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 Numerous techniques, especially those based on deep learning (DL), have 

been developed and applied to a wide range of tasks, including image 

recognition, classification, object detection, and image segmentation, as a 

result of extensive research in the field of image processing. Image 

processing has become crucial in the medical field, with segmentation 

emerging as a crucial method for organ identification, disease detection, and 

abnormality analysis in medical images. Convolutional neural networks 

(CNNs), one of the many approaches, have recently demonstrated great 

promise in resolving intricate problems associated with medical image 

analysis because of their capacity to automatically learn hierarchical 

features. In this review, we discuss recent developments in deep CNNs for 

medical image segmentation. The architectures and features of the most 

popular CNN-based models are examined, along with the different publicly 

accessible medical imaging datasets that are used in studies and the 

evaluation metrics that are frequently used to gauge segmentation 

performance and accuracy, also the advantages and disadvantages of each 

one. In addition, we look at comparative research and the shortcomings of 

existing approaches, offering suggestions for future lines of clinical 

relevance. 
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1. INTRODUCTION 

Data generated by medical imaging studies already spread with an extremely high pace in the last 

years due to the fast evolution of medical imaging technologies and their high utilization. Commitment to 

diversity in health care. The breadth and high value of these data make them invaluable resources in 

healthcare. With continuous attempts to incorporate new theories and technologies to create a general 

segmentation algorithm applicable to different kinds of images, image segmentation techniques are currently 

moving toward increased speed and accuracy [1]. Image segmentation is a key methodology in these 

methods, that aims at partitioning the image into homogeneous and meaningful regions, and can be 

considered as a first step to enable automatic or semi-automatic delineation or analysis of anatomical 

structures. This step is crucial as it permits to accurately extract important elements such as organs, skin and 
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tumors, providing the physician with valid and reliable means in both diagnosis, therapeutic follow-up and 

medical research [2]. 

In recent years, deep learning (DL) has become a transformative force in medical image 

segmentation, driving significant improvements in both accuracy and efficiency. Imaging techniques as 

computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), X-

ray, ultrasound as well as RGB-based methods such as retinal imaging and microscopy have gained 

increasing application in clinical practice. These imaging modalities play a pivotal role in the diagnosis of 

disease, with CT and related modalities being the cornerstone for the clinicians’ approach to patients [3].  

Especially convolutional neural networks (CNNs) have shown strong capability in feature extraction 

for the segments both organs and lesions [4] and fully convolutional network (FCN) is an important DL 

architecture for medical image segmentation which replace the fully connected layers in CNN with 

convolutional layers and has the merits of flexible input sizes and pixel- wise prediction for such tasks as 

organ and lesion delineation [5]. U-Net developed an encoder–decoder architecture with skip connections 

and has proven very effective for biomedical image segmentation, especially with limited-annotated data [6]. 

In addition to these, Bernal et al. [7] have demonstrated the usefulness of region-based convolutional neural 

network (R-CNN) in medical imaging applications with sequential data, such as temporal variation in videos 

for surgical workflow analysis or tracking of structures through image slices, and other works have shown 

further advances of generative adversarial networks (GANs) in segmentation refinement through adversarial 

learning [8]. Medical image autoencoders trained on normal data with only perceptual loss can detect subtle 

anomalies by identifying content dissimilarity rather than reconstructing at pixel-level [9]. Hybrid techniques 

that combine DL and conventional segmentation methods have been recently introduced to tackle challenges 

such as weak edges, noise, and varying intensity distributions, providing better performance in robustness to 

imaging modalities [10]. This review summarizes these developments and outlines the future directions in 

medical image segmentation for medical image analysis as well as clinical reparation. 

This paper aims is to present a review of scientific literature about the recent approaches on DL for 

medical image segmentation to address the limitations and the research challenges on this field. It presents 

state-of-art techniques and answers what are the key challenges that need to be addressed for DL to be more 

effective for medical image segmentation. The review is strictly casted on the last guys developments with 

respect to the good old ones appeared in the previous. ensuring the coverage of how DL put its feet in the 

field here. The remainder of this review is organized as follows. The general concepts in DL are given in 

section 2. Note that this section could be skipped by an experienced reader. After this section, the state-of-

the-art of medical imaging are surveyed and analyzed regarding advantages and disadvantages in section 3. 

In section 4, evaluations and comparisons of the works are performed, based on the reported numerical 

results. We wrap up this work with a discussion that points to potential directions for the field in section 5. 

Section 6 provides the conclusion of this study. 

 

 

2. DEEP LEARNING 

2.1.  Overview of deep neural network for image segmentation 

CNN's structure is growing increasingly complex and varied as a result of the DL technology's quick 

advancement. As a result, it gradually supplants conventional machine learning techniques [11]. The 

advancement of image recognition tasks, especially in the area of medical image analysis, has been greatly 

impacted by the development of deep CNNs. Even though the fundamentals of neural networks were 

established in the 1980s and 1990s, Krizhevsky et al. [12] creation of AlexNet marked the beginning of deep 

CNNs as the most widely used technique in computer vision. This framework achieved ground-breaking 

results in the ImageNet large-scale visual recognition test, proving that deep networks could be trained with 

GPUs and large datasets [12]. In domain of processing image DL is a much known technique that has been 

used in lot of articles. 

A basic task in computer vision is image segmentation, which entails dividing an image into 

meaningful regions that frequently correspond to distinct objects or structures. The accuracy and efficiency 

of image segmentation tasks have been greatly improved by deep neural networks (DNNs), especially CNNs. 

 

2.2.  Convolutional neural network 

CNNs are a subgroup of DNNs however CNNs specialize in processing grid like data, which images 

are. They are really good at applying multiple layers of learnable filters and operations to input data-sets to 

capture spatial hierarchies. Due to the rapid progress in DL technology, the structure of CNN is becoming 

more and more complex and diverse. Consequently, it gradually replaces the traditional machine learning 

methods [13]. 

Architecture of a CNN is shown in Figure 1 [13]. It leverages a sequence of convolutional and 

pooling layers to transform the raw input image and to generate hierarchical feature representations which are 
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then used for classification and other purposes. illustrating convolution pooling and fully connected layers to 

be created from raw image input to a feature generator output [14]. This architecture is at the root of many of 

the DL models employed for modality-based imaging analysis. 
 

 

 
 

Figure 1. General architecture of a CNN 
 

 

All of the fundamental units in the CNN architecture play a different role for processing and 

learning from the image data. These include fully connected layers to make decisions, pooling layers to 

reduce dimension, and convolutional layers to extract features. Additional components (e.g., batch 

normalization and dropout) are often appended to increase training stability and model generalization. 

 

2.3.  Application of deep learning in medical image segmentation for various human organ 

In human body, there are many what-a-ma-call-it s. All of these elements are different by their 

nature. For example, there is a large area of segmentation required for diagnosis of lung nodule and brain 

tumor, and the vascular segmentation is required for retinal blood images. For the latter, more accurate 

segmentation is required. To improve segmentation accuracy, researchers adopt ideas within these messages 

and develop the segmentation techniques for different organs. Here, we will describe the optimal approach to 

segment different types of organs. We extracted segmentation methods of brain, eyes, chest, abdomen, and 

heart, from literature reading [15]. The CNNs structures generally used for image segmentation have 

different methods as Fully CNN, Regional CNN, U-Net, V-Net, R-CNN, DeepLab, and semantic 

segmentation [16]. 

Medical image segmentation, an essential operation in medical imaging for pixel-wise labeling of 

anatomical structures, is paramount to enable accurate diagnosis, treatment planning, and quantitative analysis. 

Segmentation determines the class of each pixel, with structural and spatial context, as opposed to image-level 

classification of whole images. U-Net (Ronneberger et al. [6]), a symmetric encoder-decoder network with U-

shaped connections has demonstrated excellent performance across various modalities including medical 

images and it is also designed particularly for biomedical image segmentation with scarce training samples. 

For the diagnosis and treatment planning of tumor, accurate brain tumor segmentation in MRI is necessary, but 

it remains challenging due to tumor heterogeneity, indistinct boundary, and intensity variation. Research by 

Zhao et al. [17] proposes a deep leaning model which combines conditional random fields (CRFs) and fully 

convolutional neural networks (FCNNs) to enhance spatial and appearance consistency of segmentation. After 

training 2D patches across axes and views using FCNNs, the model employs CRFs in the form of CRF-RNNs 

for global optimization. Other advancements were achieved by extending U-Net with attention mechanisms, 

an example is presented in Oktay et al. [18] attention U-Net, which helps the model focus on relevant regions 

in complex anatomical scenarios. Research by Zhang et al. [19], mitigates these limitations by proposing 

TransFuse, a parallel-in-branch architecture that integrates CNNs and transformers. TransFuse takes advantage 

of a two-branch architecture: one branch of transformer to record long-range dependencies and another branch 

of shallow CNN to preserve fine-grained spatial details. There is an effective global-local feature synthesis 

from both branches by the BiFusion module through hierarchical multi-scale feature fusion with bi-channel-

wise, spatial-wise, and Hadamard product wise attentions. Evaluated across a number of 2D and 3D medical 

image analysis tasks prostate, hip, skin lesion, and polyp. 

 

 

3. SUPERVISED LEARNING ALGORITHMS FOR MEDICAL IMAGE SEGMENTATION 

3.1.  Fully convolutional networks 

Specifically designed for high-density prediction tasks like image segmentation, FCNs are a variant 

of CNNs. The concept of FCNs was first proposed by Shelhamer et al. [20], who concentrated on image 

segmentation. In contrast to conventional CNNs, which employ fully connected layers for classification, 

FCNs do away with these layers and only employ convolutional layers, making pixel-level predictions 

possible. Standard convolutional layers are used to identify the captured image's attributes at the beginning of 
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the process. These layers detect a wide range of patterns, from simple features like contours to more complex 

shapes in deeper layers. After convolution, pooling layers reduce the feature maps' spatial dimensions, 

enabling effective image down sampling while condensing the key features. Examined are fully 

convolutional networks' learning and inference procedures. By limiting the input to just the foreground, just 

the background, or just the shape, masking experiments are carried out to examine the functions of context 

and shape. To determine whether learning a background classifier is required for semantic segmentation, a 

"null" background model is defined. To further optimize whole-image learning, a detailed approximation 

between batch size and momentum is presented. Lastly, task accuracy bounds for specified output resolutions 

are measured to show that notable gains are still possible, Figure 2 show the structure of FCN. 

 

 

 
 

Figure 2. The structure of the FCN 

 

 

3.2.  Regional convolutional neural network 

R-CNN is a DL architecture developed based on pairing up CNNs with region proposal algorithms 

for object detection. It actually requires something in order to work: region proposals – finding candidate 

regions (bounding boxes) in an image that could potentially contain an object using something like selective 

search. Feature extraction generating fixed length feature vector passing each region through CNN. 

Categorizing things: label each region by a set of class-specific SVM classifiers. Location refinement: 

Separate bounding box regressor to refine the accuracy in localization of the positive anchors [21]. 

 

3.2.1. Fast regional convolutional neural network 

Researcher subsequently improved the R-CNN model and developed a new model Fast R-CNN to 

solve some problems that are left by the original R-CNN algorithm Figure 3. This improved method reduces 

the processing pipeline by feeding region proposals directly into the network. Shared convolutional feature 

map is generated by passing the entire input image through a CNN. A region of interest (RoI) pooling layer 

[9] on this feature map is subsequently used for refining the projected region proposals. These representations 

are then passed over fully connected layers. Finally, a SoftMax layer is employed for predicting bounding-

box and classification scores. Fast R-CNN In particular, a key benefit of Fast R-CNN is that it eliminates the 

need to run the CNN forwards for each of the around 2,000 region proposals. Instead, the feature map is 

obtained in a single forward pass of the whole image, dramatically improving computational efficiency [22]. 

 

3.2.2. Faster regional convolutional neural network 

One of the most popular DL approaches for extracting image detections is the Faster R-CNN, which 

includes a region proposal network (RPN) on top of the convolutional features layers to speed up the 

computational operation. With the generation of region proposals built into the network, the RPN gets rid of 

the selective search process in previous R-CNN implementations. For Faster R-CNN, each of the input image 

has to resized to a fixed size before processing. Each image is passed through a convolutional network, 

inspired by VGG-16, which has 13 layers with convolution and 3 fully connected layers in total. As we know 

the classification accuracy of VGG-16 perform better than ZF-Net [23]. 3×3 convolutional kernels are used 

in the architecture of VGG-16. The model generates nine anchors at each location on the convolutional layers 

with three scales (128², 256², and 512² pixels) and three aspect ratios (1:1, 1:2, and 2:1). These anchors will 

generate 512×9 pixel feature maps, and therefore the sizes and shapes of the bounding boxes are adjusted 

with the sizes and shapes of the objects in the image. Then these feature maps go into the fully connected 

layers and the RoI pooling layer. A class probability is computed by a SoftMax layer and a two class scores 

are output which are object and background. In addition, the bounding box regressor estimates the 

coordinates and size of the detected object. This final output, called the proposal region, is then input to the 

detection module [23]. 
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3.2.3. Mask regional convolutional neural network 

Mask R-CNN is a powerful instance segmentation model; it extends the Faster R-CNN by adding a 

branch for predicting segmentation masks on each RoI, in parallel with the existing branch for classification 

and bounding box regression. It performs in two main stages: first, the input image is analyzed to detect 

candidate regions, and in the second, regions are classified and appropriate segmentation masks and 

bounding boxes are created. For instance-level object detection and segmentation, Mask R-CNN is a model 

that is able to both detect object classes and segment objects at the pixel level. Its architecture is a Fast R-

CNN-based network that incorporates enhanced components such as the ROIAlign algorithm to improve the 

localization, and FPN to produce multi-scale features. The 6 major components of the Mask R-CNN model 

consist of the ROIAlign module, the RPN, input processing, the feature extraction backbone, the FPN, and 

the output heads for mask prediction, classification, and bounding box regression (box, class, and mask) [24]. 

The Mask R-CNN architecture is illustrated in a schema in Figure 3. 

 

 

 
 

Figure 3. The structure of R-CNN 

 

 
3.3.  DeepLab 

Several versions of the DeepLab technique, including DeepLabv1, DeepLabv2, DeepLabv3, and 

DeepLabv3+, have been proposed. The supplied image passes through a deep CNN layer with one or two 

atrous convolution layers in DeepLabv1 [25]. In this way, it produces an incomplete feature map which is 

then upsampled to the size of the original image using a bilinear interpolation technique. Before obtaining a 

segmented image, the entire CRF is connected using interpolated data. 

The DeepLabv2 model uses several attenuated convolutions on the input feature map with different 

expansion rates. Outputs are merged and objects at different scales are segmented to capture information 

from a large effective field with fewer parameters and less computational complexity [25]. 

DeepLabv3 [26] is an extension to DeepLabv2 that has added image-level functionality to the atrous 

spatial pyramid pooling (ASPP) module. To easily form a network, it uses batch normalization. DeepLabv3's 

ASPP module is combined with an encoder and decoder structure in the DeepLabv3+ model. For faster 

computation, the model also uses at reuse and depth-separable convolution. Low-level and high-level 

functionalities corresponding to structural details and semantic information are combined in the decoder 

section. 

A decoding module and an encoding module are included in DeepLabv3+ [27]. Using an atrous 

convolutional network and backbone network such as MobileNetv2, PNASNet, ResNet, and Xception, the 

encoder path extracts the required information from an input image. Using the information from the input 

image, the decoder path reconstructs the output in the appropriate dimensions. 
 

3.4.  U-Net 

For per-pixel prediction, U-Net is a popular image segmentation technique. A U-channel and an 

ignored connection make up U-Net [16]. The structure of the U-channel is similar to that of the SegNet 

encoder-decoder. Each of the encoder's four submodules contains two convolutional layers. There is a 

maximum pool for sub-sampling after the sub-modules [7]. The decoder consists of four submodules. 

Oversampling progressively increases resolution. It then makes predictions for each pixel. This network 

comprises only convolution and subsampling, rather than a fully connected layer. The result of oversampling 

is connected to the output of the sub-module with the same resolution in the encoder as the input of the next 

sub-module in the decoder via an ignored network connection [15]. Figure 4 show structure of U-Net [28]. 
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Figure 4. The structure of U-Net 

 

 

3.5.  V-Net 

A DL network known as V-Net was specially designed for 3D medical imaging data, such as CT 

and MRI images. V-Net also cautiously considers the issue of complex semantic oriented boundary 

information, so it also makes some architecture changes, and the V-Net model still retains the overall 

framework of the U-Net model. It employs strides for down sampling of convolutional layers in place of 

pooling layers. We make such design choice so as to reduce the dimension of volumetric features and 

alleviate the bottleneck problem in the training process. Due to these structural differences, the V-Net was 

particularly effective in dealing with the challenges in volumetric medical image segmentation [29]. The V-

Net is a widely used 3D CNN in biomedical imaging analysis. The high resolution feature representations 

produced by its encoder offers the precise localization of target structures. To refine the final segmentation 

result, in this work, the model establishes skip connections between these hi-resolution features and decoder 

outputs. V-Net can effectively overcome the well-known issue of class imbalance, i.e. a huge difference 

between the pixel numbers of the foreground and background, in medical imaging [30], as shown in Figure 5. 

 

3.6.  Other U-Net structures 

This has resulted in various extensions to the U-Net architecture over the years to enhance 

segmentation accuracy and automatically learning rich features across different medical imaging tasks. To 

reduce the semantic gap between encoder and decoder feature map. To enhance the performance for images 

with complex or noisy backgrounds, another model attention U-Net [18] employs attention gate to guide the 

network to concentrate on important part of the input. In order to bridge the semantic gap between encoder 

and decoder feature maps and enable more precise medical image segmentation, UNet++ [31] introduces 

nested and dense skip pathways. Additionally, it integrates deep supervision, which allows for optional 

model pruning to enable both high-accuracy and high-speed inference modes. Residual U-Net [32] 

(incorporating residual connections within its convolutional (conv) blocks) allows for ease of augmenting 

network depth in order to facilitate a smooth learning of gradients. An effective CT and MRI volume 

segmentation is made available by 3D U-Net [33], the 2D U-Net is extended to three dimensions for 

volumetric data. The motivation behind these modifications is to enhance robustness, localization accuracy 

and feature representation across medical image segmentation tasks. Additionally, the U-Net architecture is 

enhanced with dense connectivity as that in the DenseNet architecture in the dense U-Net [34]. This 

configuration is designed to promote the reuse of features; while also mitigating the vanishing gradient 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 424-437 

430 

problem by having each block inner-layers take input from all the previous layers. Therefore, the medical 

image segmentation network is more robust and parameter-saving. With respect to the recurrent residual  

U-Net (R2U-Net) [35], which uses recurrent convolutional layers and residual learning in U-Net. By enabling 

network to preserve spatial dependencies over multiple layers, this design enhances the representation of 

contextual features, and enhances segmentation accuracy in complex medical images. 

 

 

 
 

Figure 5. The structure of V-Net 

 

  

3.7.  Generative adversarial networks 

GANs is composed of two competing networks: a generator and a discriminator tasked to generate 

realistic data. The generator generates the samples that look like the real ones, and the discriminator 

differentiates the real from the fake, and as such, GANs can learn complex data distributions. This 

adversarial training has been shown to be effective in medical imaging, plagued by data scarcity and low 

quality. GAN models can be utilized to synthesize images for complementing scarce data, restore high-

resolution details, improve segmentation performance, and identify anomalies in representing normal data 

distributions in the diagnosis and treatment assistance [36]. GANs are a popular family of DL models which 

comprise of a generator and a discriminator network competing in an adversarial game to generate highly 

realistic synthetic data. In medical imaging, GANs are of particular interest to solve data scarcity, class-

imbalance, and privacy issue problems, where high-quality synthetic data are generated for data 

augmentation, segmentation, reconstruction, and domain translation [37]. 

 

 

4. MEDICAL IMAGE SEGMENTATION BASED ON DEEP LEARNING 

Under a given input image of DL, includes a lot of application areas of image, objects, and so on, 

including object detection, image segmentation, image recognition, classification and the like. Medical image 

segmentation is also a widely studied topic, given that it plays a critical role in computerized diagnosis and 

treatment planning. Several imaging modalities have been utilized for the studies, such as CT, ultrasound 

(US), X-ray and MRI, and each one of them is suitable for a specific clinical context. Depending on the 

application, various organs and anatomical structures such as brain, lungs, polyp, heart, and tumors are each 
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aimed to be segmented. Each study commonly relies on a segmentation method to solve the problem. The 

proposed methods are also evaluated with Clinical data or public datasets and quantitative measurements 

such as Hausdorff distance (HD), precision and recall, intersection over union (IoU), and dice similarity 

coefficient are used to verify the effectiveness and accuracy of the proposed algorithms. The challenging and 

variable nature of medical image segmentation can be assessed through studies that demonstrate the 

complexity and adaptability required for successful solutions. 

 

4.1.  State of the art 

Research by Tseng et al. [38] an semi-supervised CNN bridging dense block with U-Net 

architecture for cardiac MRI segmentation named DNetUnet were introduced and it was trained using 

ACDC2017 dataset. By introducing GAN architecture on unlabeled data samples, focal and boundary loss on 

imbalanced classes and knowledge distillation for mobile deployment, the model surpassed U-Net and 

ResUNet in hearts' structures segmentation task, and thus providing trustworthy automation for diagnosis of 

diseases such as myocardial infarction and cardiomyopathy. Cao et al. [39] proposed Swin-Unet, the first U-

shaped architecture for medical image segmentation consisting only of transformer blocks, benefiting from 

hierarchical Swin Transformer blocks, shifted-window self-attention, and convolution-free up-sampling. 

When applied to Synapse CT and ACDC MRI data, it performed advancing of CNN and hybrid models, 

which demonstrates the success of pure transformer that at the cost of increased computation would hold as 

considerable potential for medical imaging project of the future. Yue et al. [40] developed an automatic DL 

pipeline for bronchiectasis identification on LDCT, in a workflow that consisted of image enhancement 

(ACER), automatic lung-lobe segmentation (RDU-Net), and lesion classification (HDC Mask R-CNN). 

Show that a system that was taught using 1992 annotated images was competitive in terms of accuracy, could 

produce output in approximately 1 second and showed promise as a fast and reliable tool to help radiologists 

detect bronchiectasis. Azad et al. [41] developed TransDeepLab, a transformer-modified architecture (based 

on DeepLabv3+) TransDeepLab autoregressively replaces CNN layers with Swin-Transformer blocks, and 

incorporates a Swin SPP module and cross-contextual attention; delivering better multi-scale fusion and 

boundary segmentation. It also obtained state-of-the-art performance on Synapse CT and skin lesion datasets, 

demonstrating that pure transformer structures can achieve quite useful representations of 3D volumes 

despite having to rely on pre-training with ImageNet and taking 2D as input. Sun et al. [42] introduced DA-

TransUNet, which is a Transformer U-Net variant integrated with PAM and CAM attention modules in order 

to capture the spatial (PAM) and channel (CAM) characteristics and alleviate the gaps between the encoder 

and decoder and the redundancy of the filters. The network was tested on Synapse, CVC-ClinicDB, and 

ISIC2018 datasets where it achieved the state-of-the-art performance on organ, polyp, and skin lesion 

segmentation, providing accurate boundary localization with efficiently learned parameters but with 

additional architectural complexity. Bukhori et al. [28] has idea to predeveloped a paper regarding the 

application pose of breast cancer image segmentation based on CNN model to the U-Net architecture. In this 

paper, we focus on the easier task of diagnosing breast cancer in the mammogram as it is a challenging one 

because of its low contrast and high noise, and use ultrasound USG images to ensure a better accuracy. The 

proposed U-Net model consists of the encoder, bottleneck, and decoder components and is evaluated for 

various scenarios involving varying training to testing data ratio. It is noted that the best Mean IU attains the 

conclusion that the U-Net is effective for breast cancer segmentation. Innani et al. [43] presented EGAN and 

MGAN, both GAN-based unsupervised methods for skin lesion segmentation on ISIC 2018. EGAN adopts a 

squeeze-and-excitation encoder-decoder structure that combines a patchGAN discriminator with 

morphology-based loss for accurate segmentation, while MGAN integrates ASPP with MobileNetV2 for 

efficient deployment. Both EGAN and MGAN outperform CNN and transformer baselines, with EGAN 

mainly better in accuracy and MGAN often better in efficiency, although they face challenges in 

computational cost and cross-dataset generalization. Wan et al. [44] also use a glioma-special MRI 

segmentation architecture based on the improved DeepLabv3+ and RegNet, together with an attribute 

encoder for multimodal data fusion. Furthermore, achieving state-of-the-art results on the LGG dataset (94.36 

Dice and 91.83 IoU) by utilizing cross-entropy, Dice, and outlier-region loss, we demonstrated the 

effectiveness of multimodal fusion and the use of sophisticated loss functions, leaving some room for 

improvement in multi-class and 3D segmentation. Qin et al. [45] proposed DB-SAM – a dual-branch variant 

of the Segment Anything Model for universal medical image segmentation. DB-SAM gains advantage over 

both SAM and MedSAM on as many as 30 segmentation tasks (87.05% Dice and 85.31% NSD) by 

integrating one ViT body for high-order features and a convolutional counterpart for domain-specific details 

with bilateral cross-attention for feature fusion. It is capable to efficiently process small or complex structures 

and multimodal data, however it remains problematic for 3D volume reconstruction and increased 

computational expenses. Iqbal et al. [46], which proposed TBConvL-Net, a hybrid CNN–ViT–BConvLSTM 

network for medical image segmentation. It employs CNNs for local detail extraction, transformers for global 

context, BConvLSTM for temporal feature learning, Swin blocks in skip connections and composite loss for 
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boundary accuracy. It surpassed state-of-the-art methods in Dice, Jaccard and sensitivity on ten different 

datasets, while being lightweight and fast (19.1 ms inference), showing strong generalization and robustness. 

Ruan et al. [47] proposed VM-UNet, a segmentation model based on the Mamba state space model (SSM) 

framework with Visual State Space (VSS) blocks for effective long-range dependency modeling. By using a 

content specific asymmetric encoder decoder and efficient skip connections rather than convolution or self-

attention, it outperforms state-of-the-art methods on ISIC17, ISIC18, and Synapase datasets and is much 

more parameter/ computation efficient. Although it is not good at capturing fine boundaries and large inputs, 

it serves as the first pure SSM-based baseline for medical image segmentation. 

Table 1 compares 11 representative methods and highlights their salient features, advantages, and 

limitations to facilitate the selection of a suitable method by the researchers and the clinicians. We have 

selected a subset of these strategies for further study in this work based on the summarized knowledge for 

each method. 

 

 

Table 1. Performance comparison of supervised medical image segmentation methods 
Method Core features Advantage Limitations 

DNetUnet Dense block feature extractor 

to preserve relevant features 

Semi-supervised learning using 
labelled and unlabeled data 

Focal loss and boundary loss 

Superior segmentation accuracy, 

effective handling details, 

reduced training 

High computational requirements for 

training, limited performance 

improvement 

Swin-Unet Pure transformer architecture 
Shifted window mechanism 

Patch expanding layer 

Hierarchical design 

Global context modeling, high 
accuracy, edge preservation 

Computational cost, pre-training 
dependency, and 3D data handling 

Mask R-CNN ACER image enhancement 

RDU-net segmentation 

HDC Mask R-CNN 

High accuracy, fast processing, 

lobe-wise scoring 

Limited dataset, hardware 

constraints, and tongue lobe not 

segmented separately. 
TransDeepLab Shifted window mechanism 

SSPP module 

Multi-scale fusion and 

computational efficiency 

Generalizability: effective across 
modalities 

Pre-training dependency 

2D focus: not evaluated on 3D  

High-resolution demands 

DA-TRANSUNET Dual attention (DA-Blocks) 

Transformer integration 
Optimized skip connections 

Superior accuracy 

Multi-scale feature fusion 
Generalizability: effective across 

diverse 

Robust skip connections 

Computational cost 

Pre-training dependency 

U-Net Data augmentation 

Hyperparameter testing 

Mean IoU metric 

High accuracy, 

Automated segmentation 

Robust to noise 
Flexible training 

Dependence on data quality 

Moderate performance in some cases 

Limited generalization 
Computational cost 

GAN Unsupervised learning 

Boundary-aware segmentation 
Multi-scale feature extraction 

Computational efficiency 

High accuracy 

Data efficiency 
Real-time deployment 

Robustness 

Computational cost 

Generalizability 
Dependence on ISIC data 

DeepLabv3+ Multimodal fusion 
Advanced loss functions 

ASPP module 

Higher accuracy 
Noise reduction 

Multimodal integration 
Efficiency: uses 2D CNNs (faster 

than 3D CNNs)  

Small dataset 
Transformer underperformance 

Noise size dependency 
No 3D segmentation 

DB-SAM Dual-branch encoder 

(ViT+CNN) 

Channel attention blocks in 

ViT to enhance medical-
specific features 

Efficient adaptation 

Superior accuracy 

Handles complex structures 

Multimodal compatibility 

2D processing for 3D data 

Dependence on bounding box 

prompts 

TBConvL-Net Depth-wise separable 
convolutions 

Dense connections 

BConvLSTM in skip 
connections 

Swin Transformer blocks 

Composite loss function 
Transfer learning 

High segmentation accuracy  
Efficient computation 

Robust feature learning  

Strong generalization 

Transformer component still 
computationally heavier than pure 

CNNs 

Requires moderate hardware  
Preprocessing needed 

No 3D segmentation 

VM-UNet Pure SSM-based design 

VSS 
SS2D module 

Asymmetric encoder-decoder 

Simple skip connections 

High segmentation accuracy 

Linear computational complexity 
Parameter-efficient  

Strong generalization 

Robust in complex scenarios 

Sensitivity to fine details 

Performance degradation at higher 
resolutions 

Generalization limitations of SSMs 

No attention or multi-scale fusion 
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Table 2 provides a comparison of the 11 selected methods, with emphasis on four key aspects: 

reference source, imaging modalities utilized, anatomical regions segmented, and evaluation metrics 

considered. Through these facilitating factors like Dice coefficients, accuracy, and sensitivity, these schemes 

offer a complete evaluation of the quality of segmentation in various medical imaging domains. Collecting 

this information, Table 2 enables a better comparison between the effectiveness and appropriateness of these 

methodologies for certain medical imaging applications. 

 

 

Table 2. Performances evaluation of a list of papers 
Ref Modalities Segmented area Evaluations 

Tseng et al. 

2020 [38] 

Cardiac MRI images Segmenting left ventricle, right 

ventricle, and myocardium 

Achieves dice coefficients of 0.942 

(LV), 0.908 (RV), and 0.894 (MYO) 

Outperforms existing methods like U-
Net, ResUNet, and DenseUNet 

Cao et al. 

2021 [39] 

Multi-organ CT/Cardiac 

MRI 

Aorta, gallbladder, kidneys, liver, 

pancreas, spleen, 

stomach/Left/right ventricles 

(LV/RV), myocardium (MYO) 

Synapse dataset: 79.13% dice similarity 

coefficient (DSC), 21.55 HD  

ACDC dataset: 90.00% DSC (best in 

LV/MYO segmentation) 

Yue et al. 
2022 [40] 

CT Lung lobes Classification accuracy: 91.4% 
IoU: 88.8% 

Sensitivity: 88.6% 
Specificity: 85.4% 

Segmentation IoU (RDU-Net): 98.3% 

Azad et al. 
2022 [41] 

CT, MRI (cardiac), 
dermoscopy, (skin lesions) 

Synapse dataset: 8 abdominal 
organs (aorta, liver, and pancreas) 

ACDC: cardiac structures 

(left/right ventricles, myocardium) 
Skin lesions: ISIC 2017/2018, PH² 

datasets 

Synapse: 80.16% DSC, 21.25 HD 
Skin lesions: 92.39%  

Model efficiency: 21.14M  

SSPP levels: 2-level optimal for DSC; 
3-level improves HD 

Cross-attention: +1% DSC over basic 

fusion. 
Sun et al. 

2024 [42] 

CT (Synapse: abdominal 

organs) 

MRI (cardiac structures). 
X-ray (tuberculosis 

detection) 

Endoscopy/dermoscopy 
(polyps, skin lesions) 

Organs: liver, pancreas, kidneys, 

Lesions: polyps (CVC-ClinicDB), 

skin cancer (ISIC2018) 
Pathologies: tuberculosis (Chest X-

ray) 

DSC: primary overlap accuracy (79.80% 

on synapse) 

HD: Boundary precision (23.48 mm on 
synapse) 

Bukhori et al. 

2023 [28] 

Ultrasound (USG) images Breast tumor Primary metric: mean IoU 

Innani et al. 

2023 [43] 

Dermoscopic images Skin lesions Dice coefficient (90.1% for EGAN), 

Jaccard index (83.6%), Accuracy 

(94.5%) 
Sensitivity (93.6%) and specificity 

(95.5%) for clinical relevance 

Speed MGAN achieves 13 FPS  
Wan et al. 

2023 [44] 

MRI Brain tumor DSC: 94.36, IoU: 91.83 

Qin et al. 
2024 [45] 

3D: MRI 
2D: X-ray, ultrasound, 

endoscopy, retinal imaging, 

pathology 

Brain: ventricles, tumors, 
cerebellum 

Abdomen: liver, pancreas, 

gallbladder, tumors 
Thorax: lungs, pleural effusion, 

heart ventricles, other: prostate, 

head-neck tumors, retinal vessels, 
colon glands 

DSC: 87.05% (3D), 82.00% (2D), 
(NSD): 85.31% (3D), 91.81% (2D) 

Iqbal et al. 

2025 [46] 

Optical imaging 

Ultrasound 
Whole slide imaging (WSI) 

X-ray – chest radiographs 

(MC) 
Fundus photography 

Microscopy 

MRI 

Skin lesions 

Thyroid nodules 
Breast tumors 

Cell nuclei 

Optic discs 
Fluorescent cells 

Chest and brain abnormalities 

Jaccard index (IoU) 

Dice coefficient 
Accuracy 

Sensitivity (recall) 

Specificity 

Ruan et al. 

2024 [47] 

Dermoscopy images 

CT Images 

Skin lesions 

Aorta, gallbladder, left/right 

kidneys, liver, pancreas, spleen, 
stomach 

Mean intersection over union (mIoU) 

DSC 

Accuracy 
Sensitivity (recall) 

Specificity 

HD95 (95th percentile HD) 
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5. RESULTS AND DISCUSSION 

In this review, we demonstrated an in-depth analysis of the performance and developmental journey 

of DL models applied to supervised segmentation tasks in medical imaging. Even though most of the 

previous works heavily investigated the efficiency of CNN-based architectures, including but not limited to 

U-Net, for achievements in specific fields, relatively few studies were dedicated to these networks’ clear 

disadvantages in terms of long-range modeling, low robustness over multiple domains, and real-life 

applicability. Therefore, one can outline three methodological waves: updated CNN-based architectures, 

transformer-based models, and developing generalists. Our examination of 11 seminal works demonstrates a 

direct pattern. The first group, CNN-based models with densely connected/atrous convolutions and specific 

losses, demonstrate a leading Dice score on small and specific tasks, specifically, 90.18% on the skin lesions 

dataset with 93.5% accuracy, proving limited effectiveness in complicated scenarios. By contrast, the 

transformer-based models, Swin-Inst, included DA-TransUNet, confirmed an undoubted advantage in multi-

organ tasks and the ACDC cardiac dataset via 90.62% DSC with one head and 79.13% DSC on Synapse. The 

third wave of models, including state-space architectures like VM-UNet and prompted networks, gave a 

boost to the real-world deployment and explanation capacity, while losing a battle of generality. Our results 

indicate that the high level of segmentation quality can be achieved without DL if it is assigned a certain task 

or issue for local smoothing. For example, boundary-aware loss, included in many articles, increases the 

segmentation of tiny and irregular bodies, a significant issue of early CNN-based models. The success of the 

transformer-based models from Swin, Naive, and DA could be easily explained by global context 

understanding in terms of shifted windows and dual mechanisms, emphasizing the current-voltage oncell 

masks, which is the same as witnessed by Cao et al. [39] and Azad et al. [41]. who forgot to mention the 

massive uptrend of HD. Nevertheless, various paradigms GANs and SSMs demonstrate that the model 

benefits immensely from the unsupervised part or simplification without a serious cost to accuracy on less 

labeled tasks. While this study could analyze a broad number of different methods and fields, its result is 

derived from quick mentioned works, which do not provide a completely integrated analysis of proposed in 

the compare performance benchmarks. Thus, the need for additional research continues even with the 

reported limitations: transformer high computational cost, reshuffling of the structures in SSMs, and 

increased importance of pre-learning, particularly in challenging clinical settings and lower-quality image 

modalities. 

Our findings indicate that the field is shifting towards an equilibrium among accuracy, efficiency, 

and generalization instead of optimizing a single metric. Forthcoming research could focus on multiple 

directions: i) cross-modality and multi-institutional benchmarking to inhibit networks from overfitting small 

and homogeneous cohort of data as well as ensure clinical relevance and portability across populations and 

equipment; ii) intelligible models that supply a clinical reasoning tool simultaneously with the mask, to give 

clinicians some degree of trust; and iii) realistic ways to seamlessly insert the tool in the pipeline of diagnosis 

and prognosis, not as an isolated block but as a part of a device with the specific role of helping the doctor. 

Recent studies suggest that the trend of medical image segmentation is moving from tailored CNNs 

towards context-aware transformers and the direction of easy-to-use models. Our results provide clear 

evidence that this evolution is driven by a fundamental shift in design priority - the tradeoff between 

accuracy and computational demand/annotation cost, as opposed to a single architectural innovation. Model 

selection now becomes largely application-specific: CNNs in resource-constrained environments, 

transformers in context-driven tasks, and new models such as SSMs for scalable, efficient use. 

 

 

6. CONCLUSION 

In this article, we have presented the long way of DL for medical image segmentation from CNN-

embedded architectures, through state-space models and other light-weight methodologies. Our results from 

the reviewed studies give rise to 3 major implications for developers and clinical practitioners. Firstly, the 

choice of the model should be application-oriented. CNN-based structures still have a marginal edge in low-

data and strict-computational restricted regimes. In contrast, transformer and hybrid models are more 

appropriate for complex, multi-organ tasks where global contextual information is important. Second, the 

interest in only the highest accuracy on a benchmark is giving way to the demand for robustness, 

reproducibility, and validation on a variety of datasets and institutions. Third, computation and annotation 

efficiency are moving from an engineering convenience to a clinical necessary, for real-time or bedside 

integration, such as facilitated by light-weighted GANs and state-space models. For the algorithm 

development community, these results highlight the importance of developing relevant and deployable 

algorithms. Much future work will need to prioritize large scale cross-modality benchmarking, interpretable 

models that explain their reasoning, and development of segmentation tools directly in clinical diagnostic 

pathways. What this means to the clinician, we argue, is that while frontier models may trump in terms of 
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numbered precision, their practicable strength, interpretability and capacity to survive the sheer diversity of 

real-world clinical imaging are the real benchmark. In this context, semi-supervised CNNs, promptable 

SAM-like models, and efficient SSMs can be seen as complementary directions to transfer research 

developments into useful instruments to be actually deployed in the radiology rooms. Finally, the field is 

going to iterate towards a more subtle trade-off between precision, brevity and interpretability. Striking this 

balance will require an unprecedented degree of collaboration among computer scientists, clinicians, and 

regulatory agencies to ensure that these advanced segmentation methods achieve not only state-of-the-art 

performance but also meaningful, quantifiable improvements in patient outcomes and clinical workflows. 
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