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Brain tumours may cause severe health risks because of abnormal cell
growth, which may result in organ malfunctions and death in adulthood. As
precise identification of the tumour type is required for effective treatment.
Magnetic resonance imaging (MRI) has recently been provided as an
effective method for brain tumour diagnosis by computer-based based
systems. To categorize brain tumours from MRI images, the paper offered a
fusion model integrating an enhanced regularized extreme learning machine
(RELM) classifier with principal component analysis (PCA) and normalized
GIST (NGIST) feature extraction. While NGIST extracts strong spatial and
texture features essential for modelling the tumour, PCA reduces the
dimension of the input features without sacrificing significant data patterns.
The improved RELM efficiently categorizes brain tumours into three
categories: pituitary, meningioma, and glioma. It is optimized to improve
learning capacity and generalization. The novelty of this study lies in the
integration of NGIST descriptors with PCA-driven dimensionality reduction
and an enhanced RELM classifier in a single lightweight framework. Unlike
conventional methods that trade accuracy for computational cost, the
proposed model ensures high precision and recall while remaining
computationally efficient. This unique fusion demonstrates significant
improvements in both diagnostic accuracy of 96% and clinical applicability,
offering a balanced solution for real-time brain tumor classification.
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1. INTRODUCTION

Abnormalities of the brain that are frequently referred to as tumours in medical field. Approximately
200 distinct kinds of brain tumours can develop in different locations of the human brain. These tumours
have the potential to significantly and frequently influence a person's life. Comprehensive scientific proof of
rising brain tumor occurrence and its correlation with death among people is provided by numerous studies
[1]. The American Cancer Society states that brain tumours are one of the dangerous conditions where the
brain's tissues grow peculiarly and damage brain function. According to the National Brain Tumour
Foundation's research, over the previous three decades, the number of persons who have died from brain
tumours has climbed by 300% [2]. Brain tumors have emerged as the world’s most significant difficulty and
are among the deadliest medical conditions. Brain tumors in both adults and children are uniform, according
to another analysis of cancer signs [3]. In another report, about 80,000 new instances of primary brain tumors
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36.3% of cases were meningioma, 26.5% were gliomas, and approximately 16.2% were pituitary tumors [4].

The remaining instances were of other brain tumor kinds, including malignant, medulloblastoma, and

lymphomas [5]. It can be difficult for medical professionals to detect and provide prompt treatment for

patients due to the physical characteristics of the brain and the complexity of brain tumours. Enhancing the
survival number of patients with brain tumours requires early detection and appropriate treatment. Proper

classification and early diagnosis are critical to improving patient outcomes via proper treatment [6].

The optimal selection and most commonly employed method of diagnosing brain tumours is
magnetic resonance imaging (MRI) [7]. High-resolution images of the internal structure of the brain are
offered by MRI, which is critical for identifying tumors in the brain. It assists practitioners in identifying and
classifying tumors. Different MRI modalities are generated for various types of brain tumor identification and
provide essential structural information for brain tumor classifying and identification and their regions [8], [9]
achieved 92.31% accuracy with a cost-sensitive deep neural network (DNN) but struggled with unbalanced
datasets; [10] reported 93% with artificial neural network (ANN) though results varied with MRI parameters;
[11] obtained 94% using convolutional neural network (CNN) but faced overfitting on small data; [12] reached
a mean dice score of 89.78% with a CNN—hypercolumn method but only 67.90% in survival prediction; [13]
achieved 91.9% with K-means and ANN though manual feature extraction risked missing details. Overall,
deep models demand large, balanced datasets and high computational cost, while traditional methods lack
spatial-texture capture. Hybrid CNN-texture approaches improves feature richness but often lack
interpretability. A comparative overview of related works and our proposed framework is provided in the
paper. Prior principal component analysis-generalized search tree (PCA-GIST) hybrids struggle with intensity
variations, and conventional regularized extreme learning machine (RELM) classifiers face overfitting and
poor generalization, whereas our framework integrates NGIST with PCA-driven dimensionality reduction and
enhanced RELM to overcome these issues. The novelty lies in NGIST normalization for stable MRI feature
extraction and Enhanced RELM with Tikhonov regularization for balanced generalization and efficiency,
setting our approach apart from conventional PCA-GIST or RELM methods.

The primary aspects of our proposed study can be brought up as follows:

— In the first phase, we use the image normalization technique to normalize the MRI picture to guarantee
consistent input values, reducing the influence of noise andimage intensity changes in the stage of
preprocessing.

— We employed NGIST multi-scale Gabor filters to capture both texture and spatial data. By keeping the
most pertinent information throughout the feature extraction phase, PCA lowers the feature dimensions
for more effective categorization.

— We use enhanced RELM classifier and it is a single-layered, fastest neural network-based model.
Regularization is used to prevent overfitting. Features from several tumour kinds are used to train the
classifier. Using traits that have been retrieved, the enhanced RELM predicts the kind of tumour during
testing.

— Finally, the tumour is classified as either pituitary, glioma, or meningioma based on the classifier's output.

The following sections make up the framework of the paper. In section 2, the proposed work is
presented. The experimental results of the proposed methods, implementation details, and a comparison with
other current techniques are all included in section 3. In section 4 conclusion of the work is summarized.

2. PROPOSED WORK
In this particular section, we detail the proposed methodology, the block diagram representation of
proposed work is shown in the Figure 1. The flowchart of enhanced RELM architecture is shown in Figure 2.
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Input Images from Preprocessing Feature Extraction Using Brain Tumor Classification
MRI Scans Using Image Normalization Hybrid PCA - NGIST Technique By Enhanced RELM Classifier

Figure 1. Block diagram of the proposed framework for brain tumor classification
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Figure 2. Flowchart of enhanced RELM architecture

2.1. Preprocessing of brain images

Preprocessing is essential in medical imaging to standardize MRI scans, reduce noise, and address
acquisition variations, thereby improving accuracy and reliability [14]. MRI images are converted from
256x256 pixels into one-dimensional arrays for computational efficiency and compatibility with machine
learning models [15]. Brightness and contrast are equalized by uniformly scaling pixel intensities, and
normalization as shown in (1). The preprocessing pipeline applies intensity normalization, skull stripping,
and Gabor-based artifact removal to standardize scans, eliminate non-brain tissues, and enhance edge clarity,
preserving only relevant brain structures for feature extraction. Figure 3 illustrates preprocessing results:
Figure 3(a) shows the original MRI brain input, while Figure 3(b) displays the normalized MRI image after
preprocessing.

pixel value—Min value

Normalised value = (D)

Max value—Min value

Input image Preprocessed image

@ (b)

Figure 3. Preprocessing results in; (a) example of an image brain input image and (b) preprocessed MRI
image after normalization

A prefiltering stage with multi-orientation Gabor filters was applied after normalization to reduce
noise and enhance structural details in MRI scans. This minimized irrelevant textures, enabling NGIST to
capture stronger tumor-specific features.
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2.2. Extracting brain features using hybrid PCA-NGIST approach

Feature extraction distinguishes tumor types in MRI images, essential for brain tumor classification.
The hybrid method integrates PCA for dimensionality reduction with NGIST for feature extraction, ensuring
efficient and cost-effective classification.

2.2.1. NGIST feature extraction
Spatial and orientation-specific information is derived from the input MRI image through the
application of the GIST descriptor [16]. To facilitate the extraction of texture patterns that encapsulate diverse
cellular architectures, Gabor filters, which respond to specific edges and orientations, are employed at multiple
scales. The input MRI image has been standardized to a resolution of 256x256 pixels to ensure consistency
across all imaging assessments. Prefiltering is used to minimize noise prior to feature extraction, improving the
clarity of significant textures. Figure 4 shows prefiltered MRI images with noise reduction and texture
enhancement: Figure 4(a) corresponds to glioma, Figure 4(b) meningioma, and Figure 4(c) pituitary tumors.
Prefiltering Image

Prefiltering Image Prefitering image

- - > W sl . &
() (b) (c)

Figure 4. Prefiltered MRI images illustrating noise reduction and texture enhancement; (a) glioma,
(b) meningioma, and (c) pituitary brain tumours

The representation of the Gabor filter dictionary, which illustrates how different filters react to
different orientations, improves the extraction of important texture information and demonstrates the model's
ability to capture important image qualities. As well, Figure 5 shows images of brain tumour feature
extraction, demonstrating the model's capacity to preserve crucial spatial information. The enhanced RELM
classifier can distinguish between minute changes in tumour structure thank to this method's extensive
feature set, which enhances classification performance.

Extracted NGIST Features
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Figure 5. NGIST feature extracted tumours from dataset

2.2.2. Dimensionality reduction using principal component analysis

PCA reduces the dimensionality of extracted NGIST features by selecting the most relevant
components, minimizing redundancy and computational load while retaining crucial details for accurate
classification [17]. The training dataset combines NGIST features from MRI scans of pituitary, glioma, and
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meningioma tumours. The number of hidden neurons (1500) in enhanced RELM was determined
experimentally to balance accuracy and training speed. The regularization parameter A was fixed at 1e—10, as
this value consistently minimized overfitting across validation runs. PCA components were selected to retain
>95% variance, ensuring compact yet informative features. Compared to standard GIST, NGIST incorporates
normalization of feature vectors, which reduces sensitivity to illumination and intensity variations, thereby
improving robustness in MRI-based tumor classification.

2.3. Classifying brain tumours

The framework’s final phase classifies brain tumors using features extracted by PCA-NGIST. This
is achieved with an enhanced RELM, a fast-learning neural network employing Tikhonov regularization to
improve generalization and prevent overfitting [18]. The classification process involves multiple stages.

2.3.1. Preparing training and test data

The dataset included 3064 MRI images (708 gliomas, 1426 meningiomas, and 930 pituitary) from
233 subjects, sourced from [Kaggle], resized to 256x256 and pre-processed with normalization and noise
reduction. Training data (Tfeat and Tgroup) is used by the RELM classifier to learn tumor distinctions [19],
while test data contains PCA-reduced features for classification.

2.3.2. Setting the parameters for enhanced regularized extreme learning machine

The enhanced RELM uses 1500 hidden neurons and a regularization parameter A=e-10 for efficient
learning and overfitting suppression. In (2)-(7) define its process: input normalization, PCA-based
dimensionality reduction, hidden layer computation with random weights, output weight estimation via
Tikhonov regularization, test data evaluation, and final classification into meningioma, glioma, or pituitary
tumors, summarized in Algorithm 1.

Algorithm 1. Enhanced RELM classifier for brain tumor classification

1. Input: feature matrix X € RN*¢ (input data), Labels Y RN (target labels), regularization parameter 4,
Number of hidden neurons L

2. Output: predicted class label Y*

3. Stepl: data preprocessing

X-pX)
Xnorm = U?X) (2

Where X, is normalized feature matrix, u(X) and o(X) are the mean and standard deviation of the
input features, respectively

4. Normalize input features

5.  Step2: feature extraction using PCA and NGIST

6.  Perform PCA to obtain principal components:

Z = XpormW 3

Where Z is PCA-transformed feature matrix of size,

Xnorm 1S Normalized input feature matrix.

W is Eigenvector matrix

7.  Step3:initialization of hidden layer weights and biases
8.  Randomly initialize weights W, € R%“and bias b, €R"
9.  Compute the hidden layer output matrix:

H = o(XW,, + by) 4)

Where His hidden layer output matrix of size

o is Activation function (ReLU or Sigmoid)

by, is Bias vector for hidden layer

W, is Randomly initialized weight matrix between input and hidden layer.
10. Step4: Compute Output Weights using Tikhonov Regularization

11. Solve the regularized in (5):

B=(H"H+A)'HTY (5)
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Where S is Output weight matrix of size

HT is Transpose of H

H is Hidden layer output matrix

A is Regularization parameter

I is Identity matrix of size

Y is Label matrix

12. Step5: Prediction on test data

13.  For test input Xeest, compute the hidden layer output:

Htest = G(XtestWh + bh) (6)

Where H,,; is hidden layer output for test data
Xiese 1S test data matrix of size

14. Predict class labels:
Y = Htestﬁ (7)

Where Y is final predicted scores,
Hies: i hidden output of test data
B is output weights learned from training
15. Assign class based on threshold:

if¥<1.5 (Meningioma)

y=if1.5<Y <25

(Glioma)
if Y >2.5 (Pituitary)

End

Algorithm 1 outlines the enhanced RELM classifier with clear start—end points and separated stages:
preprocessing, feature extraction, PCA, hidden layer initialization, weight computation, and prediction for
reproducibility. Consistent use of “Enhanced RELM” distinguishes it from the conventional model.

2.3.3. Training the enhanced regularized extreme learning machine classifier

The enhanced RELM classifier used labeled training data, fixing hidden-layer weights with random
initialization while adjusting only output weights, unlike conventional neural networks. This design eliminates
backpropagation, greatly reducing training time while maintaining high classification accuracy [20].

2.3.4. Testing and predicting the tumour type

Once trained, the enhanced RELM classifier applies PCA for dimensionality reduction on test MRI
images and classifies tumors using a threshold-based scoring system: <1.5 as meningioma, 1.5-2.5 as glioma,
and >2.5 as pituitary [21], [22].

To ensure reproducibility, the dataset was split into 80% training and 20% testing with balanced
classes (glioma, meningioma, and pituitary). MRI images were resized to 256x256, normalized in (1), and
prefiltered with Gabor filters. NGIST features were extracted using a 4-scale, 8-orientation filter bank, and
PCA retained 95% variance. Enhanced RELM was configured with 1500 hidden neurons and A=1e—10.
Experiments were run in MATLAB R2018a on an Intel i7 system with 16GB RAM, with the workflow
detailed in Algorithm 1.

3. RESULTS AND DISCUSSION
3.1. Evaluation parameters

In (8)-(11) define accuracy, precision, recall, and F1-score, which evaluate the proposed framework
by comparing true and predicted classes. These metrics provide a comprehensive view of classification
performance across tumor types, with precision minimizing false positives (FP) and recall ensuring accurate
tumor detection [23].
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TP +TN
Accuracy = ——— (8)
TP +FN+FP+TN
. . TP
Precision = 9
TP +FP
TP
Recall = (10)
TP +FN
recisonxrecall
F1score = 2 L ocooTects (12)
precision+recall

The F1-score was computed as the harmonic mean of precision and recall, ensuring a balanced
evaluation even in the presence of class imbalance. The explicit formula used in this study is given as in (11).
Where TP is true positive, TN is true negative, and FN is false negative.

3.2. Analysis of results

This work used 3064 T1-weighted contrast MR images from 233 brain regions [24], split into 80%
training and 20% testing. The dataset included 708 glioma, 1426 meningioma, and 930 pituitary tumor
samples, ensuring balanced evaluation. Leveraging extracted feature patterns, the enhanced RELM classifier
generalized well across samples, achieving high precision and recall while capturing tumor-specific structures.
Figure 6 displays classification outputs across glioma, meningioma, and pituitary tumors in Figures 6(a)-(i),
showing model predictions alongside ground truth to illustrate consistency and robustness, with accurate
results and low computational cost supporting its potential for real-world clinical applications [25].

Figure 6. Brain tumor classification results using enhanced RELM classifier; (a) glioma, (b) glioma,
(c) glioma, (d) meningioma, () meningioma, (f) meningioma, (g) pituitary, (h) pituitary, and (i) pituitary

To improve interpretability of the proposed approach, we incorporated visual examples of the MRI
inputs used for classification. Figure 7 presents representative T1-weighted contrast-enhanced brain MRI
images for glioma, meningioma, and pituitary tumors. These images highlight the distinct structural and
textural characteristics across tumor types and provide visual context to the classification task.
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Meningioma

Figure 7. Contrast-enhanced brain MRI images of glioma, meningioma, and pituitary tumors

The enhanced RELM classifier effectively classified all brain tumors, achieving accuracies of
90.00% for meningioma, 98.40% for glioma, and 97.50% for pituitary tumors. Meningiomas reached 100%
precision but 90% recall, indicating a few missed cases. Gliomas attained 91.30% precision and 100% recall,
while pituitary tumors achieved 96% precision and 100% recall, minimizing misclassifications. These results
highlight the model’s reliability and robustness across tumor types [26]. Detailed various descriptions of
precision, recall and accuracy for each category of tumour are overviewed in Table 1 and consolidates all
performance metrics, including class-wise accuracy, precision, recall, and F1-scores, thereby offering a
comprehensive summary of classifier performance. Figure 8 also evidently illustrates these measurements in
a graphical way, shedding light on the performance and stability of the classifier across various tumour
classifications [27]-[29]. The average training time for the proposed PCA-NGIST+enhanced RELM was 38
seconds, with inference requiring less than 0.15 seconds per image. In comparison, convolutional neural
network-long short-term memory (CNN-LSTM) required approximately 320 seconds for training and 0.85
seconds per inference. This highlights the computational efficiency of our approach, making it suitable for
real-time diagnostic scenarios.

Table 1. Performance metrics of proposed work
Brain tumour type  Accuracy (%)  Precision (%) Recall (%) F1-score (%)

Meningioma 90.00 100 90.00 94.74
Glioma 98.398 91.30 100.00 95.45
Pituitary 97.498 96.00 100.00 97.96

Performance Metrics

,0\102
8\,100
o
£ o
o 92
5 5
84
Accuracy (%) Precision (%0) Recall (%0) F1 Score (%)
Metrics

B Meningioma M Glioma Pituitary

Figure 8. Graphical visualization of performance metrics
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The confusion matrix in Figure 9 shows that the proposed PCA-NGIST with enhanced RELM
model achieved per-class accuracies of 90.00% (meningioma), 98.40% (glioma), and 97.50% (pituitary),
with an overall accuracy of ~94-95% and ~5% misclassification. Figure 10 shows the receiver operating
characteristic (ROC) curves which further demonstrate strong perception with all tumor classes reaching an
area under the curve (AUC) of ~0.99. These findings confirm the framework’s robustness and reliability in
accurately classifying brain tumors, even in challenging cases with overlapping features. Meningioma recall
is reduced by similarities with gliomas, suggesting multimodal MRI or ensemble classifiers to improve
accuracy. Misclassifications mainly arose between meningiomas and gliomas due to similar intensities and
overlapping regions, with motion artifacts further reducing recall; future work could use motion correction
and multimodal MRI (T2 and FLAIR) to overcome these issues.

Confusion Matrix — Brain Tumor Classification ’ ROC Curve
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[}
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=
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0.75

Pituitary 16 (1.7%) 14 (1.5%) 900 (96.8%) Slloma (ALG:=1h99} |
0.7 Meningioma (AUC = 0.99)
Pituitary (AUC = 0.99)
0.65 ! !
Meningioma Glioma Pituitary 0 0.1 0.2 0.3 0.4
Predicted Labels False Positive Rate
Figure 9. Confusion matrix Figure 10. ROC curve

To validate the robustness of the proposed framework, paired t-tests were performed comparing
PCA-NGIST+Enhanced RELM with baseline models (CNN-LSTM, capsule networks, and support vector
machine (SVM)). The results in Table 2 demonstrate that the accuracy improvements achieved by our
method are statistically significant, with p<0.01 in all comparisons. Furthermore, analysis of variance
(ANOVA) test confirmed overall significant differences among models (p<0.001). These findings provide
strong evidence that the performance gains of the proposed framework are not incidental but consistent
across multiple folds.

Table 2. Statistical comparison of PCA-NGIST+enhanced RELM with baseline models

Model Mean accuracy (%)  Std. deviation  p-value vs proposed
PCA-NGIST+enhanced RELM 96.0 0.8
CNN-LSTM 89.5 1.2 <0.01
Capsule network 88.9 15 <0.01
SVM 86.7 1.1 <0.001

To further strengthen the interpretability of the proposed framework, saliency-based decision
rationale plots were generated and are presented in Figure 11. These visualizations highlight the most
discriminative tumor regions that influenced the enhanced RELM classifier’s predictions for glioma,
meningioma, and pituitary tumors. The highlighted regions in the heatmaps correspond well with the actual
tumor structures in MRI scans, confirming that the classifier focuses on clinically relevant areas while
making decisions. The ablation study revealed progressive improvements from PCA-only (84.2%) and
NGIST-only (88.6%) to PCA+NGIST with RELM (92.4%) and the full PCA-NGIST+enhanced RELM
model (96%), confirming the critical contribution of each module. This interpretability component not only
complements the quantitative results Figures 8-10 but also provides transparency into the model’s reasoning,
thereby enhancing clinical trust and applicability in diagnostic practice.
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Glioma Meningloma Pitultary

Figure 11. Saliency-based interpretability plots for enhanced RELM predictions

As shown in Table 3 and Figure 12, the proposed PCA-NGIST with enhanced RELM achieved 96%
accuracy, outperforming hybrid CNN-LSTM (89.5%), capsule networks (88.9%), and classical ML models
like SVM and random forest (86-89%). Enhanced RELM ensured faster convergence with Tikhonov
regularization and AUC scores above 0.97, offering a lightweight, efficient, and interpretable alternative to
deep models for CAD systems. Ethically, such systems should assist rather than replace radiologists,
requiring validation across diverse settings while addressing privacy, consent, and interpretability for clinical
trust.

Table 3. Comparison of proposed work with other models

Feature extraction technique Classifier model Over all accuracy (%)
Hybrid CNN LSTM 89.5
Capsule layers Capsule network classifier 88.9
Data augmentation Fully connected classifier 85.8
Hybrid feature extraction Random forest with SVM 88.0
2D CNN features K-Means clustering 85.3
Local binary patterns Decision tree classifier 86.5
PCA-NGIST Enhanced RELM 96.00

Comparision of Brain Tumor Classification Accuracy (%)

100

= 95
S

> 90
(&)
o

S 85
(&
(&}

< 80

75

LSTM Fully Connected Random Forest K-Means Decision Tree Enhanced
Classifier with SVM Clustering Classifier RELM
Hybrid CNN Data Hybrid Feature 2D CNN Local Binary = PCA-NGIST
Augmentation Extraction Features Patterns

Figure 12. Graphical representation of performance comparison of brain tumor classification techniques

4. CONCLUSION

This research performed classification of brain tumors by means of application of machine learning
models. The complicated problem of detecting and classifying brain tumors has, therefore, been approached
through an application of machine learning along with a novel hybrid framework which consists of PCA-
NGIST and enhanced RELM classifiers. It aims to classify gliomas, meningiomas, and pituitary tumors with
an accuracy rate of 96%, utilizing a dataset of 3064 T1-weighted contrast-enhanced MRI images that cover
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233 different areas of the brain. The impressive classification results are a testimony to this PCA-NGIST
feature extraction model that extracts the significant spatial and texture-oriented features, reducing the
dimensionality from highly complex MRI data.

In summary, integrating PCA-NGIST features with Enhanced RELM yields a lightweight yet
effective framework for brain tumor classification. Clinically, it enables accurate, reproducible, and rapid
diagnosis, supporting treatment planning and patient monitoring. The method shows promise for real-time
MRI screening, computer-aided diagnosis, and radiologist decision support. The lightweight enhanced
RELM architecture supports integration into clinical decision-support systems and mobile diagnostic
applications, enabling rapid screening in remote or under-resourced healthcare settings. A limitation of this
study is its reliance on Kaggle datasets without radiologist-verified annotations.

As future work, we aim to collaborate with healthcare institutions for radiologist-annotated
validation and pursue multi-institutional studies, multimodal MRI integration (T1, T2, and FLAIR), and deep
feature fusion to enhance robustness and clinical applicability. Future work will also explore integration with
cloud-based radiology platforms, EHR systems, telemedicine, and hardware acceleration to improve
accessibility and clinical deployment.

FUNDING INFORMATION
There are no sources of funding agency that have supported the work. So, Authors state no funding
involved.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo | R D O E Vi Su P Fu
Bukkapatnam Rakesh v v v v v ¥V v v v v
Babu

Vullanki Rajesh v v v v v v v
Bodapati Venkata v v v v v v Vv
Rajanna

Shaik Hasane v v v v v v v

Ahammad

C : Conceptualization I : Investigation Vi : Visualization

M : Methodology R : Resources Su : Supervision

So : Software D : Data Curation P : Project administration
Va : Validation O : writing -Original Draft Fu : Funding acquisition
Fo : Formal analysis E : Writing - Review &Editing

CONFLICT OF INTEREST STATEMENT
The authors state that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper. Authors state no conflict of interest.

DATA AVAILABILITY
The authors confirm that the data supporting the findings of this study are available within the
article.

REFERENCES

[1] S. Montaha, S. Azam, A. K. M. R. H. Rafid, M. Z. Hasan, A. Karim, and A. Islam, “Time Distributed-CNN-LSTM: A Hybrid
Approach Combining CNN and LSTM to Classify Brain Tumor on 3D MRI Scans Performing Ablation Study,” IEEE Access,
vol. 10, pp. 60039-60059, 2022, doi: 10.1109/ACCESS.2022.3179577.

[2] N.Bibietal., “A Transfer Learning-Based Approach for Brain Tumor Classification,” IEEE Access, vol. 12, pp. 111218-111238,
2024, doi: 10.1109/ACCESS.2024.3425469.

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4482-4494



Bulletin of Electr Eng & Inf ISSN:2302-9285 O 4493

[3]

[4]

[5]
[6]
[71

(8]
[9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

[28]

[29]

A. Rehman, S. Naz, M. I. Razzak, F. Akram, and M. Imran, “A Deep Learning-Based Framework for Automatic Brain Tumors
Classification Using Transfer Learning,” Circuits, Systems, and Signal Processing, vol. 39, no. 2, pp. 757-775, Feb. 2020, doi:
10.1007/s00034-019-01246-3.

A. H. Lal, E. Sreenivasulu, M. A. Kumar, and S. Bachu, “Implementation of Brain Tumor Detection with Deep Learning
Classification Using Hybrid Feature Extraction,” in 2022 1st International Conference on Electrical, Electronics, Information and
Communication Technologies, ICEEICT 2022, Trichy, India, Feb. 2022, pp. 1-5, doi: 10.1109/ICEEICT53079.2022.9768532.

A. Isin, C. Direkoglu, and M. Sah, “Review of MRI-based Brain Tumor Image Segmentation Using Deep Learning Methods,”
Procedia Computer Science, vol. 102, pp. 317-324, 2016, doi: 10.1016/j.procs.2016.09.407.

M. Aamir et al., “A deep learning approach for brain tumor classification using MRI images,” Computers and Electrical
Engineering, vol. 101, p. 108105, Jul. 2022, doi: 10.1016/j.compeleceng.2022.108105.

M. N. Islam, M. S. Azam, M. S. Islam, M. H. Kanchan, A. H. M. S. Parvez, and M. M. Islam, “An improved deep learning-based
hybrid model with ensemble techniques for brain tumor detection from MRI image,” Informatics in Medicine Unlocked, vol. 47,
pp. 1-15, 2024, doi: 10.1016/j.imu.2024.101483.

M. Aamir, Z. Rahman, U. A. Bhatti, W. A. Abro, J. A. Bhutto, and Z. He, “An automated deep learning framework for brain
tumor classification using MRI imagery,” Scientific Reports, vol. 15, no. 1, May 2025, doi: 10.1038/s41598-025-02209-2.

M. Arabahmadi, R. Farahbakhsh, and J. Rezazadeh, “Deep Learning for Smart Healthcare—A Survey on Brain Tumor Detection
from Medical Imaging,” Sensors, vol. 22, no. 5, pp. 1-27, Mar. 2022, doi: 10.3390/s22051960.

J. Dixon, O. Akinniyi, A. Abdelhamid, G. A. Saleh, M. M. Rahman, and F. Khalifa, “A Hybrid Learning-Architecture for
Improved Brain Tumor Recognition,” Algorithms, vol. 17, no. 6, pp.1-17, May 2024, doi: 10.3390/a17060221.

S. Gajula and V. Rajesh, “An MRI brain tumour detection using logistic regression-based machine learning model,” International
Journal of System Assurance Engineering and Management, vol. 15, no. 1, pp. 124-134, Jan. 2024, doi: 10.1007/s13198-022-
01680-8.

X. W. Gao, R. Hui, and Z. Tian, “Classification of CT brain images based on deep learning networks,” Computer Methods and
Programs in Biomedicine, vol. 138, pp. 49-56, Jan. 2017, doi: 10.1016/j.cmpb.2016.10.007.

A. Biswas and M. S. Islam, “Brain Tumor Types Classification using K-means Clustering and ANN Approach,” in 2021 2nd
International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), DHAKA, Bangladesh, Jan. 2021,
pp. 654-658, doi: 10.1109/ICREST51555.2021.9331115.

N. Abiwinanda, M. Hanif, S. T. Hesaputra, A. Handayani, and T. R. Mengko, “Brain tumor classification using convolutional
neural network,” in IFMBE Proceedings, vol. 68, no. 1, 2019, pp. 183-189, doi: 10.1007/978-981-10-9035-6_33.

H. Z. Eldin et al., “Brain Tumor Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf
Optimization,” Bioengineering, vol. 10, no. 1, pp. 1-19, Dec. 2023, doi: 10.3390/bioengineering10010018.

A. R. Mathew and P. B. Anto, “Tumor detection and classification of MRI brain image using wavelet transform and SVM,” in
Proceedings of IEEE International Conference on Signal Processing and Communication, ICSPC 2017, Jul. 2017, vol. 2018, pp.
75-78, doi: 10.1109/CSPC.2017.8305810.

M. S. Majib, M. D. M. Rahman, T. M. S. Sazzad, N. 1. Khan, and S. K. Dey, “VGG-SCNet: A VGG Net-Based Deep Learning
Framework for Brain Tumor Detection on MRI Images,” IEEE Access, vol. 9, pp. 116942-116952, 2021, doi:
10.1109/ACCESS.2021.3105874.

M. A. Ottom, H. A. Rahman, and 1. D. Dinov, “Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation,” |IEEE
Journal of Translational Engineering in Health and Medicine, vol. 10, pp. 1-8, 2022, doi: 10.1109/JTEHM.2022.3176737.

S. Ahmad and P. K. Choudhury, “On the Performance of Deep Transfer Learning Networks for Brain Tumor Detection Using MR
Images,” IEEE Access, vol. 10, pp. 59099-59114, 2022, doi: 10.1109/ACCESS.2022.3179376.

P. C. Tripathi and S. Bag, “An Attention-Guided CNN Framework for Segmentation and Grading of Glioma Using 3D MRI
Scans,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 20, no. 3, pp. 1890-1904, May 2023, doi:
10.1109/TCBB.2022.3220902.

Q. Xu, Z. Ma, N. HE, and W. Duan, “DCSAU-Net: A deeper and more compact split-attention U-Net for medical image
segmentation,” Computers in Biology and Medicine, vol. 154, pp. 1-10, Mar. 2023, doi: 10.1016/j.compbiomed.2023.106626.

T. K. Dutta, D. R. Nayak, and Y. D. Zhang, “ARM-Net: Attention-guided residual multiscale CNN for multiclass brain tumor
classification using MR images,” Biomedical Signal Processing and Control, vol. 87, p. 105421, Jan. 2024, doi:
10.1016/j.bspc.2023.105421.

E. Sahin, D. Ozdemir, and H. Temurtas, “Multi-objective optimization of ViT architecture for efficient brain tumor
classification,” Biomedical Signal Processing and Control, vol. 91, p. 105938, May 2024, doi: 10.1016/j.bspc.2023.105938.

A. A. Asiri et al., “Advancing brain tumor classification through fine-tuned vision transformers: a comparative study of pre-
trained models,” Sensors, vol. 23, no. 18, pp. 1-23, Sep. 2023, doi: 10.3390/s23187913.

W. Jun and Z. Liyuan, “Brain tumor classification based on attention guided deep learning model,” International Journal of
Computational Intelligence Systems, vol. 15, no. 1, p. 35, Dec. 2022, doi: 10.1007/s44196-022-00090-9.

M. A. Khan et al., “Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning
application for radiologists,” Diagnostics, vol. 10, no. 8, pp. 1-19, Aug. 2020, doi: 10.3390/diagnostics10080565.

L. Qi, W. Shi, Y. Miao, Y. Li, G. Feng, and Z. Jiang, “Intra-modality masked image modeling: A self-supervised pre-training
method for brain tumor segmentation,” Biomedical Signal Processing and Control, vol. 95, p. 106343, Sep. 2024, doi:
10.1016/j.bspc.2024.106343.

R. A. Zeineldin et al., “Explainability of deep neural networks for MRI analysis of brain tumors,” International Journal of
Computer Assisted Radiology and Surgery, vol. 17, no. 9, pp. 1673-1683, Apr. 2022, doi: 10.1007/s11548-022-02619-x.

M. T. R. Shawon, G. M. S. Shibli, F. Ahmed, and S. K. S. Joy, “Explainable cost-sensitive deep neural networks for brain tumor
detection from brain MRI images considering data imbalance,” Multimedia Tools and Applications, vol. 84, pp. 43615-43642,
2025, doi: 10.1007/s11042-025-20842-x.

Brain tumor classification using PCA-NGIST features with an enhanced ... (Bukkapatnam Rakesh Babu)



4494

a

ISSN:2302-9285

BIOGRAPHIES OF AUTHORS

Bukkapatnam Rakesh Babu ' £ B € received B. Tech degree from JNTU Anantapur,
Andhra Pradesh and he got M. Tech from SVU Tirupati, Andhra Pradesh. Now he is research
scholar in Koneru Lakshmaiah Education Foundation, Guntur in the domain of Bio-medical
Image Processing. He can be contacted at email: rakesh777babu@gmail.com.

Vullanki Rajesh £:4 B8 © obtained Ph.D. in Electronics and Communication Engineering
from Andhra University in 2012, a Master's degree in Instrumentation from SRTMU, Nanded,
in 1997, and a degree in Electronics Engineering from the Institution of Engineers, India, in
1994. In the fields of signal processing and image processing, he has authored multiple works
that have appeared in international conferences and journals. His areas of interest in research
include image processing, virtual instrumentation, and the measurement and processing of bio-
electric signals. He can be contacted at email: rajesh4444@kluniversity.in.

Bodapati Venkata Rajanna RIE s currently working as an Associate Professor in
Department of Electrical and Electronics Engineering at MLR Institute of Technology,
Hyderabad, India. He received B.Tech. degree in Electrical and Electronics Engineering from
Chirala Engineering College, JNTU, Kakinada, India, in 2010, M.Tech. degree in Power
Electronics and Drives from Koneru Lakshmaiah Education Foundation, Guntur, India, in
2015 and Ph.D. in Electrical and Electronics Engineering at Koneru Lakshmaiah Education
Foundation, Guntur, India, in 2021. His current research includes, dynamic modeling of
batteries for renewable energy storage, battery management systems (BMS) for electric
vehicles and portable electronics applications, renewable energy sources integration with
battery energy storage systems (BESS), smart metering and smart grids, micro-grids,
automatic meter reading (AMR) devices, GSM/GPRS and power line carrier (PLC)
communication, and various modulation techniques such as QPSK, BPSK, ASK, FSK, OOK,
and GMSK. He can be contacted at email: rajannabv2012@gmail.com.

Shaik Hasane Ahammad & B ©c (student member, IEEE) received his B.Tech. and
M.Tech. degrees in Electronics and Communication Engineering from Jawaharlal Nehru
Technological University, Kakinada, in 2011 and 2014, respectively. He earned his Ph.D. in
ECE from Koneru Lakshmaiah Education Foundation (KLEF) Deemed to be University,
Vaddeswaram, Guntur, Andhra Pradesh. Currently, he is serving as an assistant professor in
the Department of ECE at KLEF, where he also holds the position of Associate Dean for
Research and Development. He can be contacted at email: ahammadklu@gmail.com.

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4482-4494


https://orcid.org/0000-0001-5564-2535
https://scholar.google.com/citations?hl=id&user=1rsJcH8AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58618267900
https://orcid.org/0000-0001-5630-5637
https://scholar.google.com/citations?user=ukNBEGQAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57203775476
https://www.webofscience.com/wos/author/record/V-7402-2018
https://orcid.org/0000-0002-7526-9157
https://scholar.google.com/citations?user=k-LL9i0AAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57204342199
https://www.webofscience.com/wos/author/record/W-1542-2017
https://orcid.org/0000-0002-2587-4164
https://scholar.google.com/citations?user=hLKph6AAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57208325596
https://www.webofscience.com/wos/author/record/R-4445-2019

