Bulletin of Electrical Engineering and Informatics
Vol. 14, No. 6, December 2025, pp. 4823~4833
ISSN: 2302-9285, DOI: 10.11591/eei.v14i6.10751 O 4823

Evaluating the effectiveness of Havij for structured query
language injection exploitation in web applications

Mahmoud Baklizi', Mohammad Alkhazaleh?, Musab Bassam Yousef Alzghoul?, Adi Maaita®, Jamal

Zragou?!, Mohammad AlShaikh-Hasan*

1Department of Computer Science, Faculty of Information Technology, University of Petra, Amman, Jordan
2Department of Computer Science, Faculty of Information Technology, Isra University, Amman, Jordan
3Department of Information and Communication Technology, King Hussein Cancer Center, Amman, Jordan
“Department of Computer Science, College of Engineering, Design and Physical Sciences (CEDPS), Brunel University of London,

London, United Kingdom

Article Info

ABSTRACT

Article history:

Received May 25, 2025
Revised Oct 1, 2025
Accepted Oct 14, 2025

Keywords:

Havij

Structured query language
injection

Structured query language
injection tools

Web application

Website vulnerabilities

Structured query language injection (SQLi) is still one of the most critical
risks to web application security, as it allows attackers to interfere with
sensitive data and even a complete database infrastructure. Although many
automated tools are available, previous studies usually achieve only
descriptive briefs, which do not offer empirical assessments that measure the
performance and the usability. This research fills this void by a systematic
five-stage experimental analysis of the Havij automated SQLi tool under a
controlled and ethical test setup. Confirmation of vulnerability, automated
exploitation, data extraction and benchmarking of performance were
performed as the methodology, and the results were compared against the
industry standard SQLmap tool. It was found that in less than a minute Havij
was able to locate the target database, scan its structure, and steal
authentication credentials, which is quite efficient and user-friendly. In
contrast to the literature, our work presents not only quantitative measures
(time-to-exploit, request volume, and success rate) but also a qualitative
evaluation (user accessibility and limitations), which gives a comprehensive
evaluation. The results highlight trade-offs between the depth and
accessibility, the continued dangers of SQLi in practice, and provide
recommendations that developers and security experts can implement.

This is an open access article under the CC BY-SA license.

0

Corresponding Author:
Mohammad Alkhazaleh

Department of Computer Science, Faculty of Information Technology, Isra University

Amman, Jordan

Email: m.alkhazaleh@iu.edu.jo

1. INTRODUCTION

The prevalence of web applications by the government and commercial organizations has changed
the service delivery in such a way that, effective utilization of electronic transactions has been facilitated [1].
They are technically structured on database management systems (DBMSs) in order to manage the operations
of data with the help of structured query language (SQL) and tend to be developed in languages like PHP and
JavaScript [2]. However, this interconnection has very severe security challenges. One of the most persistent
and dangerous attack vectors is Structured query language injection (SQLi), and with the help of input fields,
attackers can use harmful SQL code to obtain unauthorized access to, manipulate, or steal sensitive data-
usernames, passwords, and financial data included [3], [4]. The effect is data breach and complete
compromising of the database server which poses a significant risk to organizational integrity and user

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/

4824 O3 ISSN: 2302-9285

privacy [5], [6]. There is a great variety of tools developed by the cybersecurity industry to detect and
mitigate SQLi vulnerabilities. They consist of open-source command-line tools with wide support of many
different injection methods and database support to enable professional testers (SQLmap [7]) and commercial
graphical user interface (GUI) scanners (Acunetix [8]) and Netsparker [9]) to be used in auditing at the
enterprise level. According to the literature, an apparent trade-off exists between automation, power and
accessibility. One such example is that, despite SQLmap supposedly being the de facto standard in its
entirety [10], the command-line interface (CLI) is steep to learn. On the other hand, GUI-based tools like
Havij [11] and jSQL injection [12] are hailed to be user friendly and simple to learn and operate, making the
barrier to entry a major factor. Research, including that by Ibrahim and Kant [13], has empirically observed
that tools such as Havij can be used to reveal vulnerabilities in an effective way, usually in combination with
manual methods of initial discovery. The available body of work has been successful so far in listing
available tools but usually in a descriptive manner in terms of features as opposed to a critical, empirical
comparison of their operational effectiveness and their performance under controlled situations.

In spite of the plethora of tools, there is a major void in the empirical and comparative study of the
actual performance of the tools. Most of the studies are descriptive but not structured in their evaluation
process [14], [15]. Moreover, although the raw capability of a tool is a factor, its practicality, which is
determined by such factors as speed, accuracy, and ease of use is equally important to security professionals
when making tooling decisions. In particular, the implementation and performance rates of the Havij tool are
not typically investigated in the literature with quantitative measures despite the frequent mentioning of the
tool [16]. It is strongly lacking in recent, rigorous research that quantitatively compares such accessible tools
to a baseline (e.g., SQLmap) on a standardized testbed to get a sense of their specific strengths, weaknesses,
and place in the current security toolkit.

This paper seeks to fill these gaps by going beyond a descriptive enumeration to give an empirical
assessment. Threefold our new contributions are:

— An experiential, gradual approach: we suggest and implement a step-by-step, five stage approach to
systematic review of SQLi exploitation tools within a legal, ethical, and controlled setting.

— A quantitative and qualitative evaluation: we provide the quantitative (e.g., the time-to-exploit) and
qualitative (e.g., the user experience) evaluation of the Havij tool, therefore, providing a comprehensive
picture of its functioning in a typical testbed.

— Discussion on security implications: we summarize our results to discuss the wider implications of such
easily available automated tools to offensive security testing and the changing threat environment and
offer practical advice to developers and security practitioners.

The rest of this paper is structured in the following way. Section 2 provides the literature review and
critically examines the available SQL.i tools and their review in the literature. Section 3 explains the research
method in terms of the experimental design, test environment, and five phase evaluation process. Section 4
summarizes and addresses the findings of the comparative study of Havij and SQLmap, both in terms of
quantitative performance indicators and qualitative findings. In section 5, the paper will conclude by
summarising the findings of the study, limitations of the study, and recommendation of future research.

2. LITERATURE REVIEW

This part critically summarizes the present state of knowledge about SQL.i tools, their assessment in
the scholarly and practitioner communities, and the defensive situation. Although many studies have
enumerated the existing tools, there is still a huge gap as to the rigorous, empirical comparisons of their
effectiveness, especially in those tools that are valued due to ease of access rather than raw power. Moreover,
the literature tends to discuss offensive tools as discrete entities, and little is done to discuss these capabilities
in relation to the contemporary defensive measures.

2.1. Critical overview structured query language injection tools

The SQLi detection and exploitation arsenal is varied, including both the advanced, open-source
command-line tools, and commercial graphical scanners. A uniform trade-off of automation, power and
usability can be identified in the academic and professional discourse. De facto testing standard is SQLmap
[7], an open-source CLI tool that is highly rated in supporting databases (MySQL, PostgreSQL, MSSQL,
Oracle, and SQL.ite) and types of injection (error-based, Boolean-based, and time-based). Its completeness is
what makes it the best option when it comes to professional penetration testers [10], however, its CLI is a
major barrier to its usability by new users. Conversely, the barrier to entry is reduced by GUI-based tools
such as Havij [11] and jSQL injection [12]. Empirical observation has been made in studies like that by
Ibrahim and Kant [13] that Havij has the ability to reveal the weaknesses effectively and has been utilized in
quick initial analysis. But, as Priyanka and Smruthi [16] remark, such tools as Havij are often cited but have

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4823-4833

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4825

not been evaluated in the recent literature through rigorous and quantitative performance benchmarking.
Moreover, Havij is not actively developed anymore, which casts doubts on its effectiveness against modern
and defended systems.

Commercial tools such as Acunetix [8] and Netsparker [9] have enterprise level automation and
features, and are priced at a high cost, but are not designed as a research tool and are instead designed to run
audits of security within an organization. Other tools have narrower niches: SQLNinja [17] against targeted
MSSQL attacks, BBQSQL [18] against blind SQLi and NoSQLMap [19] against new NoSQL databases. In
addition, general-purpose web security testing tools, such as the OWASP zed attack proxy (ZAP) [20] and
Vega [21], contain rudimentary SQL.i detection functions as part of a wider set of vulnerability checks, and
proxies such as Fiddler [22] are typically only used to test and debug web requests manually.

Table 1 includes a comparative summary of these tools. The decisive observation of this landscape
is not simply the existence of tools, but the obvious contrast between tools of significant power and
complexity (SQLmap) and tools of power and simplicity (Havij). Most of the literature enumerates these
features [14], [15] but does not go further to provide a head-to-head, metrics-driven comparison of their
operational performance, which is the gap that this study fills.

Table 1. Comparative analysis of SQLi tools

Tool Aut(())rr]natl Interface Supported databases Ssgﬁgotﬁgzs Free/commercial Best for
Sqlmap High CLlI MySQL, PostgreSQL, All major types Free Professional
MSSQL, Oracle, and (error-based, blind, penetration testing
SQLite and time-based)
Havij High GUI MySQL, MSSQL, Basic types Commercial (no Beginners, quick
Oracle, and longer updated) testing
PostgreSQL (limited)
jSQL Medium GUI MySQL, MSSQL, Boolean-based and Free Lightweight
Injection Oracle, and time-based testing
PostgreSQL
SQLNinja Medium CLlI Microsoft SQL Server Blind and error- Free Targeted attacks
only based on MSSQL
BBQSQL Medium CLI Database-agnostic Blind-based Free Advanced blind
(blind SQLi only) SQLi testing
Burp Suite Limited GUI All (via HTTP layer) Limited (manual or Free/pro Manual and
via pro scanner) automated web
testing
OWASP Limited GUI All (via HTTP layer) Basic types via Free General-purpose
ZAP active scan security testing
NoSQLMap Medium CLI MongoDB and NoSQL Injection Free NoSQL injection
CouchDB detection
Netsparker High GUI Most major databases All major types Commercial Enterprise-level
testing
Acunetix High GUI Most major databases All major types Commercial Enterprise and
web app security
Vega Limited GUI Limited (mostly web Basic detection Free Educational or
app layer) small-scale testing
Fiddler+ Manual GUI Web-layer injection Manual injection Free Manual testing,
Plugins only debugging

2.2. Defensive context: beyond offensive tools

An effective analysis of offensive tools has to be understood within the defensive ecosystem that
they are developed to circumvent. A layered defense-in-depth approach is gaining more and more popularity
in the protection of modern web applications, which is often overlooked in tool-based reviews.

The most important defensive mechanisms that have a direct influence on the effectiveness of the
tools in question are:

— Programming defenses: the most effective method of preventing SQLi at the source is the adoption of
parameterized queries (prepared statements) [3], [5]. Lines of defense are added such as sanitization and
input validation.

— Runtime application self-protection (RASP) and web application firewalls (WAFs): malicious inbound
traffic may be filtered and blocked with the help of a set of predefined rules by installing such tools as the
Modsecurity. Their progress will directly challenge the automated tools which will need to develop
evasion mechanisms to be useful [23].

— Advanced detection systems: alongside the prevention, the more recent research is focused on the latest
Al-driven intrusion detection systems (IDS). Recent research performed by Thalji et al. [6] on the AE-
Net, a deep feature model that is an autoencoder, demonstrates that machine learning is capable of

Evaluating the effectiveness of Havij for structured query language injection ... (Mahmoud Baklizi)

4826 O ISSN: 2302-9285

detecting new SQLi attack patterns with the highest precision. Likewise, Baklizi et al. [4] have examined
using ML in detecting the presence of web attack intrusions focusing on the moving target that the
offensive tools have to deal with. Such defensive considerations are lacking in most tool-oriented reviews
which is a major weakness. Any offensive tool depends on the defenses that it is subjected to, and this
dictates its effectiveness. The performance of a tool in relation to an undefensible testbed, though useful
in setting a baseline, does not indicate how useful the tool will be in a contemporary production
environment.

2.3. Related work synthesis and gap identification

Some of the previous studies have provided a descriptive background but without the critical and
empirical depth. Hajar et al. [14] offered a review that was based on Sqlmap; however, it concentrated on
process description, but not quantitative metrics. Such studies as Umar et al. [24] and Crespo-Martinez [23]
have integrated several tools and frameworks, but mostly in particular, non-generalizable settings (e.g.,
Academic Information Systems and Oracle APEX), and their results sometimes demonstrate the
ineffectiveness of such tools against sophisticated defenses [23].

Vyamajala et al. [15] examined educational tools, finding the most popular to be Acunetix and
JSQL, but it was not a performance evaluation of any kind. The availability of SQLmap on mobile platforms
was also demonstrated by Fernandes and Lina [25] but once again methodology was emphasized as opposed
to a quantifiable performance. The aggregate of the literature shows that there is a huge void: the lack of
current and intense literature that will objectively compare the existing GUI tools (e.g., Havij) with the
industry standard CLI tool (SQLmap) in a common testbed. Moreover, the majority of research does not
critically address the implication of their results in the framework of contemporary defensive technologies,
such as WAFs and artificial intelligence-based Al-based 1DS [4], [6].

This paper will set out to fill this gap by offering more than a descriptive analysis, but an empirical,
metrics based comparison of Havij and SQLmap, in terms of time efficiency, request volume, and success
rate. It also adds by directly putting the results into context of the limitation of the study: that there are no
defenses, and speaking of the implications to both offensive testing and the threat environment that has
matured to include advanced defensive mechanisms.

3. METHOD

This research used a structured, 5 phase experimental research design to measure the effectiveness
and efficiency of the Havij tool in vulnerability identification and exploitation of SQL.i. In order to have a
solid benchmark and respond to the requirement to perform a comparative analysis, we added to our
methodology the parallel analysis with the industry-standard SQLmap tool. All these procedures were
performed in a regulated laboratory setting so that it is reproducible and ethical.

3.1. Research design and experimental setup

The experimental design was a comparative case study in nature, whereby the performance of two
different SQLi tools (Havij and SQLmap) was evaluated with reference to a single and widely known
vulnerable target. It was aimed to quantify and juxtapose time efficiency, request volume, and success rate of
each tool in performing the same exploitation tasks.

a. Test environment: all the tests were performed on a specific machine with Microsoft windows 10 Pro
(Build 19045.4170). The network was a local area network of 1 Gbps, isolated to reduce the latency.

b. Tools and versions:

— Havij v1.15: this variant was chosen because it is widely known and has been reported to have been used
both in the academic and security circles. It was set to defaults except where otherwise.

— SQLmap v1.7.11: the most recent stable version available at the time of testing was selected as the
benchmark because it is the de facto standard when it comes to automated SQL.i testing [7]. All tests were
run from the command line.

c. Target application: the testing targeted the intentionally vulnerable web application testphp.vulnweb.com,
which is the endpoint of the application, namely, the endpoint of the URL, the endpoint of the path, and
the endpoint of the parameter, listproducts.php?cat=1. This is a known SQLi benchmark application
maintained by Acunetix and is based on Apache/PHP/MySQL stack [8].

3.2. Justification for test site and limitations
The Acunetix test site was selected for this study for several key reasons:
a. Ethical and legal safety: it is specifically intended to be tested on security, and it does not carry any actual
user information, therefore, it does not raise legal or privacy issues.

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4823-4833

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4827

b. Controlled baseline: it gives a known and trustworthy environment, and a fair and reproducible
comparison of tool performance without the confounding variables of evolving defenses or network state.
c. Technical relevance: its architecture (PHP/MySQL) is a typical set of web applications and, therefore,
findings are applicable to a large portion of the internet.
Nevertheless, we clearly admit one main limitation: the absence of any protective measures (e.g.,
WAFs and input sanitization). Consequently, the results demonstrate the tools' performance in an ideal
exploitation scenario and their raw capability. These findings can only be generalized to present, defended
production systems to a limited degree, which is strongly discussed in the discussion section (section 5).

3.3. The five-phase method
The testing procedure was broken down into five sequential phases, executed first with Havij and
then replicated with SQLmap. The method is summarized in Figure 1.

Phase 1: Target Selection & Reconnaissance

o Identify target
e Manual inspection
e Parameteranalysis

-

Phase 2: Vulnerability Confirmation

e Manual SQLi test
e Append special characters
o Confirm error response

4

Phase 3: Automated Tool Configuration and Execution

e Configure Havij & SQLmap
* Execute automated scans
o DBMS fingerprinting

-

Phase 4: Data Extraction and Enumeration

e Database discovery

o Table enumeration

e Column extraction
¢ Datadumping

L

Phase 5: Performance Metrics Collection

e Timeto Complete(TTC)
e HTTP Requests Sent
* Success/Failure recording

Figure 1. Five-phase method

3.3.1. Phase 1: target selection and reconnaissance

The target URL was determined and opened in a web browser (Google Chrome v123.0). The
functionality of the application was learnt through a manual check. The cat parameter in the URL was also
pointed out as one of the areas of injection since it is used to dynamically load data into the database.

3.3.2. Phase 2: vulnerability confirmation

An initial manual test was done to verify SQLi vulnerability. A single quote (') was appended to the
value of the cat parameter (i.e., cat=1"). The return of a verbose SQL syntax error from the database
(MySQL) confirmed that the input was not being sanitized and that the parameter was injectable.

3.3.3. Phase 3: automated tool set up and implementation
The exploitation of each tool was automated by ensuring that each was set up and implemented to
operate in its respective operational paradigm. The particular operations were as follows:

— For Havij: the target URL was entered into the main address bar. The Scan button was pressed which
automatically triggers the process of the tool to do DBMS fingerprinting, database enumeration, and data
extraction using its own algorithms (mainly error-based and union-based techniques).

— For SQLmap: the following command was used to repeat what Havij did as closely as possible:
sqlmap.py -u "http://testphp.vulnweb.com/listproducts.php?cat=1" -batch -level=3 -risk=1 -dbs. The

Evaluating the effectiveness of Havij for structured query language injection ... (Mahmoud Baklizi)

4828 O3 ISSN: 2302-9285

--batch option is useful to run it without interactive mode, the --level and --risk options regulate the depth
and risk of the tests.

3.3.4. Phase 4: data extraction and enumeration

The two tools had the responsibility of carrying out a set of standard actions:
Database discovery: finding out all databases.
Table enumeration; displaying all the tables in the target database (acuart).
Column extraction: extraction of the column structure of the critical users table.
Data dumping: retrieving all the users table records.

3.3.5. Phase 5: performance metrics collection

For each tool and for each action in phase 4, the following quantitative data was recorded:
— Time to complete: the sum of the total time (in seconds) to complete the action successfully.
— HTTP requests sent: the amount of HTTP requests made by the tool to execute the action that are

captured by the Burp Suite proxy [26].

— Success/failure: this is binary data of either successful completion or not of the action.

Such a metric-based, strict approach allows one to conduct the direct comparison that transcends the
anecdotal data, providing empirical data about the properties of each tool in the working process. The
findings of this comparative analysis are given in the following section.

4. RESULTS AND DISCUSSION

The following section will give the results of the comparative analysis of Havij and SQLmap on the
chosen vulnerable test environment. The findings demonstrate the usefulness of each tool in the discovery of
databases, table enumeration, column extraction, and credential retrieval. The quantitative (execution time,
number of HTTP requests) and qualitative (insight into the trade-offs between usability, speed, and depth of
exploitation) measures are examined.

4.1. Introductory context

This paper has examined the performance of the Havij tool in SQLi vulnerability attacks and it has
also made a comparative analysis of the tool with the industry SQLmap. Although previous studies have
listed SQL.i tools [14], [27], and outlined their characteristics, a limited number have presented a rigorous,
quantitative performance comparison benchmarking a user-friendly, GUI based tool to a powerful CLI based
counterpart. Our methodology focused on this gap and measured time efficiency, request volume and success
rate at key exploitation stages on a controlled testbed.

4.2. Summary of key findings

The gist of this study is that Havij is a very effective and efficient tool to be used in the automation
to exploit SQLi in vulnerable and undefended targets. It was able to steal the full database structure and user
sensitive credentials of the test application. However, the relative comparison to SQLmap showed that there
is a major trade off, namely the simplicity and speed of Havij at the expense of transparency and control, and
SQLmap is producing a larger number of HTTP requests to reach the same outcomes at a more detailed and
reliable level.

4.3. Interpretation of results and comparison with literature

The two tools were able to follow through all the exploitation steps and this was a confirmation of
the high vulnerability of the test application. Table 2 summarises the quantitative results of this process.

Table 2. Comparative performance of Havij and SQLmap

Exploitation phase Tool Time to complete (s) HTTP requests sent Success
Database discovery Havij ~15 12 Yes
SQLmap ~45 88 Yes
Table enumeration Havij ~20 18 Yes
SQLmap ~60 152 Yes
Column extraction (users) Havij ~10 8 Yes
SQLmap ~30 71 Yes
Data dumping (users) Havij ~5 5 Yes
SQLmap ~25 63 Yes
Total Havij ~50 43 Yes
SQLmap ~160 374 Yes

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4823-4833

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4829

Havij was quite swift, he just made 43 HTTP requests and spent approximately 50 seconds to
complete the whole exploitation process as shown in Figures 2 and 3. This is according to the results of
Ibrahim and Kant [13] who established Havij to be highly skilled in identifying and exploiting vulnerabilities
and to value it on fast analysis. This reflects its design philosophy: it was to be completely automatic to the
user, so that complex attacks can be available to beginners. The tool automatically employed a combination
of error based and union based SQL.i in achieving its goal. On the other hand, the SQLmap was around three
times slower (around 160 seconds) and generated around nine times the number of the HTTP requests (374).
This is not a mark of inefficiency but is a mark of fullness and wordiness. SQLmap conducts a far more
comprehensive set of tests and scans a wider range of injection techniques and provides a significant amount
of real-time feedback to the user. This is slower, but more dependable and also flexible to a large range of
and potentially obfuscated environments [7]. Our results support the characterization of SQLmap as the more
potent and versatile tool, such as targeted and in-depth testing in the studies such as [23], [27].

Comparison of Exploitation Time (Havij vs SQLmap)
60 Havij
SQLmap
50
C)
v 40
-
K}
[
£
8 30
L
v
£
F 20
10
0 y 0 al al
ev xAO ero 2ro
e A o me(a a(ﬁ\o o (W m‘)‘\ﬂ 9 e
1o o\ FX ou
) o cov m“ﬁ pa®

Figure 2. Comparison of exploitation time (in seconds) for Havij vs SQLmap across phases

Comparison of HTTP Requests (Havij vs SQLmap)

Havi
SQLmap

Number of HTTP Requests
= - =
£y & -] o N N
[=) S =1 1= =] =3

N
o

0

n Al a1
scoe? aer® e se™
o) " ot o
e ou!

a
o™ 02

e e
Da‘abas o'

Figure 3. Comparison of HTTP requests sent by Havij vs SQLmap across phases

The fact that plaintext credentials (username: test and password: test) have been successfully
retrieved in the vulnerable users table illustrates the severity of SQLi exploitation in the real world. This
result shows that a mere unnoticed vulnerability can undermine authentication systems and reveal
confidential information. The result also confirms the previous studies [4], [5], which have highlighted the
potential real-world dangers of SQL. to the privacy of data and the general security of the system.

Evaluating the effectiveness of Havij for structured query language injection ... (Mahmoud Baklizi)

4830 O3 ISSN: 2302-9285

4.4. Addressing limitations

It is important to put these findings into perspective in the context of limitations of the study. To
begin with, the fact that a single, deliberately weak test environment (testphp.vulnweb.com) is used implies
that the results reflect the best tool performance when against a known, weak defense. This environment is
not reflective of the sophistication of the contemporary, defended applications WAFs, advanced input
sanitization, or object-relational mapping (ORM) engines. As a result, the performance measures presented
here cannot be applied to such settings. Second, according to the literature [16], Havij is not actively
maintained or developed any longer. Although it still works on older and unprotected systems such as the one
tested, its applicability to more recent database versions (e.g., MySQL 8+), security features and application
frameworks is probably severely restricted. SQLmap is actively managed and thus keeps up with new
defenses. Lastly, the present work was dedicated to the analysis of exploitation features of an offensive tool.
The initial title with the concentration on the detection systems was hence a misnomer. The offensive
potential is tested in our work and not the defensive efficacy.

4.5. Implications for future research

The present research leaves some opportunities to work in the future. First, to extend these findings,
these and other tools should be tested by a broader range of targets, including those secured by both modern
WAFs (e.g. ModSecurity) and more general security mechanisms to test their evasion ability. Second, a user
study that compares success rate and time-to-exploit of security novices on Havij and other tools such as
SQLmap or jSQL Injection may offer interesting information on the usability of these tools in practice.
Lastly, studies need to be conducted on hybrid solutions to utilize the simplicity of GUI tools with the
capabilities and complexity of advanced and actively maintained tools, and the latest Al-driven scanners [6]
to construct more efficient penetration testing processes.

4.6. End of the discussion

To sum up, this comparison analysis shows that Havij can still be a powerful and effective exploit to
take advantage of SQL.i vulnerabilities in unsecured environments, which explains why it was popularly used
in the past to conduct quick tests. Nevertheless, this can be counterbalanced by its outdatedness and basic
functionality in a professional security environment with its use in relation to contemporary targets. SQLmap
is more advanced, time-consuming and demanding in terms of expertise, but it is also more detailed, reliable,
and future-proof. These vulnerabilities being present in the educational environments, underscores the
reasons why the developers ought to implement stringent security measures like parameterized queries, input
validation, and regular security testing with updated and complete tool sets.

5. CONCLUSION

This research aimed at conducting a viable examination of how the Havij automated SQL.i tool
works in both a controlled and an ethical environment. It has been determined that Havij is quite handy in its
intended application on the weak testbeds with an easy-to-use graphical interface and remarkable speed to
accomplish a successful extraction of database structures and sensitive credentials. The significant
contribution of the work is the establishment of an empirical base of the SQLi tool performance with the
apparent trade-offs between accessibility and completeness. Furthermore, it also introduces vividly the state
of a present and severe threat posed by readymade automated exploitation tools, which lower the barriers of
entry of attackers. It is based on these that we strongly suggest that security experts and developers must take
into consideration a defense-in-depth strategy in an attempt to counter such threats. This must include hard-
coding like parameterized queries and extreme input validation. In addition, companies must require periodic
penetration testing with a collection of modernized and sophisticated tools, and they must not depend on a
single solution to provide the strong security against the changing environment of SQL.i attacks.

ACKNOWLEDGMENTS
We honestly thank University of Petra and Al-Isra University the for allowing access to their Cyber
Test center facilities and for the vital support that donated to the success of this investigate.

FUNDING INFORMATION
Authors state no funding involved.

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4823-4833

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4831

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo | R D O E Vi Su P Fu
Mahmoud Baklizi v v v v v v v v v v
Mohammad v v v v v v v v v v
Alkhazaleh

Musab Bassam Yousef v vV v v v v v
Alzghoul

Adi Maaita v v v v v

Jamal Zragou v v v v v v 4
Mohammad AlShaikh- v v v v v v v v
Hasan

C . Conceptualization I Investigation Vi : Visualization

M : Methodology R : Resources Su : Supervision

So : Software D : Data Curation P : Project administration

Va : Validation O : writing - Original Draft Fu : Funding acquisition

Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY
Data availability is not applicable to this paper as no new data were created or analyzed in this
study.
REFERENCES
[1] U. Patkar, P. Singh, H. Panse, S. Bhavsar, and C. Pandey, “Python for web development,” International Journal of Computer

[2]
[3]
[4]
[5]

[6]
[71
(8]
[9]
[10]
[11]

[12]

[13]
[14]

[15]

[16]

Science and Mobile Computing, vol. 11, no. 4, pp. 36-38, 2022, doi: 10.47760/ijcsmc.2022.v11i04.006.

N. Sharma, “Overview of the database management system,” International Journal of Advanced Research in Computer Science,
vol. 8, no. 4, 2017.

J. H. B. Johny, W. A. F. B. Nordin, N. M. B. Lahapi, and Y.-B. Leau, “SQL injection prevention in web application: A review,”
in Advances in Cyber Security, Penang, Malaysia, 2021, pp. 568-585, doi: 10.1007/978-981-16-8059-5_35.

M. K. Baklizi et al., “Web attack intrusion detection system using machine learning techniques,” International Journal of Online
and Biomedical Engineering, vol. 20, no. 3, 2024, doi: 10.3991/ijoe.v20i03.45249.

M. Baklizi, I. Atoum, M. A. S. Hasan, N. Abdullah, O. A. Al-Wesabi, and A. A. Otoom, “Prevention of website SQL injection
using a new query comparison and encryption algorithm,” International Journal of Intelligent Systems and Applications in
Engineering, vol. 11, no. 1, pp. 228-238, 2023.

N. Thalji, A. Raza, M. S. Islam, N. A. Samee, and M. M. Jamjoom, “AE-Net: Novel autoencoder-based deep features for SQL
injection attack detection,” IEEE Access, vol. 11, pp. 135507-135516, 2023, doi: 10.1109/ACCESS.2023.10332180.

B. D. A. G andnM. Stampar, “SQLmap: Automatic SQL injection and database takeover tool,” Sglmap, 2011. [Online].
Auvailable: http://sqlmap.org. (Accessed: Oct. 15, 2025).

Acunetix, “Web vulnerability scanner technical documentation, 2023, [Online]. Available: Available: https://www.acunetix.com.
(Accessed: Oct. 15, 2025).

Invicti, “Netsparker web application security scanner,” 2023, [Online]. Available: https://www.invicti.com. (Accessed: Oct. 15,
2025).

M. Baklizi et al., “A technical review of SQL injection tools and methods: A case study of SQLMap,” International Journal of
Intelligent Systems and Applications in Engineering, vol. 10, no. 3, pp. 75-85, 2022.

T. Baig, “Havij: Automated SQL injection tool,” [Online]. Available: https://github.com/talhabaig007/Havij. (Accessed: Oct. 15,
2025).

A. K. Mishra and A. Kumar, “Performance-based comparative analysis of open source vulnerability testing tools for web database
applications,” in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kharagpur, India, 2020, pp. 1-5, doi: 10.1109/ICCCNT49239.2020.9225324.

A. B. lbrahim and S. Kant, “Penetration testing using SQL injection to recognize the vulnerable point on web pages,”
International Journal of Applied Engineering Research, vol. 13, no. 8, pp. 5935-5942, 2018.

S. Hajar, A. G. Jaafar, and F. A. Rahim, “A review of penetration testing process for SQL injection attack,” Open International
Journal of Informatics, vol. 12, no. 1, pp. 72-87, 2024, doi: 10.11113/0iji2023.11n2.256.

S. Vyamajala, T. K. Mohd, and A. Javaid, “A real-world implementation of SQL injection attack using open source tools for
enhanced cybersecurity learning,” in Proceedings of the 2018 IEEE International Conference on Electro/Information Technology
(EIT), Rochester, MI, USA, May 2018, pp. 198-202, doi: 10.1109/EIT.2018.8500136.

A. K. Priyanka and S. S. Smruthi, “Web application vulnerabilities: Exploitation and prevention,” in Proceedings of the 2020
Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, Jul. 2020, pp.
729-734, doi: 10.1109/ICIRCA48905.2020.9182928.

Evaluating the effectiveness of Havij for structured query language injection ... (Mahmoud Baklizi)

4832 O3 ISSN: 2302-9285

[17] A. Alzahrani, A. Algazzaz, Y. Zhu, H. Fu, and N. Almashfi, “Web application security tools analysis,” in 2017 IEEE 3rd
International Conference on Big Data Security on Cloud (Bigdatasecurity), IEEE International Conference on High Performance
and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS), Beijing, China, 2017,
pp. 237-242, doi: 10.1109/BigDataSecurity.2017.47.

[18] D. P. Mozumder, Md J. N. Mahi, and Md Whaiduzzaman, “Cloud computing security breaches and threats analysis,”
International Journal of Scientific & Engineering Research, vol. 8, no. 1, pp. 1287-1297, 2017.

[19] M.R. Ul Islam, M. S. Islam, Z. Ahmed, A. Igbal, and R. Shahriyar, “Automatic Detection of NoSQL Injection Using Supervised
Learning,” in 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI, USA,
2019, pp. 760-769, doi: 10.1109/COMPSAC.2019.00113.

[20] J. TJ. and K. S. Babu, “OWASP Zed Attack Proxy,” in Proceedings of the National Conference on Emerging Computer
Applications (NCECA), Kottayam, India, Jun. 2021, pp. 106-111.

[21] S.Putitand L. Y. B. Khedif, “Exploring Vega: A tool for scanning vulnerabilities in penetration testing within web applications,”
Borneo Akademika, vol. 8, no. 2, pp. 176-187, 2024.

[22] E. Lawrence, Debugging with Fiddler: The Complete Reference from the Creator of the Fiddler Web Debugger, 2012.

[23] E. Crespo-Martinez, “Vulnerability analysis with sqimap applied to APEX5 context,” Ingenius, no. 25, pp. 104-113, 2021.

[24] R. Umar, I. Riadi, and M. I. A. Elfatiha, “Security analysis of web-based academic information system using OWASP
framework,” Kinetik: Game Technology, Information System, Computer Network, Computer Electronics, and Control, 2024, doi:
10.22219/kinetik.v9i4.2015.

[25] G. R. Fernandes and I. M. Lina, “Website penetration testing with SQL injection technique using SQLMAP on Termux,” Jurnal
E-Komtek (Elektro-Komputer-Teknik), vol. 8, no. 2, pp. 286-293, 2024, doi: 10.37339/e-komtek.v8i2.2074.

[26] R. Choudhary, J. Rawat, and G. Singh, “Comprehensive Exploration of Web Application Security Testing with Burp Suite
Tools,” International Journal for Multidisciplinary Research, vol. 5, no. 6, Dec. 2023, doi: 10.36948/ijfmr.2023.v05i06.11297.

[27] Z. Savova, S. D. Atanasov, and R. Bogdanov, “Automated web application scanning with Wapiti, Selenium, and SQLMap,”
Security and Future, vol. 8, no. 2, pp. 57-60, 2024.

BIOGRAPHIES OF AUTHORS

Mahmoud Baklizi (g 13 17 years of experience in academia in Jordan. Extensive
theoretical and practical expertise in network security, network design, and implementation,
with additional proficiency in security, vulnerability assessment, and programming. Several
years of managerial experience in the academic sector in Jordan, with strong capabilities in
strategic and action plan development. Interdisciplinary and intercultural experience in
scientific research, applied research, and research and development within both academic and
industrial fields in Jordan and Malaysia. Advanced proficiency in English. He can be
contacted at email: mbaklizi@uop.edu.jo.

Mohammad Alkhazaleh g 2 received the degree in information technology and
computing from Arab Open University (AOU), Jordan in 2009. He received the Master degree
in computer science from The Middle East University for the Graduate Studies (MEU), Jordan
in 2011. He received the PhD degree in computer engineering from University Malaysia Perlis
(UniMAP), Malaysia in 2021. He was a lecturer at Faculty of Applied Studies and Continuing
Education at Al-Baha University (2011-2016), and is currently an Assistant Professor in
Department of Computer Sciences at the College of Information Technology at Isra University
(2022-present). He can be contacted at email: m.alkhazaleh@iu.edu.jo.

Musab Bassam Yousef Alzghoul £:J B8 © received his Bachelor of Science in computer
science in Don state technical university (DSTU) Russia in 2005. In 2006, he received his
Master degree in Computer Science at DSTU, and then in 2009, he received a PhD in
Computer Science. He was a member of the Faculty of Information Technology at Zarqga
University where he was a lecturer between 2009 and 2012. He was a lecturer in 2012-2023 at
the Faculty of Information Technology of Um-AlQura University. He is now an Assistant
Professor in the Department of Computer Sciences at the Isra University where he has been
teaching since 2023. He can be contacted at email: musab.alzgool@iu.edu.jo.

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4823-4833

https://orcid.org/0000-0002-4164-2611
https://scholar.google.com/citations?hl=en&user=wPTW-DEAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=48861000400
https://www.webofscience.com/wos/author/record/34638506
https://orcid.org/0000-0002-4630-7783
https://scholar.google.com/citations?user=3Hm66ZYAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57211711841
https://www.webofscience.com/wos/author/record/KIL-1576-2024
https://orcid.org/0000-0003-1490-9955
https://scholar.google.com/citations?user=TyyoZDEAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57377993700
https://www.webofscience.com/wos/author/record/JOJ-4332-2023

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4833

Dr. Adi Maaita @ 4 B4 2 js the ICT Director at the King Hussein Cancer Center (KHCC)
and formerly the Dean of Information Technology and an Associate Professor of Software
Engineering at Middle East University (MEU) in Amman, Jordan. He holds a Ph.D. in
Software Engineering from the University of Leicester, where his research focused on
applying design patterns to embedded systems development. He has a broad academic and
professional background, having previously served as a faculty member at Isra University and
as a research assistant at the University of Leicester. His research interests include cyber
security, artificial intelligence, and modern software development methodologies. He can be
contacted at email: Am.18080@khcc.jo.

Jamal Zragou g is an Associate Professor at the Department of Computer
Science/Virtual and Augmented Reality, University of Petra, Jordan, where he has been a
faculty member since 2022. From 2018-2029, he was also the Dean faculty of IT at IU. His
research interests include computer vision, virtual and augmented reality, 10T, cyber security,
and image processing. He can be contacted at email: Jamal.Zragou@uop.edu.jo.

Mohammad AlShaikh-Hasan © Ed 2 is a researcher in the Department of Computer
Science, Brunel University of London, London, UK. He can be contacted at email:
Mohammad.AlShaikhHasan@brunel.ac.uk.

Evaluating the effectiveness of Havij for structured query language injection ... (Mahmoud Baklizi)

https://orcid.org/0000-0003-0186-4495
https://scholar.google.com/citations?user=6NTpVDoAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55812177100
https://www.webofscience.com/wos/author/record/JKI-1545-2023
https://orcid.org/0000-0001-9060-7188
https://scholar.google.com/citations?user=xxmzHiYAAAAJ&hl=ar
https://www.scopus.com/authid/detail.uri?authorId=55991881700
https://www.webofscience.com/wos/author/record/51438659
https://orcid.org/0000-0001-9496-457X
https://scholar.google.com/citations?hl=en&user=VGv-zAgAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=59670108100
https://www.webofscience.com/wos/author/record/NAZ-5954-2025

