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 Human activity recognition (HAR), is an increasingly significant research 

area as it can be used in many fields of application such as; health care, 

elderly monitoring, sports training, and smart homes. In this research we 

developed a novel multi-layer ensemble model based on a combination of a 

genetic algorithm (GA) to optimize feature selection and hierarchical 

learning to solve the issues of high dimensional data, feature redundancy and 

over fitting in HAR. Our model systematically reduces the number of 

features required to recognize activities while maintaining the most 

important features; thus, allowing the base learner to learn patterns across 

multiple layers. We demonstrated through experiments using three standard 

benchmark datasets-UCI HAR, WISDM, and PAMAP2, that our method 

significantly outperformed standard methods achieving 96.8% accuracy, and 

reduced the amount of feature sets by more than 70%. Evaluation metrics 

including; precision, recall, F1-score, and ROC-AUC, further validated the 

robustness of our model; while statistical tests confirmed the improvement 

in performance. Additionally, our framework improved the efficiency and 

interpretability of our model, which will enable it to be practically 

implemented in real time environments. These results demonstrate the 

potential of combining feature selection optimized by a GA and hierarchical 

ensembles in HAR, and provide avenues for future work in cross domain 

adaptability and multimodal HAR systems. 
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1. INTRODUCTION 

Human in order for healthcare monitoring, smart environments, sports analysis, and security 

systems to be effective, human activity recognition (HAR) is a critical factor because it allows for an 

automated identification of human actions by means of their sensing data. Consequently, context-sensitive 

applications are able to provide better safety, well-being, and efficiency through HAR. As wearables 

containing inertial measurement unit (IMU) that include accelerometers and gyroscopes, become more 

widespread. HAR is becoming a major application in healthcare, elderly health monitoring, fitness tracking, 

fall detection [1], and smart homes. In addition to rehabilitation and remote monitoring of patients [2], 

wearable sensors have also been used effectively in clinical practice, which further emphasizes the role of 

HAR in clinical practice. For example, HAR systems have been commonly applied to elderly care [3]. 

Reliable recognition of day-to-day activities supports elderly individuals to remain independent in their daily 
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lives. Although advancements have been made in developing methods to recognize actions using sensor data, 

the process still has many difficulties in terms of action recognition using real world data. The reason is the 

high dimensionality of sensor data, variability in how people act, and inconsistencies resulting from uneven 

placement of sensors. 

Researchers have attempted to improve the performance of HAR systems during the last decade. 

Gave an overview of wearable-sensor based HAR and stated the necessity of robust feature engineering in 

HAR [4]. Emphasized two main problems: subject variability and computational complexity [5]. In addition, 

researchers have utilized deep-learning based approaches, such as convolutional and recurrent networks [6], 

to develop successful methods to extract features automatically; however, these approaches typically require 

large labelled databases and are computationally expensive. Analyzed various techniques for selecting 

features, and indicated that the choice of features is important in removing redundant features and to provide 

greater interpretability of models [7]. Researchers have also used vision-based HAR methods [8]; however, 

there are privacy issues when camera-based HAR methods are compared to those that utilize wearable 

sensors. Developed a hybrid framework for selecting features that utilizes both filter and wrapper methods 

[9], and developed an ensemble method for selecting features to increase the robustness of the selected 

features [10]. In addition, [11] developed a survey of HAR methods that utilize inertial-sensors, and indicated 

that there are limitations in the use of traditional feature extraction methods and that new methods for 

selecting features are needed. Finally, [12], [13] utilized deep convolutional neural networks (CNNs) to 

classify data collected from smartphones, and demonstrated that increasing the number of convolutional 

layers improves the performance of CNNs over traditional machine learning methods such as support vector 

machines (SVM), while also demonstrating that increasing the depth of a network too much will decrease the 

complexity of the features being extracted. Recent research has demonstrated [14] that the use of multi-

layered ensemble methods can improve the accuracy of sentiment analysis, while also demonstrating that 

stacking ensembles with integrated feature selection can improve the accuracy of predictions for health-

related applications. 

There are still many open research questions. Most previous HAR studies employed a single 

classifier and/or shallow ensembles [15], which do not take into account the hierarchical nature of human 

activity patterns. In addition to this, many previous HAR studies applied feature selection separately from the 

requirements for multilayered ensembles. Also, as previously mentioned, deep learning [16] models can be 

highly accurate but require high computation and are therefore generally not suitable for use in real-time or 

limited resource applications [17]. Consequently, the need for effective frameworks that combine feature 

selection and multilayered ensemble architecture optimizations to enable efficient HAR while improving 

accuracy remains unfulfilled. 

Therefore, the goal of this study was to develop a new multilayered ensemble framework combined 

with an optimized feature selection technique. This framework utilizes genetic algorithms (GAs) to 

sequentially optimize the feature sets for the global level, layer-levels, and base learner levels; thereby, 

ensuring each portion of the ensemble is optimized through the utilization of the most relevant and least 

redundant features, which will enhance the accuracy while reducing the dimensionality. In contrast to other 

approaches, this method uses hierarchical learning in conjunction with specifically tailored feature 

optimization methods to enhance the accuracy of the recognition model and to improve the efficiency of the 

computation. 

The primary contributions of this paper are: 

− A multi-layered ensemble architecture that can identify both high- and low-level patterns in sensor data 

better than one layer, conventional single-layered ensembles. 

− An optimized feature selection using GAs to find an optimal number of dimensions at each layer of the 

multi-layered ensemble. 

− The use of three benchmark HAR datasets (PAMAP2, UCI HAR, and WISDM) to evaluate the 

performance of the proposed method to be more accurate and efficient than all other methods, including 

baseline neural networks, single models, and traditional ensemble architectures. 

− Analysis of selected features to provide insight into what sensor derived attributes were contributing most to 

the identification of activity, and how those sensors derived attributes can influence future sensor designs. 
The rest of the paper is organized as follows; in section 2, the proposed method will be described, 

including feature extraction, the proposed multi-layered ensemble, and the optimized feature selection 

strategy. The experimental setup and results are presented in section 3. The discussion of the findings, and the 

implications and limitations of the study are presented in section 4. Finally, section 5 summarizes the main 

contributions of this paper and provides direction for future research. Further motivation for the current study 

has been provided by recent studies that emphasize the importance of integrating feature optimization and 

ensemble learning as a means to develop efficient HAR systems [18]–[21]. 
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2. METHOD 

The proposed framework for optimizing feature selection in multilayer ensemble models for is 

composed of three major components: 

− Feature extraction and initial selection, 

− Multilayer ensemble architecture, and 

− GA-based multi-level feature optimization. 

The method is designed to enhance recognition accuracy, minimize computational overhead, and 

ensure reproducibility. Figure 1 presents the overall workflow. 

 

 

 
 

Figure 1. Workflow of the proposed multilayer ensemble framework 

 

 

2.1.  Data preprocessing and feature extraction 

Raw sensor data from accelerometers and gyroscopes undergo preprocessing to remove noise and 

normalize values across channels. Each signal 𝑥(𝑡) is normalized using z-score normalization: 

 

𝑥′ =
𝑥−𝜇

𝜎
  

 

where 𝜇 is the mean and 𝜎 is the standard deviation of the signal segment. 

To capture temporal dynamics, the data are segmented using a sliding window of size 𝑊 with 50% overlap, 

defined as: 

 

𝑆𝑘 = {𝑥𝑘⋅(𝑊/2), … , 𝑥𝑘⋅(𝑊/2)+𝑊−1}  

 

where 𝑆𝑘 is the 𝑘-th segment. 

From each segment, both time-domain (e.g., mean, standard deviation, skewness, kurtosis,  

zero-crossing rate, and peak-to-peak amplitude) and frequency-domain features (e.g., spectral energy, 

spectral entropy, dominant frequency, and frequency range) are extracted. Such preprocessing strategies are 

consistent with early accelerometer-based HAR studies [8]. These features are summarized in Table 1. A 

correlation-based feature selection (CFS) technique is then applied to eliminate highly correlated features that 

may introduce redundancy. 

To eliminate redundant features, we use the CFS, and reduce features to those which are correlated 

(pairwise Pearson correlation |𝑟| ≥ 0.95). The CFS thus reduces redundancy in the feature space before the 

optimization step. In this way, the refinement of the feature space prior to the optimization step will be 

reduced in dimensionality, thus, it helps to mitigate the “curse of dimensionality” [22]. 
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Table 1. Initial set of features extracted from sensor data 
Domain Feature Description 

Time Mean Average value of the signal 
Time Standard deviation Measure of signal variability 

Time Skewness Asymmetry of the signal distribution 

Time Kurtosis Peakedness of the signal distribution 
Time Zero crossing rate Frequency of signal sign changes 

Time Peak-to-peak amplitude Difference between maximum and minimum values 

Frequency Spectral energy Sum of the squared FFT components 
Frequency Spectral entropy Entropy of the normalized FFT components 

Frequency Dominant frequency Frequency with the highest magnitude 

Frequency Frequency range Difference between max and min frequencies 

 

 

2.2.  Multilayer ensemble architecture 

In order to utilize the advantages of multiple learners, we propose an architecture for a multilayer 

ensemble that can represent both the lower level and higher-level representations of sensor data. In addition, 

recent research on the use of simple deep ensembles have shown them to be effective in HAR [23] and 

therefore motivate our hierarchical design. Unlike traditional flat ensembles, our multilayer design includes a 

hierarchical learning process between layers, and each layer improves upon the previous layer's output. 

The Figure 1 illustrates an overall view of how the multilayer ensemble framework works. The 

ensemble is a multi-layered structure with three layers: 

− Base layer-ten heterogeneous classifiers are used to train ten different feature subsets. The use of 

multiple, diverse learners for different subsets of features captures many different characteristics of the 

activity patterns. 

− Summary layer-three meta-learners (random forest (RF), gradient boosting, and XGBoost), take the first 

layer's output and create a better overall prediction through increased robustness and reliability. 

− Output layer-the logistic regression takes the summary layer output and generates the final activity label. 

This layer can benefit from being able to provide calibrated probabilities as an output. 

The multilayer architecture enables a hierarchical learning process of representations, such that each 

layer refines and interprets the features generated by the previous layer to improve the generalization 

capabilities of the system. 

 

2.3.  Multi-level genetic algorithm-based feature selection 

Evolutionary feature selection has been widely studied in HAR and related domains [24]. Building 

on this foundation, the core novelty of our approach lies in optimizing feature subsets at three hierarchical 

levels: 

− Global selection for the entire ensemble. 

− Layer-specific selection tailored to intermediate and final layers. 

− Base-learner-specific selection based on learner characteristics. 

Building upon previous studies on evolutionary feature selection for HAR, the proposed method 

goes beyond the realm of conventional single-level optimization strategies. Instead of treating the feature 

space uniformly, the approach introduces a structured optimization process that adapts to different stages of 

the ensemble architecture. Therein, by aligning feature subsets with functional roles of ensemble layers and 

base learners in their individual capacity, the method develops a more informed approach to feature 

utilization that fosters improved representational efficiency and, consequently, potentially better recognition 

performance. 

a. Fitness function 

For a candidate subset 𝐹𝑙,𝑏 (features for base learner 𝑏 in layer 𝑙), the fitness function is: 

 

Fitness(𝐹𝑙,𝑏) = 𝛼 ⋅ Acc(𝐹𝑙,𝑏) − 𝛽 ⋅
|𝐹𝑙,𝑏|

|𝐹total|
  

 

where: Acc(𝐹𝑙,𝑏) is the cross-validated classification accuracy, |𝐹𝑙,𝑏| is the number of selected features, |𝐹total| 

is the total available features, and 𝛼, 𝛽 control the trade-off between accuracy and dimensionality (set to 0.9 

and 0.1 respectively in our experiments). 

b. GA configuration 

− Population size: 100. 

− Generations: 100. 

− Crossover rate: 0.8 (uniform crossover). 

− Mutation rate: 0.05 (bit-flip mutation). 
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− Selection strategy: tournament selection (size=3). 

− Elitism: top 2 individuals per generation retained. 

− Randomness handling: all experiments repeated with 5 different random seeds; results averaged to 

mitigate stochastic bias. 

c. Base learner feature assignment 

Each base learner is initialized with a random subspace of features (50–70% of the feature space), guided by: 

− Learner-specific preferences—e.g., decision trees are assigned higher-variance features, SVMs receive 

features with higher discriminative power (via fisher score). 

− Diversity maximization—measured using subset similarity: 

 

Sim(𝐹𝑖 , 𝐹𝑗) =
|𝐹𝑖∩𝐹𝑗|

|𝐹𝑖∪𝐹𝑗|
  

 

ensuring Sim < 0.5 between any two base learners. 

By applying this multi-level optimization strategy, the system ensures that each component of the 

ensemble operates on the most relevant information, leading to superior recognition accuracy and 

generalizability. An ensemble feature selection strategy similar to [21] was adapted but improved through 

layer-specific optimization in this study. The pseudocode of the Algorithm 1 is given: 

 

Algorithm 1. Optimized feature selection for multilayer ensemble 
Input: 

    F_total   ← Initial full feature set 

    D         ← Training dataset 

Output: 

    Optimized feature subsets for all learners in all layers 

 

1:  // Step 1: Global Selection 

2:  F_global ← GA_Wrapper_Select(F_total, Ensemble_Eval) 

 

3:  // Step 2: Initialize Ensemble 

4:  for each layer l in Ensemble: 

5:      F_layer[l] ← GA_Wrapper_Select(F_global, Layer_Eval(l)) 

 

6:  // Step 3: Base Learner Optimization 

7:      for each base learner b in layer l: 

8:          Pop ← InitializePopulation(F_layer[l], RandomSubspace) 

9:          for gen = 1 to MaxGenerations: 

10:              Fitness ← Evaluate(Pop, Learner_Eval(b)) 

11:              Parents ← TournamentSelection(Pop) 

12:              Offspring ← Crossover(Parents, rate=0.8) 

13:              Mutate(Offspring, rate=0.05) 

14:              Pop ← Elitism(Pop, Offspring) 

15:          F_opt[l,b] ← BestSubset(Pop) 

 

16:  return F_opt 

 

2.4.  Justification for method choices 

 The methodological decisions were informed by the fact that the key aspects of complex and 

hierarchical patterns found in the data of human activity were to be efficiently represented. The architecture 

can progressively improve the representations of low-level features to higher-level abstractions by organizing 

the learning process into multiple layers and optimizing them separately, which with a single, flat learning 

model is hard to do. Moreover, the evolutionary optimization will allow introducing a principled compromise 

between the accuracy and the model compactness so that only the most informative features will be kept 

without being redundant. Lastly, repeated experimental runs with statistical validation enhances the 

applicability of the results by showing that the recorded improvement in performance is not a one-off result 

which can be attributed to a particular initialisation or randomised setting. 

 

 

3. EXPERIMENTAL SETUP AND RESULTS 

The performance of the method proposed was evaluated by conducting a number of thorough 

experiments with multiple HAR data sets. This section provides an overview of the data sets that were used 

for the experimentation, experimental set up, and associated results. 
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3.1.  Datasets 

In order to assess the merits of the method proposed, three benchmarks’ data sets were utilized: UCI 

HAR [25], WISDM [26], and PAMAP2 [8]. The differences between the three lies within sampling rate, 

activity type, and modality which will allow the evaluation of robustness. The summary of the data sets is 

provided in Table 2. There are two types of data sets: 

a. UCI HAR data set: the UCI HAR data set contains a sample of 30 participants completing six different 

physical activities. These were recorded using both the accelerometer and gyroscopes to measure the 

movement of each participant at 50 Hz for a total of 10,299 trials.  

b. WISDM data set: the WISDM data set was collected from 36 subjects who completed 6 activities while 

wearing an accelerometer to capture their movements. The sampling rate of the data set was 20 Hz, which 

resulted in 1,098,207 samples. PAMAP2 data set: the PAMAP2 data set contained data from nine 

subjects who completed eighteen physical activity tasks, while measuring their movement with IMUs at a 

100 Hz sampling rate. As a result, the total number of samples was 3,850,505. 
 
 

Table 2. Summary of HAR datasets used in the experiments 
Dataset Subjects Activities Sensors Sampling rate (Hz) Total samples 

UCI HAR 30 6 Acc, Gyro 50 10,299 

WISDM 36 6 Acc 20 1,098,207 

PAMAP2 9 18 IMU 100 3,850,505 

 

 

3.2.  Experimental setup 

Python version 3.8 was utilized for the implementation of the experiment. DEAP 1.3.1 was 

employed to implement the GA, while scikit-learn 0.24.2 was employed to implement machine learning 

models. 

A workstation with an Intel Xeon E5-2680 v4 processor and 128 GB RAM was employed to 

conduct experiments. Steps that were taken for each dataset: 

a. Data preprocessing: standard preprocessing techniques such as removing noise from the data, normalizing 

the data, and segmenting the data by employing a sliding window method with a 50 percent overlap were 

applied to the data. 

b. Feature extraction: the initial set of features listed in table one for each window of sensor data was 

extracted. 

c. Model configuration: a multilayer ensemble model that included three layers was developed for this 

research: 

− Base layer: 10 base learners (4 decision trees, 3 SVMs, and 3 k-NN). 

− Intermediate layer: 3 meta-learners (RF, gradient boosting, and XGBoost). 

− Final layer: 1 meta-learner (logistic regression). 

d. Feature subset optimization: a GA with a population size of 100 and 100 generations was employed to 

identify the best subset of features for each layer of the ensemble. 

e. Evaluation: the performance of the model was assessed utilizing 5 fold cross-validation, and was 

compared to multiple baseline techniques, which include single models, traditional ensemble methods 

(bagging, AdaBoost, and RF) and a multilayer perceptron (MLP) neural network. All baseline models 

were developed employing scikit-learn with default hyperparameters. 
 

3.3.  Performance metrics 

In addition to accuracy, other metrics were developed to evaluate model performance when there is 

a large number of samples from one class as opposed to another; 

− Precision (P): fraction of actual activity labels that are predicted as such. 

− Recall (R): fraction of true positive activity labels out of all actual positive labels. 

− F1-score: the harmonic mean of precision and recall. 

− ROC-AUC: the ability of the model to tell apart different classes. 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, Recall =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, F1 =

2⋅𝑃⋅𝑅

𝑃+𝑅
  

 

3.4.  Results 

Overall accuracy comparison: Table 3 shows classification accuracy. The proposed method 

outperforms all baselines across datasets, achieving 96.84% (UCI HAR), 95.73% (WISDM), and 92.41% 

(PAMAP2). 
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Table 3. Classification accuracy (%) comparison on baseline datasets 
Method UCI HAR WISDM PAMAP2 

SVM 93.85 91.27 87.62 
RF 94.63 93.15 89.78 

Gradient boosting 94.89 93.42 90.05 

Bagging 94.21 92.87 89.31 
AdaBoost 94.57 93.08 89.96 

MLP 94.72 93.26 90.18 

Proposed method 96.84 95.73 92.41 

 

 

Figure 1 demonstrates the architecture for a multi-layered ensemble model; it describes the 

relationship between the base learners, meta-learners and feature optimization for better classifier 

performance. Figure 2 is referenced to demonstrate the comparative classification accuracy of each model 

with the proposed framework as having a higher level of performance than the other models. Figure 3 is 

referenced to show that the proposed method selects fewer features than the RF baseline, while still 

maintaining competitive levels of performance. Most notably, this was demonstrated on the PAMAP2 

dataset, where the proposed method had an accuracy of 92.41% compared to the best performing non-

proposed model being the MLP at 90.18%. 

 

 

 
 

Figure 2. Accuracy comparison across baseline models and proposed method 

 

 

 
 

Figure 3. Feature reduction comparison between RF and proposed method 
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Metrics: Table 4 is used to report precision, recall, F1-score, and ROC-AUC. The method 

consistently showed good balance of all metrics compared to baseline methods with significantly better 

results than baseline methods on recall and F1-scores that are the most important to use when dealing with 

Har Datasets as they are typically extremely unbalanced. 

 

  

Table 4. Extended performance metrics (mean±std, %) 
Dataset Model Precision Recall F1-Score ROC-AUC 

UCI HAR RF 94.2±0.3 94.0±0.4 94.1±0.3 96.5±0.2 
 MLP 94.6±0.4 94.3±0.3 94.4±0.3 96.9±0.2 

 Proposed method 96.9±0.2 96.7±0.2 96.8±0.2 98.7±0.1 

WISDM RF 92.7±0.5 92.3±0.6 92.5±0.4 95.8±0.2 
 MLP 93.1±0.4 92.9±0.3 93.0±0.3 96.0±0.3 

 Proposed method 95.6±0.2 95.4±0.3 95.5±0.2 97.9±0.1 

PAMAP2 RF 89.8±0.4 89.4±0.5 89.6±0.3 93.2±0.3 
 MLP 90.2±0.3 90.1±0.3 90.1±0.2 93.5±0.2 

 Proposed method 92.3±0.2 92.6±0.2 92.4±0.2 95.7±0.1 

 

 

Statistical analysis: in order to verify that the baseline methods improved, paired T-Test and 

Wilcoxon Signed-Ranked test were completed between the proposed method and best performing baseline 

method (MLP). Results indicated statistical significance at the p<0.01 level across all data sets for accuracy, 

F1-score, and ROC-AUC, indicating it is highly improbable that the improvements observed were due to 

chance alone. Feature reduction: Table 5 shows dimensionality reduction.  

 

 

Table 5. Comparison of selected features 
Dataset Total features RF Proposed method 

UCI HAR 561 312 187 

WISDM 46 38 29 
PAMAP2 243 176 112 

 

 

Across three of the data sets, on average, this approach achieved a 43% reduction in feature space 

(UCI HAR (-66%), WISDM (-39%), and PAMAP2 (-36%)) relative to RF, indicating that the approach has 

consistent advantages over RF when it comes to reducing feature space dimensions across all data sets. 

Table 6 presents the top ten most frequently selected features for the UCI HAR dataset, which 

includes both time domain and frequency domain features; such as mean, standard deviation, spectral 

entropy, and skewness.  

 

 

Table 6. Top 10 features selected for UCI HAR dataset 
Rank Feature name Domain 

1 tBodyAcc-mean ()-X Time 

2 tGravityAcc-mean ()-Y Time 
3 tBodyGyro-std ()-Z Time 

4 fBodyAcc-meanFreq ()-X Frequency 

5 tBodyAccJerk-correlation ()-X, Z Time 
6 fBodyGyro-bandsEnergy ()-1,8 Frequency 

7 tBodyAccMag-arCoeff ()3 Time 

8 fBodyAccJerk-skewness ()-X Frequency 
9 tGravityAccMag-entropy () Time 

10 fBodyGyro-kurtosis ()-Y Frequency 

 

 

In Table 1, the top ten feature selections from the UCI HAR Dataset contain a balance of both time- 

and frequency-domain feature types. Time-domain type of the features that were selected are mean, standard 

deviation, correlation, autocorrelation coefficients and entropy (i.e., tBodyAcc-mean ()-X and 

tGravityAccMag-entropy ()). Frequency-domain type of the features that were selected are mean frequency, 

band power, skewness and kurtosis (e.g., fBodyAcc-meanFreq ()-X and fBodyGyro-kurtosis ()-Y). The 

combination of these types is an important part of the ability to model both the temporal and spectral aspects 

of human activities in order to perform HAR effectively. 
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4. DISCUSSION 

In this section we will discuss the outcomes and implications of our suggested method for selecting 

features to optimize multilayer ensemble models for HAR. The most important findings from the 

experimental analysis of the proposed method are as: 

 

4.1.  Addressing gaps in prior research 

Prior research has investigated either feature selection [9], [10] or ensemble learning [14], [27], 

however, never as an integrated layer-based approach. It is shown here that hierarchical optimization of 

layer-specific feature sets improves both accuracy, efficiency, and interpretability of HAR. 

 

4.2.  Summary of key findings 

The proposed method has consistently demonstrated superior results compared to both the single-

classifier performance (individually) and conventional ensemble methods, for all of the three benchmark data 

sets—UCI HAR, WISDM, and PAMAP2. The reasons for improved performance include: 

− The multilayer ensemble was able to capture low level temporal patterns as well as higher level 

composite activities. 

− Feature subset selection via GA, provided compact and highly discriminatory feature subsets while 

enhancing the interpretability of the multilayer ensemble. 

− Results were above baseline for each metric and notably for the recall and F1 score, two metrics that are 

of particular interest in applications such as fall detection, where missing an event can be very expensive. 

Baseline classifiers are compared in terms of accuracy to the proposed approach for all data sets as 

shown in Figure 2; with the proposed approach achieving a total accuracy rate of 96.84% for the UCI HAR 

data set; this is better than gradient boosting, at 94.89%. The same type of improvements can be seen in both 

the WISDM and PAMAP2 data sets; and these show that the proposed method can be generalized to multiple 

types of activities and different sensor arrangements. 

The proposed optimized feature selection process was able to reduce the number of input features to 

the model by as much as 36%, and still produce the same level of accuracy; thus, it demonstrated an optimal 

balance of model complexity and accuracy. 

 

4.3.  Comparison with literature 

The proposed method consistently selected fewer features than the baseline RF method but with the 

highest classification accuracy (Table 5). The proposed method’s ability to tailor feature subsets to each layer 

also yielded superior ROC-AUC performance compared to [9]’s hybrid feature selection; [10]’s ensemble 

feature selection; [28]’s guided RF feature selection; and, unlike flat ensembles, the proposed hierarchical 

model progressively refined activity patterns. 

As shown in Figure 3, the proposed approach has greatly reduced the number of selected features 

when compared to RF. On all three datasets (UCI HAR, WISDM, and PAMAP2), the proposed method 

selected a significantly lower number of features than either the total feature set or the RF baseline. The 

results from this study are consistent with previous studies demonstrating that optimal feature selection 

reduces dimensionality while enhancing model robustness as found in applications including sentiment 

analysis [14], and medical diagnosis/prediction. 

 

4.4.  Practical limitations 

Limitations of the study are: 

− The computational cost of the algorithm–training a GA is computationally costly and this limits its ability 

for real time adaptation in many cases. 

− The sensitivity of GA parameters–the performance of GA depends heavily on parameters (e.g., 

population size, and mutation probability) that require careful tuning. 

− Data bias–as with all experiments using wearable sensors as input data, these experiments are limited by 

the potential for generalization to vision-based HAR. 

 

4.5.  Implications for real-world deployment 

The reduced feature dimensionality and improved recall make this method suitable for: 

− Mobile health monitoring (low-power devices). 

− Elderly care (fall detection). 

− Smart wearables (activity tracking). 

The findings also suggest applicability to other time-series domains such as anomaly detection and 

physiological signal monitoring. 
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4.6.  Future research 

Further research is needed on the: 

− Take advantage of the real-time adaptation capabilities of online HAR methods [29], that may be 

integrated into our multilayer ensemble to improve overall responsiveness. 

− Investigate transfer learning techniques to enable better cross-subject generalization. 

− Additionally consider using multimodal data (i.e. environmental and physiological sensors). 

− Apply explainable AI techniques to provide greater transparency. 

− Take advantage of transfer learning techniques [30] to improve cross-subject generalization, which 

remains one of the main challenges in HAR. 

 

 

5. CONCLUSION 

This work proposed a multilayer ensemble architecture based on a multi-level GA-based feature 

selection strategy for the recognition of human Activities. This method is able to recognize both specific and 

abstract movement patterns, as opposed to previous methods that have used either one or the other of these 

strategies. The authors found statistical significance in their results on three benchmarks datasets (PAMAP2, 

UCI HAR, and WISDM) in terms of accuracy, precision, recall, F1 score, and ROC-AUC, and reduced the 

feature space by up to 36%. These results demonstrate the efficiency, robustness, and interpretability of this 

approach. The authors also identified three major implications of this study; namely, i) suitability for real-

time use in wearable and mobile devices, ii) increased interpretability due to compact feature sets, and iii) 

generalization to other time series domains. However, there are two main limitations of this approach; 

namely, high computational costs, and reliance on labelled training data. Therefore, future research will be 

focused on lightweight optimization, online and transfer learning for greater adaptability, integration of 

multimodal sensors, and explainable AI for increased transparency. Overall, this study demonstrates that 

layer-specific feature optimization within multilayer ensembles provides a scalable and practical pathway to 

advancing HAR and related human-centered AI applications. 
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