and 

reproducibility in the review process. Sections 3 through 8 provide an in-depth discussion of fusion 

techniques—including LiDAR, radar, vision, thermal, ultrasonic, and infrared—and their integration through 

data-, feature-, and decision-level fusion strategies, highlighting how each modality contributes to robust 

obstacle detection. Section 9 examines classical and AI-based obstacle avoidance algorithms, demonstrating 

how fusion-enhanced perception supports real-time navigation and safety. Section 10 addresses the technical 

challenges of sensor calibration, environmental robustness, and computational efficiency, and reviews state-

of-the-art solutions to these problems. Section 11 presents a comparative analysis of related work, situating 

this review within the broader research landscape. Section 12 synthesizes these findings into potential research 

directions that align with the unsolved problems identified earlier, and section 13 concludes by summarizing 

the contributions and outlining their implications for next-generation autonomous EV perception systems. This 

structure ensures that each part of the manuscript builds toward a coherent understanding of the field, clearly 

demonstrating both the novelty and practical relevance of our review. 

 

 

2. METHOD 

This study investigated a comprehensive AI-driven multi-sensor fusion framework combining 

LiDAR, radar, vision, and thermal imaging for real-time obstacle detection in AEVs. However, additional, and 

in-depth research may be required to confirm its scalability and robustness, particularly regarding performance 
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in extreme environmental conditions such as heavy snow, sandstorms, or sensor-degrading dust environments, 

which were not extensively represented in the evaluated datasets. Furthermore, while our use of benchmark 

datasets and controlled test scenarios ensures comparability and reproducibility, real-world trials across diverse 

geographic and traffic conditions are essential to fully validate system reliability. We also note that the 

computational optimization strategies applied here, though effective for our selected edge platforms, may 

require adaptation for different embedded hardware configurations. These limitations do not diminish the 

validity of the core findings but highlight areas where extended research can further strengthen the applicability 

and generalization of the proposed approach. 

The approach to advanced obstacle detection in intelligent and EVs employs multi-sensor data fusion 

to provide strong and reliable environmental perception under different driving conditions. Data are gathered 

from synergistic sensors like RGB cameras, LiDAR, mmWave radar, and thermal cameras—each selected for 

its respective strengths that complement others’ weaknesses. For example, RGB cameras provide good texture 

and color data but are weak in darkness or poor weather. LiDAR gives highly accurate 3D spatial information 

mmWave radar can operate well in fog, rain, or sand and thermal sensors enhance detection of living objects 

such as pedestrians at night [18]. 

Raw sensor observations are preprocessed images are normalized, LiDAR point clouds filtered out 

and ground reflection eliminated, and radar signals reconstructed to point cloud or heatmap representations. 

Joint extrinsic calibration tools are utilized to perform modality calibration to move all of the data to a common 

spatial space [18]. Deep learning-based architectures perform feature extraction and fusion. Feature-level 

fusion is made up of convolutional neural networks (CNNs), spatial attention modules, and region-of-interest 

(ROI) fusion mechanisms that combine spatial and semantic features from various sensors [19]. 

On the decision level, fusion integrates detection results of individual detectors like 

YOLOv5/YOLOv8, PointPillars, or Edge-YOLO with probabilistic voting, weighted averaging, or ensemble 

learning to enhance detection confidence [20]. Multimodal fusion approaches, such as LiDAR-camera or radar-

vision fusion, have been found to achieve improved detection in the presence of occlusion and reduced 

visibility [20]. 

For object tracking, algorithms such as Deep SORT or Kalman filtering are used to provide temporal 

consistency [21]. The model is trained and evaluated on publicly available datasets such as KITTI and 

nuScenes, with the performance being measured by metrics such as mean average precision (mAP), precision, 

recall, intersection-over-union (IoU), and inference latency [22]. Experimental results and ablation testing 

under different light and weather conditions validate the real-time effectiveness and resilience of such multi-

sensor fusion approach. Such fusion-driven approach significantly enhances situational awareness, obstacle 

class accuracy, and resilience—leading the path toward safer and more intelligent autonomous transportation 

in next-generation EVs [22]. 

Despite significant progress in multi-sensor fusion for obstacle detection, several challenges remain 

unresolved. Accurate calibration and temporal synchronization across heterogeneous sensors such as LiDAR, 

radar, and cameras continue to be a technical bottleneck, especially in dynamic operational environments where 

even minor misalignments can degrade detection accuracy. Real-time processing on embedded platforms is 

hindered by the high computational cost of deep learning models and the large data volumes generated by 

multi-modal sensing, often leading to latency that compromises safety. Long-range detection beyond 50 

meters, critical for high-speed driving, remains difficult due to LiDAR’s weather susceptibility and radar’s 

lower spatial resolution. Furthermore, system cost and scalability are limited by the high price of mechanical 

LiDAR units and the complexity of multi-sensor integration, restricting deployment in mass-market EVs. 

Environmental robustness also requires improvement, as many existing systems experience substantial 

performance drops in heavy rain, fog, or snow, despite sensor redundancy. This review addresses these issues 

by synthesizing recent advances in AI-driven fusion frameworks, identifying effective strategies for adverse-

weather resilience, evaluating hardware-accelerated solutions for edge deployment, and highlighting future 

research directions for robust, scalable, and cost-effective perception in next-generation AEVs. 

This review offers several contributions that, to our knowledge, have not been presented together in 

prior literature. First, it provides the most comprehensive synthesis to date of AI-driven multi-sensor fusion 

techniques specifically targeted at real-time obstacle detection in AEVs, bridging both sensing hardware and 

deep learning–based processing frameworks. Second, it systematically compares data-, feature-, and decision-

level fusion strategies, correlating their strengths and limitations with environmental conditions such as fog, 

rain, and low-light operation—an alignment rarely discussed in earlier surveys. Third, it incorporates an 

evaluation of hardware acceleration, model compression, and edge computing platforms to address the latency 

and resource constraints unique to EV embedded systems, an area often overlooked in prior reviews. Fourth, 

it identifies and categorizes open research problems—including long-range detection beyond 50 m, dynamic 

self-calibration, and cost reduction through solid-state sensors—while mapping these gaps to specific fusion 

and algorithmic solutions. Finally, the review proposes a forward-looking research agenda that integrates multi-
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modal perception with V2X communication to extend situational awareness beyond line-of-sight, providing a 

roadmap for scalable, robust, and cost-effective deployment in next-generation AEVs. 

 

 

3. SENSOR FUSION TECHNIQUES FOR OBSTACLE DETECTION 

Sensor fusion is a technique that combines several sources of sensor information to provide a more 

accurate, complete, and reliable description of the environment around. In the context of obstacle detection for 

EVs, it combines data from various sources of sensors, such as LiDAR, radar, cameras, and thermal imaging 

systems. Its purpose is to enhance the accuracy, robustness, and resilience of perception, particularly in difficult 

driving environments such as poor visibility or adverse weather conditions [22]. 

 

3.1.  Overview of sensor fusion 

Sensor fusion techniques are generally classified into data-level fusion, feature-level fusion, and 

decision-level fusion depending upon when and in which manner the data from multiple sensors are combined 

[23], [24]. 

a. Data-level fusion 

At the data level, the original raw data of all the sensors are fused before anything is processed. Data-

level fusion has a low-level fusion which allows the system to get an overall sense of the environment. The 

largest advantage of data-level fusion is that it can use all the available sensor information without deleting 

early data and makes it such that the system is most accurate and comprehensive [24]. For instance, combining 

LiDAR point clouds, radar readings, and camera images in their raw states enables a system to achieve full 

contextual knowledge of the surroundings, such as object geometries, distances, and textures. This, however, 

involves an extensive computation and sophisticated algorithms to process and remove noise if there is any in 

the raw sensor data [25], [26]. 

b. Feature-level fusion 

Feature-level fusion is the selection of specific features from the sensor data, for example, edges, 

shapes, texture, or motion patterns, before the fusion. Feature-level fusion is at a higher abstraction level than 

data-level fusion and generally results in lower computational complexity since the system operates on high-

level features rather than raw data [26]. For example, LiDAR information can provide features such as surface 

shapes and object boundaries, while camera images can provide features such as object type (pedestrians, cars, 

and traffic signs). Radar may provide information related to object speed or direction. When these are 

combined, they create a more accurate portrayal of the environment that is easier to analyze and interpret [27]. 

c. Decision-level fusion 

Decision-level fusion operates on the final output of multiple sensors and combines them into a single 

decision-making process. In obstacle detection, the system would use the obstacles detected and their locations 

from each sensor (LiDAR, radar, and camera) and combine these outputs to conclude about what obstacles are 

present in the environment [28]. Decision-level fusion is less computationally demanding than data-level and 

feature-level fusion, but may lose some valuable sensor data. Decision-level fusion, nonetheless, facilitates 

fusing the high-level decisions of a sensor or each sensor subsystem to form a robust result. For example, a 

radar sensor might detect an obstacle at a certain range, while a camera can help determine it to be a pedestrian 

or another vehicle. The fusion at the decision level would conclude that a pedestrian is in front of the vehicle 

[29]. Sensor types used for obstacle detection in fusion. 

 

3.2.  Principles and types of light detection and ranging 

LiDAR is a time-of-flight (TOF) sensor technology. It transmits a laser pulse to an object and 

measures the time it takes for the pulse to return after hitting the object. This TOF is then utilized to calculate 

the distance of the object from the sensor, and this allows LiDAR to create high-resolution 3D point clouds of 

the scene. 3D point clouds become a critical factor in obstacle detection, object recognition, and scene 

perception for autonomous driving applications [29], [30]. One of the key advantages of LiDAR is that it has 

very high accuracy, and it can also perform well under varied lighting conditions. The illustration of the LiDAR 

principle is displayed in Figure 2. 

Unlike cameras, which do not fare well in poor-light or night conditions, LiDAR does not get 

substantially impacted by the intensity of light and is hence an appropriate sensor to utilize under challenging 

environments like low-visibility conditions of fog, rain, or low-light conditions. Such a property renders it 

particularly worthwhile during night driving or during inclement weather [30]. LiDAR systems can be broadly 

categorized based on their scanning mechanism, which decides their performance, cost, and suitability for 

different applications. They are: 
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3.2.1. Mechanical light detection and ranging 

The mechanical LiDAR units are the ancient technology used in most initial AV tests. They use a 

rotating laser beam to sweep across the full 360-degree field of view. They maintain a high-resolution, accurate 

3D map of the surroundings and are therefore extremely accurate at mapping and object detection. However, 

the mechanical parts of rotating mechanical LiDAR add to the system’s size, complexity, and wear over time. 

The mechanical parts and large size also result in higher production and maintenance costs [30]. 

 

 

 
 

Figure 2. Illustration of LiDARs’ principle 

 

 

3.2.2. Solid-state light detection and ranging 

Solid-state LiDAR systems utilize micro-electro-mechanical systems (MEMS) or optical phased 

arrays (OPA) to scan the surroundings without mechemical components. These systems are stronger, lighter, 

and more resistant to mechanical failure than mechanical counterparts. It is possible to make solid-state LiDAR 

compact, and this makes commercial application where weight, size, and cost considerations are paramount, 

the best to use. However, while the solid-state LiDAR comes with the advantage of compactness and durability, 

it does not provide as good resolution or distance as a mechanical LiDAR system. However, recent advances 

have significantly improved the performance of solid-state systems to the extent that they can be employed in 

high-end autonomous cars as well as consumer electronics [30], [31]. 

 

3.2.3. Flash light detection and ranging 

Flash LiDAR systems record an entire scene in a single laser pulse, without the requirement for 

mechanical motion. Flash technology supports high frame rates and low motion artifacts, and it is ideal for use 

in high-speed applications where real-time processing is essential. Flash LiDAR is typically utilized in those 

cases where high field of view requirements exist, such as robotics or UAVs. Flash LiDAR can provide wide-

angle, quick coverage but at the cost of resolution, potentially not providing such high-resolution point clouds 

as would be possible using mechanical or solid-state LiDAR [31]. 

 

3.3.  Light detection and ranging in sensor fusion 

While LiDAR alone is adequate to provide high-resolution 3D mapping of the surroundings, it can be 

enhanced when it is combined with other sensors like cameras, radar, and thermal imagers. Through multi-

sensor data fusion, it is feasible to have better obstacle detection and scene comprehension through overcoming 

the inherent limitation of each of these sensors. For instance, cameras provide adequate color and texture 

information, useful for object recognition, but perform badly in poor light or weather. Radar performs optimally 

in low-visibility environments but lacks resolution to identify detailed object shapes. Thermal sensors perform 

well at identifying living obstructions such as pedestrians in the dark. By combining the capabilities of LiDAR 

with other sensors through sensor fusion techniques, systems can function better in a wider range of 

environmental conditions [31], [32]. 
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3.4.  Radar principle and types 

Radar, which stands for radio detection and ranging, is used in obstacle avoidance for autonomous 

cars (AVs) in detecting, locating, and tracking objects via reflected signals using radio waves [33]. It is based 

on sending electromagnetic waves, usually microwave frequency (400 MHz to 40 GHz), and measuring the 

time delay, Doppler shift, and angle of arrival to calculate an object’s range, velocity, and direction. The range 

is computed using (1): 

 

𝑅 =  
𝐶∗𝑡

2
 (1) 

 

Where the speed of light is represented by c and the round-trip time of the signal, while the Doppler effect 

enables velocity measurement by detecting frequency shifts in the reflected waves, crucial for dynamic 

environments like traffic [34].  

Several radar types are employed in AVs: pulsed radar emits short, high-power pulses to measure 

range via TOF, with pulse-Doppler variants enhancing motion detection. There are several types of radar 

systems used in AVs, each suited for different aspects of detection: 

 

3.4.1. Pulsed radar 

Pulsed radar systems radiate short pulses of high-power electromagnetic energy and measure the TOF 

for the pulse after it reflects from an object. Based on TOF, such radars can calculate the range of objects. 

Pulsed radar systems are well suited for long-range detection, and pulse-Doppler types are also able to detect 

relative velocities of objects by calculating the frequency shift of the reflected signal [34]. This makes pulsed 

radar particularly suited for locating objects at some distance, particularly in the open. The working of LADAR 

is shown in Figures 3 and 4 explains about fundamental components of radar system. 

 

 

  
  

Figure 3. Working of LADAR Figure 4. Fundamental components of a radar 

system 

 

 

3.4.2. Continuous-wave radar 

CW radar emits a steady signal that never takes the form of a pulse, and it is most appropriate for 

monitoring the speed of objects in motion. In contrast with pulsed radar, CW radar cannot directly gauge the 

range of an object but is highly capable of assessing the relative speed of objects. Because of this characteristic, 

CW radar finds optimal usage in environments where monitoring the movement of automobiles or other mobile 

barriers is imperative, as is often the case with high-traffic driving conditions [35]. The schematic diagram of 

radar system in shown in Figure 5. 

Text frequency-modulated continuous-wave (FMCW) radar FMCW radar is popularly applied in the 

automotive field and takes advantage of both pulsed and CW radar. FMCW radars frequency modulate the 

continuous signal, hence enabling measurement of both range and velocity at the same time. FMCW radar can 

determine objects’ speed and position through the analysis of the frequency shift (Doppler effect) and 

frequency modulation of the signal. These radars are comparatively small, low-power, and inexpensive, making 

them particularly suitable for short to medium-range detection in AVs, generally up to 200 m [35]. 
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Figure 5. Radar system block diagram in schematic form 

 

 

3.4.3. Synthetic aperture radar 

Synthetic aperture radar (SAR) is a radar method that employs the motion of the radar platform (e.g., 

an aircraft or a satellite) to form high-resolution images of the viewed area. Although SAR is mostly employed 

for cartography and terrain mapping and less for real-time obstacle detection, its high-resolution imaging nature 

places it adequately for environmental mapping and monitoring. SAR systems offer high-resolution images of 

the environment, which can be applied for creating maps or in cases of requiring detailed topography [36]. 

 

3.4.4. Bistatic/multistate radar 

Bistatic radar systems have distinct transmitter and receiver locations to provide greater flexibility in 

the radar system architecture and improved detection in clutter or highly dynamic situations. Multistate radar 

employing many transmitters and receivers has the potential to provide greater overall coverage and to improve 

object detection in heavy interference environments, for example, heavy urban environments. The systems find 

most application in difficult environments where standard monostatic radar performance may be hindered [36]. 

Radar’s penetration capability through inclement weather like rain, fog, and snow are among its key 

strengths over LiDAR, which struggles in these environments. Since radar can offer accurate range and velocity 

data under poor weather, it is counted as a complementary sensor to LiDAR, cameras, and other sensors in 

self-driving cars. But the comparatively low resolution of radar makes it difficult to separate objects with high 

detail. To overcome this shortcoming, radar data is usually processed in conjunction with other sensor data 

using sensor fusion methods, enhancing the overall classification accuracy and object detection capability [37]. 

 

3.5.  Thermal sensor principle and types 

Thermal sensors, or infrared (IR) sensors, are vital to AV obstacle detection systems under poor 

circumstances of visibility like fog, smoke, rain, or night. The sensors detect infrared radiation emitted by 

objects naturally due to their temperature, allowing them to detect the environment passively without 

illumination by external light sources [38]. The principle behind thermal imaging is that all objects above 

absolute zero give off infrared radiation. To create thermal images, this radiation is detected and transformed 

into electrical signals. Thermal images represent temperature variations in the scene and are effective in the 

detection of pedestrians, animals, and heated parts of the vehicle, which may not be observable by visible-light 

cameras or LiDAR technology [38], [39]. The illustration of thermal sensor is shown in Figure 6. 

There are two large categories of thermal sensors: 

a. Uncooled thermal sensors 

They are most widely utilized for AV purposes. They are at room temperature and have materials 

such as vanadium oxide or amorphous silicon. They are inexpensive, compact, and provide adequate sensitivity 

for short- to medium-range uses (100 m), for example, pedestrian detection [39]. 

b. Cooled thermal sensors 

These are finer and can sense smaller temperature gradients. They employ cryogenic cooling to 

minimize sensor noise and come in high-end applications with large range detection and high resolution. They 

are bigger and pricier, but less prevalent in vehicle systems [39]. 

Thermal sensors are commonly combined with radar and visible-light cameras to overcome 

constraints such as low spatial resolution and enhance detection performance in real-world driving 
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environments. Multimodal sensor fusion enables AVs to perceive their environment consistently under various 

unfavorable conditions [40], [41]. 

 

 

 
 

Figure 6. Illustration of thermal sensor principle 

 

 

3.6.  Light detection and ranging and vision sensors 

LiDAR and vision sensors are fundamental technologies of current obstacle detection and 

environment perception solutions, especially in applications such as intelligent surveillance, robotics, and AVs. 

LiDAR sensors emit laser pulses and record the time taken by the reflected light to come back, producing 

precise 3D point clouds of the environment [41]. LiDAR sensors are known for high spatial accuracy,  

long-range measurement, and durability in low-light or night conditions. For example, LiDAR sensors such as 

the Velodyne VLP-16 or RPLiDAR A1 can detect full 360-degree surroundings in real-time and offer high-

accuracy spatial perception [42]. Yet, there are some limitations of LiDAR, i.e., a high price tag, vulnerability 

to bad weather conditions, e.g., fog and heavy rain, and relatively low resolution in comparison with optical 

cameras. In addition, the point cloud data obtained by LiDAR demands the use of high computer capacity for 

analysis and interpretation [43]. 

In the mentioned figure, the left image displays a front view from an RGB camera capturing the visual 

appearance of cars and objects in an urban setting. The 3D point cloud output from a LiDAR sensor is displayed 

in the right image, giving depth and spatial information of objects such as cars and road features detected. To 

refer to sensor fusion, object detection algorithms, or real-time processing [43]. Vision sensors, nonetheless, 

sense rich contextual and semantic information in high-resolution images. Vision sensors can sense object 

features like color, texture, and shape, all of which are important for object recognition and classification [44]. 

With developments in deep learning, vision-based systems employ CNNs and real-time models like YOLOv5 

and MobileNetV3 for object tracking as well as detecting a wide range of objects like cars, pedestrians, and 

road signs [44]. Vision sensors are very light-sensitive and may break down in situations like glare, night, rain, 

or fog. In contrast to LiDAR, monocular vision systems do not have intrinsic depth information unless 

augmented with stereo vision or depth estimation methods [45]. The comparison of vision-based and LiDAR-

based obstacle detection is shown in Figure 7. 

 

 

 
 

Figure 7. Comparison of vision-based and LiDAR-based obstacle detection in urban driving scenario 
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As a way of improving perception capabilities and overcoming shortcomings of single sensors, sensor 

fusion methods gain more popularity. By fusing LiDAR’s geometric precision with vision data’s semantic 

depth, fusion systems can deliver more robust and assertive environmental awareness [46]. One could do sensor 

fusion at the raw data, feature, or decision levels, which provides a compromise in terms of complexity and 

real-time performance [46]. Such combined systems that use both LiDAR and vision work better than 

standalone systems on tasks such as semantic segmentation, object classification, and obstacle detection in 

challenging situations such as low light or dense urban environments [47]. For redundancy and fail-safety in 

mission-critical tasks such as autonomous driving, multi-modal systems are also necessary [48]. 

 

 

4. LIDAR AND ULTRASONIC SENSORS 

Because their detecting modes are complementary, LiDAR and ultrasonic sensors are often employed 

in autonomous systems for obstacle detection. To build high-resolution 3D point clouds reflecting the spatial 

geometry of the environment, LiDAR sensors emit laser pulses and measure how long it takes for the light to 

bounce back [48]. LiDAR is highly accurate and far-range detection, a few meters to more than 200 meters in 

range depending on the model, and therefore well-suited to the outdoors and high-speed applications such as 

drones and AVs [48]. LiDAR devices are comparatively costly and prone to environmental conditions like fog, 

heavy rainfall, and dust particles which scatter or absorb the laser beams and decrease detection dependability 

[49]. Furthermore, LiDAR produces enormous volumes of data, which requires enormous processing capacity 

in real-time applications. Conversely, ultrasonic sensors emit high-frequency sound waves, which then detect 

the time taken for the wave to bounce back after hitting an object [49]. The sensors are simple to implement, 

low-cost, and suitable for object detection in short ranges, usually up to 2–5 meters. They are used in low-

speed applications like parking assist systems, robot vacuum cleaners, and indoor mobile robots. Ultrasonic 

sensors are not very sensitive to lighting levels and thus best utilized in dark situations. They have 

disadvantages such as poor spatial resolution, narrow beam angles, and ambient noise or interference by sloping 

or soft surfaces which lack the capability of reflecting sound waves properly [49], [50]. 

For addressing the limitation of each single sensor, latest obstacle detection systems frequently make 

use of LiDAR as well as ultrasonic sensors together. By sensor fusion, LiDAR high-definition long-range 

perception and reliable close-range perception using ultrasonic sensors are realized, improving overall 

perception ability and redundancy of the system [50]. For instance, LiDAR in self-driving cars can be used for 

real-time mapping and object detection for traffic situations and ultrasonic sensors can be applied for low-

speed operations like parking or detection of obstacles in narrow spaces [50]. These hybrid sensing platforms 

offer a stable and low-cost sensing solution for environment perception in general indoor and outdoor 

environments [50], [51]. 

 

 

5. LIDAR AND THERMAL SENSORS 

LiDAR and thermal cameras are increasingly featured in sensor fusion applications to maximize the 

performance of obstacle detection, particularly in autonomous applications and safety-critical contexts like 

drones, EVs, and surveillance. LiDAR generates detailed 3D point clouds of the environment by emitting laser 

pulses and measuring how long it takes for the light to bounce back after it hits an object [51]. LiDAR sensors 

have the capacity to provide true distance readings, high field-of-view, as well as function under variable 

illumination conditions and therefore are suited to outdoor navigation and mapping [51]. However, their use is 

hindered when there is undesirable weather like heavy rain, fog, and snow, whereby the laser beam can be 

scattered or absorbed [52]. Also, LiDAR lacks the ability to detect temperature variation or thermal signature 

of an object, significant in conditions of low visibility. 

Thermal sensors, such as infrared thermographic cameras like the AMG8833 or FLIR Lepton, sense 

infrared radiation from objects and transform it into thermal images or temperature maps. Thermal sensors are 

able to detect in complete darkness and are also not affected by light conditions and are thus of unparalleled 

utility at night and under low-visibility conditions [52]. Thermal cameras are very good at detecting living 

objects like human and animals based on their heat signature, even if the visual or LiDAR information might 

be obstructed. Thermal cameras have worse spatial resolution than RGB sensors or LiDAR, and cannot offer 

accurate geometric or range information [52]. Combining LiDAR and thermal sensors into a common 

perception system overcomes the limitations of each sensor technology while exploiting their strengths. The 

geometric precision of LiDAR is complemented by the heat-based visibility of thermal sensors to facilitate 

correct object detection in dynamic environmental conditions such as fog, dust, darkness, and complex 

backgrounds. The combined LiDAR and thermal camera sensors for understanding the 3D scenes are shown 

in Figure 8. 
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Figure 8. Combining LiDAR and thermal camera sensors to understand 3D scenes 

 

 

LiDAR point cloud information and thermal images can be fused by sensor fusion algorithms at the 

raw data, feature, or decision level to enhance item classification, anomaly detection, and scene understanding 

[53]. Safety-critical use cases like autonomous driving in adverse weather and surveillance in low-light or 

ambiguous conditions are increasingly depending on multi-modal systems. 

 

 

6. LIDAR AND RADAR 

LiDAR and radar sensors both find key applications in autonomous systems for effective environment 

perception and hazard detection. LiDAR works based on the principle of lighting up the environment with laser 

beams and measuring the time taken by the reflected light to come back, which generates precise three-

dimensional point clouds of the surrounding environment [53]. These sensors have high spatial resolution and 

accuracy, which are particularly beneficial in accurate mapping, localization, and robot, drone, and AV obstacle 

detection [54]. LiDAR is particularly suited for applications where a high-resolution reconstruction of the 

surface is needed, such as urban navigation or autonomous driving. Yet, LiDAR is weather dependent in heavy 

rain, fog, and snow, causing laser beams to scatter and diminishing the precision of measurement [54]. Heavy 

computation expense and LiDAR point cloud data processing are also issues that must be overcome in order 

to employ it on a large scale. 

The sensor fusion coverage using LiDAR and radar in ADAS-equipped vehicles is shown in 

Figure 9. On the other hand, radar uses electromagnetic waves in the radio frequency range to identify objects 

and determine their angular location, speed, and distance [55]. Radar has good object detection at long range 

and some today can detect objects 200 m or more. Radar excels in its resistance to bad weather and long-range 

sensing but tends to have poorer resolution than LiDAR and is not capable of providing the same level of high 

detail 3D information. The radar point cloud is generally coarser, and object classification and identification 

are harder without additional processing [55]. In applications like adaptive cruise control in driverless cars, 

traffic surveillance, and collision avoidance, radar’s capacity to measure an object’s speed and velocity remains 

a unique advantage. 

 

 

 
 

Figure 9. Sensor fusion coverage using LiDAR and radar in ADAS-equipped vehicles 
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The coordinate system for radar camera fusion is shown in Figure 10. Integration of LiDAR and radar 

sensors has become an accepted remedy to the vulnerabilities of each sensor technology. Combining LiDAR’s 

precise 3D information at high resolution with radar’s capability to operate in poor weather conditions leads to 

more accurate and trustworthy detection of obstacles even in poor environments [56]. Sensor fusion methods 

tend to operate at various levels—decision, feature, or raw data fusion—based on the application and the 

required level of accuracy-computational efficiency trade-off [57]. For instance, in AVs, LiDAR may be used 

to map and recognize static objects and features, and radar excels at detecting objects in motion, such as other 

vehicles or pedestrians, in complex driving scenarios [57]. The sensors together provide complementary 

information that enhances system-level reliability, safety, and responsiveness in real-time. 

 

 

 
 

Figure 10. Coordinate system for radar-camera fusion 

 

 

7. MERGING MILLIMETER WAVE RADAR AND CAMERA 

Millimeter wave radar at the frequency range 30–100 GHz is capable of detecting direction and 

distance of the target with high weather robustness but with poor resolution and bad non-metallic target 

recognition [58]. Cameras, though economical, are not stable in harsh conditions [58]. Data-level, feature-

level, and target-level are some of the techniques for fusion. Data-level fusion employs calibration to register 

radar point clouds with picture pixels but suffers with radar’s sparse data. Feature-level fusion lightens 

computation by projecting radar targets onto images to define regions of interest [59]. In their evaluation of 

mmWave radar-vision fusion highlighted how effective it performs in rain and fog. A resilient radar-camera 

hybrid framework for object detection and range estimation was proposed by emphasizing real-time 

performance utilized shallow neural networks for radar-based vulnerable road user detection. Target-level 

fusion, though it includes detection results, suffers from the limitations in monocular camera depth [60]. It is 

important to coordinate time and space with timestamps and calibration [60], [61]. 

 

 

8. LIDAR AND INFRARED 

LiDAR and infrared sensors are essential technologies for enriching obstacle detection in autonomous 

systems, providing complementary information to complement environmental perception. LiDAR operates on 

the principle of sending laser pulses and measuring the time taken by the sensor to capture reflected light, 

generating high-resolution 3D point clouds to facilitate accurate mapping and localization of the surrounding 

environment [61]. The accuracy of LiDAR and high sensitivity in measuring distance with precise accuracy 

render it an indispensable tool for applications in AVs, robots, and unmanned aerial systems (UAS) [62]. Rain, 

fog, and other meteorological factors may interfere with LiDAR and snow because the conditions will absorb 

or scatter the laser pulses, which may create blind spots or inaccurate detection [63]. Furthermore, LiDAR’s 

steep cost and big data handling requirements are issues that may limit its scalability for certain applications. 
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Infrared detectors, including thermal cameras and passive infrared (PIR) detectors, detect the radiation of heat 

from objects so that they are able to work effectively under low-visibility conditions such as darkness or fog. 

Thermal infrared sensors can pick up the temperature variations between objects, making it possible 

for living organisms (e.g., human beings and animals) to be identified by their heat signatures, even when they 

may not be able to observe or utilize LiDAR information effectively [63]. Because infrared sensors are not 

affected by lighting conditions like visible cameras, they are also suitable for use at night [64]. However, 

thermal sensors generally have lower spatial resolution than LiDAR and are less suitable for capturing precise 

3D information about the environment, which could be disadvantageous for high-detail mapping and obstacle 

avoidance tasks [65]. The integration of LiDAR and infrared sensors takes advantage of both technologies to 

create an enhanced and richer perception system. 

LiDAR’s ability to generate high-resolution 3D point clouds can be combined with infrared thermal 

data to enhance obstacle detection in cluttered environments, for example, in low-light, fog, or crowded 

conditions [65]. For example, LiDAR can be used for spatial mapping, while thermal sensors can be used to 

identify living organisms or differentiate between objects with similar structure but different thermal 

signatures. Sensor fusion algorithms at the raw data, feature, or decision level allow combining the spatial 

precision of LiDAR with infrared sensor thermal sensitivity to improve detection accuracy, object 

classification, and environmental perception [65]. This combined method is of immense application in 

autonomous driving, search-and-rescue missions, and surveillance missions, where spatial precision and 

thermal discrimination are of utmost importance to provide safety and performance [66]. 

 

 

9. OBSTACLE AVOIDANCE ALGORITHMS 

Obstacle avoidance algorithms enable autonomous robots, drones, and vehicles to navigate safely by 

detecting and evading obstacles in real time. These algorithms process sensor data from LiDAR, radar, 

cameras, and ultrasonic sensors to generate collision-free paths, ensuring safety and reliability in dynamic and 

unstructured environments [66], [67]. Broadly, obstacle avoidance methods can be categorized into six groups: 

reactive, deliberative, hybrid, model predictive control (MPC), machine learning (ML)-based algorithms, and 

sensor-fusion-based methods. 

 

9.1.  Reactive algorithms 

Reactive algorithms rely solely on real-time sensor observations, without a pre-built map. Techniques 

such as the vector field histogram (VFH) and dynamic window approach (DWA) are widely used due to their 

computational efficiency. However, they struggle in complex environments because they lack global planning 

capability [67]. 

 

9.2.  Deliberative algorithms 

Deliberative methods use an internal map to compute optimal, collision-free paths. Algorithms like 

A* and Dijkstra’s are commonly employed but require accurate maps and high computational resources, 

making them unsuitable for real-time autonomous navigation in dynamic environments [68]. 

 

9.3.  Hybrid algorithms 

Hybrid approaches integrate reactive and deliberative strategies to balance real-time responsiveness 

with global planning. The timed elastic band (TEB) method, for example, combines local obstacle avoidance 

with global trajectory optimization and is widely used for mobile robots in cluttered environments [68], [69]. 

 

9.4.  Model predictive control 

MPC-based controllers predict future system states and optimize control inputs to avoid obstacles 

dynamically. They are particularly suitable for high-speed autonomous platforms, such as UAVs, where 

anticipating obstacle motion is essential for safe navigation [70]. 

 

9.5.  Machine learning-based algorithms (overview) 

ML approaches enable autonomous systems to learn from data and adapt to complex, unstructured 

environments. These methods are especially effective in urban driving or variable weather conditions, where 

traditional rule-based algorithms perform poorly. ML models can classify objects, predict obstacle trajectories, 

and support decision-making for navigation [70]. 

 

9.6.  Sensor fusion-based algorithms 

Sensor fusion algorithms combine complementary data from multiple sensors—such as LiDAR, radar, 

and cameras—to improve perception accuracy. Fusion enhances reliability in adverse weather conditions and 
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reduces the limitations of individual sensors. Modern autonomous systems often integrate fusion with ML 

techniques for improved robustness [71], [72]. 

 

9.7.  Representative learning-based obstacle detection algorithms 

To maintain structural consistency, specific ML algorithms used for obstacle detection are grouped 

under this unified subsection. 

 

9.7.1. You only look once 

YOLO is a state-of-the-art deep learning framework for real-time object detection. By treating 

detection as a single regression problem, YOLO divides an image into grids and predicts bounding boxes and 

class probabilities in one forward pass through a CNN. This design enables high frame rates (30–60 FPS), 

making YOLO suitable for AV pedestrian detection, drone navigation, and real-time robotics [72], [73]. The 

YOLO object detection system is shown in Figure 11. 

 

 

 
 

Figure 11. YOLO object detection 

 

 

YOLO’s architecture includes: i) backbone: feature extraction (e.g., Darknet and CSP-Darknet), ii) 

neck: feature aggregation (e.g., PANet); and iii) head: bounding box and class prediction. 

Recent YOLO versions (YOLOv4 and YOLOv5) incorporate innovations such as mosaic 

augmentation, anchor-free detection, and network scaling to improve speed and accuracy [73], [74]. YOLO is 

often fused with LiDAR or radar for depth-aware detection. LiDAR-camera projection improves distance 

estimation, while radar provides motion cues that enhance detection under fog, rain, or low-light  

conditions [75]. 

 

9.7.2. Random forest  

Random forest (RF)  is a classical ensemble ML algorithm used for obstacle classification in scenarios 

where computational resources are limited. By combining multiple decision trees trained on random feature 

subsets, RF offers robustness against noise and missing data. It has been applied to classify LiDAR clusters, 

radar signatures, and thermal images for obstacle detection in robots and AVs [75]–[77]. The workflow of RF 

is shown in the Figure 12. 

RF is favoured for: low computational cost, robustness to noisy inputs, and interpretability. But may 

underperform deep learning models in complex urban scenes. RF is often paired with sensor fusion to enhance 

classification reliability in adverse conditions [77]. 

 

9.8.  Deep learning and multimodal fusion techniques 

ML techniques—particularly deep learning—have significantly advanced obstacle detection by 

enabling autonomous systems to learn hierarchical features and adapt to dynamic scenes. Figure 13 presents 

the general ML workflow. 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 124-148 

138 

 
 

Figure 12. Working of RF 

 

 

 
 

Figure 13. ML block diagram 

 

 

9.8.1. Artificial neural network 

Artificial neural networks (ANNs) process sensor features through interconnected neuron layers, 

learning object categories such as pedestrians and vehicles using camera images or LiDAR features. Their 

flexibility enables use across multiple modalities, although they require large datasets and computation for 

training [77]. 

 

9.8.2. Convolutional neural network 

CNNs extract hierarchical image features for tasks such as pedestrian detection, road sign 

classification, and semantic segmentation. Architectures like faster R-CNN and SSD have been widely 

deployed in AV perception. CNNs also complement LiDAR by providing semantic context that improves 3D 

detection accuracy [78]. 

 

9.8.3. Recurrent neural network and long short term memory models 

Recurrent neural networks (RNNs)—and especially long short term memory (LSTM) networks—are 

effective for temporal prediction tasks, such as forecasting pedestrian trajectories or vehicle movement.  

Their memory mechanism enables modeling of sequential motion patterns, supporting proactive obstacle 

avoidance [78], [79]. 

 

9.8.4. Deep neural networks for 3D perception 

Deep neural networks (DNNs)-based architectures such as PointNet++, VoxelNet, and BEV-based 

detectors learn high-level 3D features from LiDAR data. These networks excel in cluttered or partially occluded 

environments but are computationally intensive [79], [80]. 

 

9.8.5. Generative adversarial network 

Generative adversarial networks (GANs) are used to synthesize adverse-weather or rare training 

scenarios, enabling models to generalize better to fog, rain, and night conditions. This improves ML-based 

obstacle detection robustness in real-world deployments. 
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9.8.6. Multimodal fusion frameworks 

Fusion frameworks combine LiDAR geometry, radar velocity, and camera semantics to achieve 

reliable obstacle detection under diverse conditions. Recent work [81], [82] proposes end-to-end deep fusion 

networks integrating all three modalities for enhanced detection accuracy. Advanced techniques such as 

probabilistic occupancy grids and joint radar-camera-LiDAR calibration further improve obstacle tracking and 

segmentation performance [83], [84]. 

Deep learning and fusion remain central to state-of-the-art obstacle avoidance, although challenges 

persist in real-time computation, cross-sensor heterogeneity, and generalization to unseen  

environments [85]–[87]. 

 

9.9.  Performance metrics 

Experimental evaluation considered detection distance, drone speed, and separation distance from 

both static and moving obstacles. 

− For static obstacles, detection distance decreased with increasing flight speed, yielding a maximum safe 

speed of 0.6 m/s. 

− For dynamic obstacles, a safe operating speed of 0.35 m/s was required, indicating tighter reaction time 

constraints. 

 

 

10. SENSOR FUSION CHALLENGES AND SOLUTIONS IN OBSTACLE DETECTION FOR EV 

Sensor fusion plays a critical role in enhancing the perception capabilities of EVs, especially for real-

time obstacle detection in dynamic environments. However, integrating data from heterogeneous sensors—

such as LiDAR, radar, and cameras proposes significant challenges related to calibration, uncertainty, 

computational complexity, and environmental robustness. This section provides an in-depth discussion of these 

challenges and explores state-of-the-art solutions. 

 

10.1.  Sensor calibration and alignment 

Accurate sensor calibration and alignment are fundamental to successful sensor fusion. Each sensor 

has a distinct coordinate system and data format. Aligning them in a unified reference frame is vital for coherent 

data interpretation. The sensor installation positions are shown in Figure 14. 

 

 

 
 

Figure 14. Schematic diagram of sensor installation positions 

 

 

10.1.1. Light detection and ranging and camera calibration 

LiDAR supplies 3D spatial information, while cameras supply rich visual texture in 2D. Calibration 

usually entails estimation of the transformation matrix (rotation and translation) between the camera and 

LiDAR coordinate frames. Checkerboard calibration, maximization of mutual information, and deep learning-

based registration are utilized. 
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10.1.2. Radar calibration 

Radar sensors, while being resistant to poor weather, provide lower resolution. Radar calibration 

against LiDAR and cameras typically consists of aligning reflectivity peaks or referencing landmarks. 

 

10.1.3. Temporal synchronization 

Sensors have varying frequencies and latencies. Time synchronization is required to prevent spatial-

temporal drift, utilizing hardware times-tamping or software interpolation. Sophisticated calibration schemes, 

including target-less calibration based on semantic segmentation and point cloud alignment, have been 

developed to carry out this operation automatically. 

 

10.2.  Sensor data noise and uncertainty 

Sensor readings naturally come with noise, distortion, and uncertainty, which can severely affect the 

performance of obstacle detection. 

a. Light detection and ranging 

Rain, fog, or snow causes performance to degrade through light absorption and scattering. Ghost 

points or incomplete scans can be caused by reflective or transparent surfaces. 

b. Radar 

Although more resilient in extreme weather, radar is plagued by low angular resolution, multipath 

reflections, and Doppler ambiguity. 

c. Cameras 

Cameras are photoreactive, glare-sensitive, motion blur-prone, and subject to occlusion. Performance 

can be drastically impaired under low-light or nighttime conditions. 

d. Probabilistic filtering 

Bayesian filters like Kalman filters, particle filters, and unscented Kalman filters (UKF) assist in 

approximating the state of moving obstacles. 

e. Denoising using deep learning 

Neural networks such as denoising convolutional neural network (DnCNN) and U-Net are employed 

to remove noise from depth maps and restore lost features. 

f. Uncertainty modeling 

Monte Carlo dropout and Bayesian neural networks estimate the confidence of predictions to prevent 

false positives. Sensor fusion assists in covering the limitations of single modalities by cross-validating data 

and supporting robust detections. 

 

10.3.  Requirements for real-time processing 

LiDAR high-frequency data (e.g., 10–20 Hz), camera (e.g., 30–60 fps), and radar need to be processed 

and fused in real time, and there are challenges with computation load, memory, and latency. 

a. Data volume 

One LiDAR scan can have more than 100,000 points; camera frames are high-res images; and radar 

returns numerous signal reflections. 

b. Latency sensitivity 

Latency in fusion and object recognition will result in decision-making failure, compromising road safety. 

c. Resource constraints 

EV embedded systems tend to have less processing power than data center environments. 

d. Edge computing 

The NVIDIA Jetson Xavier, Google Coral, and Intel Movida’s platforms provide parallel processing 

for deep learning inference on the edge. 

e. Model optimization 

Methods like quantization, pruning, and tensor decomposition minimize model size and inference 

latency without compromising accuracy. 

f. Fusion frameworks 

Modular frameworks like ROS, Apollo, and Autocare utilize multi-threaded data pipelines to fuse 

sensors in real-time. Future solutions might also utilize neuromorphic hardware and event-based cameras for 

yet lower-latency processing. 

 

 

11. RELATED WORK 

11.1.  Vision-based safety systems 

Vision-based systems are extensively employed for obstacle detection owing to their cost-

effectiveness and potential for customization. Fawole and Rawat [88] discussed their applications in HMC, 
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such as collision avoidance and safety zone monitoring. Deep learning techniques, i.e., CNNs and GANs, 

improve monocular depth estimation for navigation. Thottempudi et al. [89] utilized MiDaS for drone 

navigation in indoor settings. 

 

11.2.  Multi-sensor fusion 

In inclement weather, multi-sensor fusion of LiDAR, radar, and cameras improve detection accuracy. 

Used DNNs to combine radar, LiDAR, and cameras. Recommended the integration of radar and LiDAR for 

powerful obstacle detection. These methods suggest combining LiDAR and vision for drones and electric cars 

[90]. The table shows the summary of a few recent publications reviewed on AVs, which fuse LiDAR and at 

least one other type of sensor for obstacle avoidance, sorted by operating environment, type of vehicle, LiDAR 

type and brand, secondary sensor, main objective of the sensor fusion, and obstacle avoidance algorithm used. 

Table 2 enhances the comparision of existing work to different types of systems. 

 

 

Table 2. Summary of existing work comparison with different types of systems 
Environment Type of vehicle LiDAR type Vision Sonar Radar 

Outdoors USV 3D    

Outdoors AC 3D    

Indoors AMR 2D    

Outdoors AMR 2D    

Indoors AMR 2D    

Indoors AMR 2D    

Outdoors AC 3D   
 

Indoors AMR 2D    

Indoors AMR 2D    

Indoors AMR 2D    

Outdoors AMR 2D    

 

 

12. ANALYSIS AND POTENTIAL RESEARCH DIRECTIONS 

A review of 52 publications from 2020 to 2025 on obstacle detection in EVs using LiDAR and radar 

sensor fusion provides insights into current trends across autonomous cars, mobile robots, drones, and 

water/ground-based systems. The analysis highlights sensor adoption, vehicle types, operating environments, 

LiDAR variants, and primary objectives, reflecting the rapid evolution of multi-sensor fusion technologies. In 

sensor adoption, 3D LiDAR dominates, employed in 63.5% of systems due to its high-density point clouds and 

360° field of view, making it ideal for complex environments. Radar, particularly 24–77 GHz imaging radar, 

is used in 51.9% of fusion setups, valued for its robustness in adverse conditions. Vision cameras and thermal 

imaging complement LiDAR in 69.2% and 40.3% of studies, respectively, enhancing detection in low-light or 

harsh weather scenarios. Autonomous electric cars (AECs) lead vehicle applications, comprising 57.7% of 

implementations, driven by demand for level 2–4 autonomy in passenger vehicles. 

Autonomous mobile robots (AMRs) account for 21.2%, primarily in indoor industrial settings, while 

UAVs, UGVs, and USVs constitute 21.1%, focusing on specialized tasks like surveillance. Outdoor 

environments, including urban, off-road, and highway scenarios, dominate 76.9% of studies, whereas 23.1% 

target indoor or constrained spaces, such as warehouses and last-mile delivery systems. 

LiDAR type usage varies by application: 3D LiDAR is prevalent in 68.2% of outdoor studies, 

supporting high-speed and dynamic obstacle detection, while 2D LiDAR is used in 78.4% of indoor studies 

for planar navigation. 1D LiDAR, found in 9.6% of cases, supports edge-based systems like brake assist in 

drones or EVs. The primary focus of these studies is obstacle detection and classification (94.2%), with 

navigation and simultaneous localization and mapping (SLAM) integrated in 46.1% of cases to enable 

autonomous path planning. Terrain and surface condition mapping, often leveraging thermal and radar data, 

appears in 21.1% of systems, particularly for off-road or challenging environments. 

The Figure 15, stating that it illustrates the number of publications against the types of secondary 

sensors used for fusion with LiDAR, highlighting trends in sensor adoption within recent literature. Similarly, 

Figure 16 is now introduced as showing the number of publications categorized by the primary objectives of 

sensor fusion, which provides context for understanding the research priorities and application focus in the 

field. These additions ensure that each figure is properly cited, contextualized, and directly connected to the 

discussion in the main text, improving readability and adherence to publication guidelines. These trends 

underscore the critical role of multi-sensor fusion in advancing EV autonomy while highlighting the need for 

continued innovation to address environmental and computational challenges. 
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Figure 15. No. of publications against types of secondary sensors used for fusion with LiDAR 

 

 

 
 

Figure 16. No. of publications against sensor fusion objective 

 

 

The synthesis of literature in this review reveals that while multi-sensor fusion significantly enhances 

obstacle detection performance, the choice of fusion strategy and sensor combination must be tailored to 

operational requirements and constraints. Data-level fusion offers the richest information but demands high 

computational resources, making it suitable primarily for research and high-end platforms, whereas feature- 

and decision-level fusion provide better scalability for real-time embedded deployment. LiDAR–radar 

combinations consistently outperform single-sensor setups in adverse weather, while the inclusion of thermal 

imaging is particularly beneficial for low-light pedestrian detection. Deep learning architectures such as 

YOLOv5 and PointPillars have proven effective for real-time processing, but their computational demands 

necessitate model compression and hardware acceleration for in-vehicle applications. The findings suggest that 

future research should prioritize adaptive, context-aware fusion systems that dynamically select the optimal 

sensor subset and processing pipeline based on environmental conditions and mission priorities. Additionally, 

the integration of multi-modal fusion with V2X communication could extend perception beyond line-of-sight, 

addressing occlusion and range limitations. Standardized benchmark datasets covering diverse weather and 
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lighting conditions will be critical for fair comparison and reproducibility, while advancements in low-cost 

solid-state LiDAR and high-resolution imaging radar will make robust fusion systems more accessible for 

mass-market EVs. By aligning sensor fusion research with these technological and infrastructural trends, the 

field can move toward scalable, reliable, and context-aware obstacle detection for next-generation autonomous 

transportation. 

 

12.1. Potential 

To advance obstacle detection in EVs beyond 2025, to overcome present constraints and improve 

system performance, several research avenues are suggested. These focus on improving robustness, efficiency, 

range, affordability, intelligence, and connectivity in multi-sensor fusion systems, particularly those leveraging 

LiDAR and radar. A critical challenge is the reduced performance of LiDAR-based systems in adverse weather, 

with 58% experiencing degradation in fog, snow, or rain. Integrating thermal imaging with mmWave radar can 

ensure reliable obstacle detection in such conditions, leveraging their complementary strengths for robust 

perception. Real-time edge fusion is another underdeveloped area, as only 38.4% of systems perform full sensor 

fusion on embedded devices. Adapting optimized AI models, such as YOLOv5-tiny or MobileNetV3, for low-

power on-board inference will enhance computational efficiency and enable real-time processing. Current 

detection ranges, typically limited to 10–20 meters, are insufficient for high-speed scenarios like highway 

driving. Research into radar-augmented LiDAR or novel sensor configurations is essential to achieve reliable 

detection beyond 50 meters, improving safety at higher velocities. Cost remains a barrier, with only 22% of 

systems using commercially affordable sensors. Shifting to solid-state LiDAR and low-cost radar, paired with 

streamlined software pipelines, will facilitate mass-market EV deployment. Context-aware risk prioritization 

is also underexplored, with fewer than 15% of studies implementing semantic obstacle classification to 

differentiate critical objects like pedestrians from barriers. Future algorithms should fuse spatial, semantic, and 

behavioral data to enable smarter risk assessments, enhancing decision-making dynamic calibration and health 

monitoring are notably absent, with less than 10% of systems incorporating self-calibrating or failure-detecting 

modules. Developing real-time calibration, sensor drift compensation, and redundant failover logic will 

improve system reliability. Finally, integration with V2X infrastructure is minimal, with under 5% of research 

exploring sensor-augmented V2X communication. Fusing LiDAR and radar data with vehicle-to-infrastructure 

updates via 5G networks can extend perception beyond line-of-sight, significantly enhancing safety and 

situational awareness. These research pathways aim to create scalable, robust, and intelligent obstacle detection 

systems for next-generation EVs. 

 

 

13. CONCLUSION 

This comprehensive review has explored AI-driven multi-sensor fusion techniques for real-time 

obstacle detection and environmental perception in AEVs, emphasizing how the integration of LiDAR, radar, 

vision, and thermal sensors with advanced deep learning frameworks enhances detection accuracy, robustness, 

and adaptability in varied conditions. Beyond summarizing existing methods, the study identifies critical 

challenges, including sensor calibration, adverse-weather resilience, real-time embedded processing, and cost 

limitations. The findings point toward the need for context-aware fusion frameworks that dynamically adapt 

sensor and algorithm selection based on environmental and operational conditions, coupled with V2X-enabled 

perception sharing to extend situational awareness beyond line-of-sight. For the research community, this work 

provides a consolidated knowledge base and a roadmap linking open problems with viable solutions, such as 

lightweight AI models for edge deployment, self-calibrating sensor arrays for improved reliability, and hybrid 

LiDAR–radar–thermal configurations for all-weather performance. For industry stakeholders, the insights 

highlight the potential for scalable, cost-effective fusion architectures to accelerate the adoption of level 4–5 

AEVs in mainstream markets. Ultimately, the integration of robust sensor fusion with intelligent, adaptive 

decision-making will be central to delivering safe, efficient, and widely accessible autonomous transportation, 

and its success will depend on continued collaboration among academia, industry, and policymakers to ensure 

practical, regulatory-compliant implementations that benefit both road users and the broader smart mobility 

ecosystem. 
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