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Numerous techniques, especially those based on deep learning (DL), have
been developed and applied to a wide range of tasks, including image
recognition, classification, object detection, and image segmentation, as a
result of extensive research in the field of image processing. Image
processing has become crucial in the medical field, with segmentation
emerging as a crucial method for organ identification, disease detection, and
abnormality analysis in medical images. Convolutional neural networks
(CNNs), one of the many approaches, have recently demonstrated great
promise in resolving intricate problems associated with medical image
analysis because of their capacity to automatically learn hierarchical
features. In this review, we discuss recent developments in deep CNNs for
medical image segmentation. The architectures and features of the most
popular CNN-based models are examined, along with the different publicly
accessible medical imaging datasets that are used in studies and the

evaluation metrics that are frequently used to gauge segmentation
performance and accuracy, also the advantages and disadvantages of each
one. In addition, we look at comparative research and the shortcomings of
existing approaches, offering suggestions for future lines of clinical
relevance.
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1. INTRODUCTION

Data generated by medical imaging studies already spread with an extremely high pace in the last
years due to the fast evolution of medical imaging technologies and their high utilization. Commitment to
diversity in health care. The breadth and high value of these data make them invaluable resources in
healthcare. With continuous attempts to incorporate new theories and technologies to create a general
segmentation algorithm applicable to different kinds of images, image segmentation techniques are currently
moving toward increased speed and accuracy [1]. Image segmentation is a key methodology in these
methods, that aims at partitioning the image into homogeneous and meaningful regions, and can be
considered as a first step to enable automatic or semi-automatic delineation or analysis of anatomical
structures. This step is crucial as it permits to accurately extract important elements such as organs, skin and
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tumors, providing the physician with valid and reliable means in both diagnosis, therapeutic follow-up and
medical research [2].

In recent years, deep learning (DL) has become a transformative force in medical image
segmentation, driving significant improvements in both accuracy and efficiency. Imaging techniques as
computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), X-
ray, ultrasound as well as RGB-based methods such as retinal imaging and microscopy have gained
increasing application in clinical practice. These imaging modalities play a pivotal role in the diagnosis of
disease, with CT and related modalities being the cornerstone for the clinicians’ approach to patients [3].

Especially convolutional neural networks (CNNs) have shown strong capability in feature extraction
for the segments both organs and lesions [4] and fully convolutional network (FCN) is an important DL
architecture for medical image segmentation which replace the fully connected layers in CNN with
convolutional layers and has the merits of flexible input sizes and pixel- wise prediction for such tasks as
organ and lesion delineation [5]. U-Net developed an encoder—decoder architecture with skip connections
and has proven very effective for biomedical image segmentation, especially with limited-annotated data [6].
In addition to these, Bernal et al. [7] have demonstrated the usefulness of region-based convolutional neural
network (R-CNN) in medical imaging applications with sequential data, such as temporal variation in videos
for surgical workflow analysis or tracking of structures through image slices, and other works have shown
further advances of generative adversarial networks (GANS) in segmentation refinement through adversarial
learning [8]. Medical image autoencoders trained on normal data with only perceptual loss can detect subtle
anomalies by identifying content dissimilarity rather than reconstructing at pixel-level [9]. Hybrid techniques
that combine DL and conventional segmentation methods have been recently introduced to tackle challenges
such as weak edges, noise, and varying intensity distributions, providing better performance in robustness to
imaging modalities [10]. This review summarizes these developments and outlines the future directions in
medical image segmentation for medical image analysis as well as clinical reparation.

This paper aims is to present a review of scientific literature about the recent approaches on DL for
medical image segmentation to address the limitations and the research challenges on this field. It presents
state-of-art techniques and answers what are the key challenges that need to be addressed for DL to be more
effective for medical image segmentation. The review is strictly casted on the last guys developments with
respect to the good old ones appeared in the previous. ensuring the coverage of how DL put its feet in the
field here. The remainder of this review is organized as follows. The general concepts in DL are given in
section 2. Note that this section could be skipped by an experienced reader. After this section, the state-of-
the-art of medical imaging are surveyed and analyzed regarding advantages and disadvantages in section 3.
In section 4, evaluations and comparisons of the works are performed, based on the reported numerical
results. We wrap up this work with a discussion that points to potential directions for the field in section 5.
Section 6 provides the conclusion of this study.

2. DEEP LEARNING
2.1. Overview of deep neural network for image segmentation

CNN's structure is growing increasingly complex and varied as a result of the DL technology's quick
advancement. As a result, it gradually supplants conventional machine learning techniques [11]. The
advancement of image recognition tasks, especially in the area of medical image analysis, has been greatly
impacted by the development of deep CNNs. Even though the fundamentals of neural networks were
established in the 1980s and 1990s, Krizhevsky et al. [12] creation of AlexNet marked the beginning of deep
CNNs as the most widely used technique in computer vision. This framework achieved ground-breaking
results in the ImageNet large-scale visual recognition test, proving that deep networks could be trained with
GPUs and large datasets [12]. In domain of processing image DL is a much known technique that has been
usedin lot of articles.

A basic task in computer vision is image segmentation, which entails dividing an image into
meaningful regions that frequently correspond to distinct objects or structures. The accuracy and efficiency
of image segmentation tasks have been greatly improved by deep neural networks (DNNSs), especially CNNs.

2.2. Convolutional neural network

CNNs are a subgroup of DNNs however CNNs specialize in processing grid like data, which images
are. They are really good at applying multiple layers of learnable filters and operations to input data-sets to
capture spatial hierarchies. Due to the rapid progress in DL technology, the structure of CNN is becoming
more and more complex and diverse. Consequently, it gradually replaces the traditional machine learning
methods [13].

Architecture of a CNN is shown in Figure 1 [13]. It leverages a sequence of convolutional and
pooling layers to transform the raw input image and to generate hierarchical feature representations which are
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then used for classification and other purposes. illustrating convolution pooling and fully connected layers to
be created from raw image input to a feature generator output [14]. This architecture is at the root of many of

the DL models employed for modality-based imaging analysis.
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Figure 1. General architecture of a CNN

All of the fundamental units in the CNN architecture play a different role for processing and
learning from the image data. These include fully connected layers to make decisions, pooling layers to
reduce dimension, and convolutional layers to extract features. Additional components (e.g., batch
normalization and dropout) are often appended to increase training stability and model generalization.

2.3. Application of deep learning in medical image segmentation for various human organ

In human body, there are many what-a-ma-call-it s. All of these elements are different by their
nature. For example, there is a large area of segmentation required for diagnosis of lung nodule and brain
tumor, and the vascular segmentation is required for retinal blood images. For the latter, more accurate
segmentation is required. To improve segmentation accuracy, researchers adopt ideas within these messages
and develop the segmentation techniques for different organs. Here, we will describe the optimal approach to
segment different types of organs. We extracted segmentation methods of brain, eyes, chest, abdomen, and
heart, from literature reading [15]. The CNNSs structures generally used for image segmentation have
different methods as Fully CNN, Regional CNN, U-Net, V-Net, R-CNN, DeeplLab, and semantic
segmentation [16].

Medical image segmentation, an essential operation in medical imaging for pixel-wise labeling of
anatomical structures, is paramount to enable accurate diagnosis, treatment planning, and quantitative analysis.
Segmentation determines the class of each pixel, with structural and spatial context, as opposed to image-level
classification of whole images. U-Net (Ronneberger et al. [6]), a symmetric encoder-decoder network with U-
shaped connections has demonstrated excellent performance across various modalities including medical
images and it is also designed particularly for biomedical image segmentation with scarce training samples.
For the diagnosis and treatment planning of tumor, accurate brain tumor segmentation in MRI is necessary, but
it remains challenging due to tumor heterogeneity, indistinct boundary, and intensity variation. Research by
Zhao et al. [17] proposes a deep leaning model which combines conditional random fields (CRFs) and fully
convolutional neural networks (FCNNS) to enhance spatial and appearance consistency of segmentation. After
training 2D patches across axes and views using FCNNs, the model employs CRFs in the form of CRF-RNNs
for global optimization. Other advancements were achieved by extending U-Net with attention mechanisms,
an example is presented in Oktay et al. [18] attention U-Net, which helps the model focus on relevant regions
in complex anatomical scenarios. Research by Zhang et al. [19], mitigates these limitations by proposing
TransFuse, a parallel-in-branch architecture that integrates CNNs and transformers. TransFuse takes advantage
of a two-branch architecture: one branch of transformer to record long-range dependencies and another branch
of shallow CNN to preserve fine-grained spatial details. There is an effective global-local feature synthesis
from both branches by the BiFusion module through hierarchical multi-scale feature fusion with bi-channel-
wise, spatial-wise, and Hadamard product wise attentions. Evaluated across a number of 2D and 3D medical
image analysis tasks prostate, hip, skin lesion, and polyp.

3. SUPERVISED LEARNING ALGORITHMS FOR MEDICAL IMAGE SEGMENTATION
3.1. Fully convolutional networks

Specifically designed for high-density prediction tasks like image segmentation, FCNs are a variant
of CNNs. The concept of FCNs was first proposed by Shelhamer et al. [20], who concentrated on image
segmentation. In contrast to conventional CNNs, which employ fully connected layers for classification,
FCNs do away with these layers and only employ convolutional layers, making pixel-level predictions
possible. Standard convolutional layers are used to identify the captured image's attributes at the beginning of
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the process. These layers detect a wide range of patterns, from simple features like contours to more complex
shapes in deeper layers. After convolution, pooling layers reduce the feature maps' spatial dimensions,
enabling effective image down sampling while condensing the key features. Examined are fully
convolutional networks' learning and inference procedures. By limiting the input to just the foreground, just
the background, or just the shape, masking experiments are carried out to examine the functions of context
and shape. To determine whether learning a background classifier is required for semantic segmentation, a
"null" background model is defined. To further optimize whole-image learning, a detailed approximation
between batch size and momentum is presented. Lastly, task accuracy bounds for specified output resolutions
are measured to show that notable gains are still possible, Figure 2 show the structure of FCN.

forward /inference

3 backward/learning

1

Figure 2. The structure of the FCN

3.2. Regional convolutional neural network

R-CNN is a DL architecture developed based on pairing up CNNs with region proposal algorithms
for object detection. It actually requires something in order to work: region proposals — finding candidate
regions (bounding boxes) in an image that could potentially contain an object using something like selective
search. Feature extraction generating fixed length feature vector passing each region through CNN.
Categorizing things: label each region by a set of class-specific SVM classifiers. Location refinement:
Separate bounding box regressor to refine the accuracy in localization of the positive anchors [21].

3.2.1. Fast regional convolutional neural network

Researcher subsequently improved the R-CNN model and developed a new model Fast R-CNN to
solve some problems that are left by the original R-CNN algorithm Figure 3. This improved method reduces
the processing pipeline by feeding region proposals directly into the network. Shared convolutional feature
map is generated by passing the entire input image through a CNN. A region of interest (Rol) pooling layer
[9] on this feature map is subsequently used for refining the projected region proposals. These representations
are then passed over fully connected layers. Finally, a SoftMax layer is employed for predicting bounding-
box and classification scores. Fast R-CNN In particular, a key benefit of Fast R-CNN is that it eliminates the
need to run the CNN forwards for each of the around 2,000 region proposals. Instead, the feature map is
obtained in a single forward pass of the whole image, dramatically improving computational efficiency [22].

3.2.2. Faster regional convolutional neural network

One of the most popular DL approaches for extracting image detections is the Faster R-CNN, which
includes a region proposal network (RPN) on top of the convolutional features layers to speed up the
computational operation. With the generation of region proposals built into the network, the RPN gets rid of
the selective search process in previous R-CNN implementations. For Faster R-CNN, each of the input image
has to resized to a fixed size before processing. Each image is passed through a convolutional network,
inspired by VGG-16, which has 13 layers with convolution and 3 fully connected layers in total. As we know
the classification accuracy of VGG-16 perform better than ZF-Net [23]. 3%3 convolutional kernels are used
in the architecture of VGG-16. The model generates nine anchors at each location on the convolutional layers
with three scales (1282, 2562, and 5122 pixels) and three aspect ratios (1:1, 1:2, and 2:1). These anchors will
generate 512x9 pixel feature maps, and therefore the sizes and shapes of the bounding boxes are adjusted
with the sizes and shapes of the objects in the image. Then these feature maps go into the fully connected
layers and the Rol pooling layer. A class probability is computed by a SoftMax layer and a two class scores
are output which are object and background. In addition, the bounding box regressor estimates the
coordinates and size of the detected object. This final output, called the proposal region, is then input to the
detection module [23].
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3.2.3. Mask regional convolutional neural network

Mask R-CNN is a powerful instance segmentation model; it extends the Faster R-CNN by adding a
branch for predicting segmentation masks on each Rol, in parallel with the existing branch for classification
and bounding box regression. It performs in two main stages: first, the input image is analyzed to detect
candidate regions, and in the second, regions are classified and appropriate segmentation masks and
bounding boxes are created. For instance-level object detection and segmentation, Mask R-CNN is a model
that is able to both detect object classes and segment objects at the pixel level. Its architecture is a Fast R-
CNN-based network that incorporates enhanced components such as the ROIAlign algorithm to improve the
localization, and FPN to produce multi-scale features. The 6 major components of the Mask R-CNN model
consist of the ROIAlign module, the RPN, input processing, the feature extraction backbone, the FPN, and
the output heads for mask prediction, classification, and bounding box regression (box, class, and mask) [24].
The Mask R-CNN architecture is illustrated in a schema in Figure 3.

FCN mask
AT
! box
RPN ROl cls
T Corrected size
Original image ~ ResNet50+FPN Feature map ROIAlign  feature map Fully connected layer

Figure 3. The structure of R-CNN

3.3. DeepLab

Several versions of the DeepLab technique, including DeeplLabvl, DeepLabv2, DeepLabv3, and
DeeplLabv3+, have been proposed. The supplied image passes through a deep CNN layer with one or two
atrous convolution layers in DeepLabvl [25]. In this way, it produces an incomplete feature map which is
then upsampled to the size of the original image using a bilinear interpolation technique. Before obtaining a
segmented image, the entire CRF is connected using interpolated data.

The DeepLabv2 model uses several attenuated convolutions on the input feature map with different
expansion rates. Outputs are merged and objects at different scales are segmented to capture information
from a large effective field with fewer parameters and less computational complexity [25].

DeepLabv3 [26] is an extension to DeepLabv?2 that has added image-level functionality to the atrous
spatial pyramid pooling (ASPP) module. To easily form a network, it uses batch normalization. DeepLabv3's
ASPP module is combined with an encoder and decoder structure in the DeepLabv3+ model. For faster
computation, the model also uses at reuse and depth-separable convolution. Low-level and high-level
functionalities corresponding to structural details and semantic information are combined in the decoder
section.

A decoding module and an encoding module are included in DeepLabv3+ [27]. Using an atrous
convolutional network and backbone network such as MobileNetv2, PNASNet, ResNet, and Xception, the
encoder path extracts the required information from an input image. Using the information from the input
image, the decoder path reconstructs the output in the appropriate dimensions.

3.4, U-Net

For per-pixel prediction, U-Net is a popular image segmentation technique. A U-channel and an
ignored connection make up U-Net [16]. The structure of the U-channel is similar to that of the SegNet
encoder-decoder. Each of the encoder's four submodules contains two convolutional layers. There is a
maximum pool for sub-sampling after the sub-modules [7]. The decoder consists of four submodules.
Oversampling progressively increases resolution. It then makes predictions for each pixel. This network
comprises only convolution and subsampling, rather than a fully connected layer. The result of oversampling
is connected to the output of the sub-module with the same resolution in the encoder as the input of the next
sub-module in the decoder via an ignored network connection [15]. Figure 4 show structure of U-Net [28].
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Figure 4. The structure of U-Net

3.5. V-Net

A DL network known as V-Net was specially designed for 3D medical imaging data, such as CT
and MRI images. V-Net also cautiously considers the issue of complex semantic oriented boundary
information, so it also makes some architecture changes, and the V-Net model still retains the overall
framework of the U-Net model. It employs strides for down sampling of convolutional layers in place of
pooling layers. We make such design choice so as to reduce the dimension of volumetric features and
alleviate the bottleneck problem in the training process. Due to these structural differences, the V-Net was
particularly effective in dealing with the challenges in volumetric medical image segmentation [29]. The V-
Net is a widely used 3D CNN in biomedical imaging analysis. The high resolution feature representations
produced by its encoder offers the precise localization of target structures. To refine the final segmentation
result, in this work, the model establishes skip connections between these hi-resolution features and decoder
outputs. V-Net can effectively overcome the well-known issue of class imbalance, i.e. a huge difference
between the pixel numbers of the foreground and background, in medical imaging [30], as shown in Figure 5.

3.6. Other U-Net structures

This has resulted in various extensions to the U-Net architecture over the years to enhance
segmentation accuracy and automatically learning rich features across different medical imaging tasks. To
reduce the semantic gap between encoder and decoder feature map. To enhance the performance for images
with complex or noisy backgrounds, another model attention U-Net [18] employs attention gate to guide the
network to concentrate on important part of the input. In order to bridge the semantic gap between encoder
and decoder feature maps and enable more precise medical image segmentation, UNet++ [31] introduces
nested and dense skip pathways. Additionally, it integrates deep supervision, which allows for optional
model pruning to enable both high-accuracy and high-speed inference modes. Residual U-Net [32]
(incorporating residual connections within its convolutional (conv) blocks) allows for ease of augmenting
network depth in order to facilitate a smooth learning of gradients. An effective CT and MRI volume
segmentation is made available by 3D U-Net [33], the 2D U-Net is extended to three dimensions for
volumetric data. The motivation behind these modifications is to enhance robustness, localization accuracy
and feature representation across medical image segmentation tasks. Additionally, the U-Net architecture is
enhanced with dense connectivity as that in the DenseNet architecture in the dense U-Net [34]. This
configuration is designed to promote the reuse of features; while also mitigating the vanishing gradient
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problem by having each block inner-layers take input from all the previous layers. Therefore, the medical
image segmentation network is more robust and parameter-saving. With respect to the recurrent residual
U-Net (R2U-Net) [35], which uses recurrent convolutional layers and residual learning in U-Net. By enabling
network to preserve spatial dependencies over multiple layers, this design enhances the representation of
contextual features, and enhances segmentation accuracy in complex medical images.
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Figure 5. The structure of VV-Net

3.7. Generative adversarial networks

GANs is composed of two competing networks: a generator and a discriminator tasked to generate
realistic data. The generator generates the samples that look like the real ones, and the discriminator
differentiates the real from the fake, and as such, GANs can learn complex data distributions. This
adversarial training has been shown to be effective in medical imaging, plagued by data scarcity and low
quality. GAN models can be utilized to synthesize images for complementing scarce data, restore high-
resolution details, improve segmentation performance, and identify anomalies in representing normal data
distributions in the diagnosis and treatment assistance [36]. GANSs are a popular family of DL models which
comprise of a generator and a discriminator network competing in an adversarial game to generate highly
realistic synthetic data. In medical imaging, GANs are of particular interest to solve data scarcity, class-
imbalance, and privacy issue problems, where high-quality synthetic data are generated for data
augmentation, segmentation, reconstruction, and domain translation [37].

4. MEDICAL IMAGE SEGMENTATION BASED ON DEEP LEARNING

Under a given input image of DL, includes a lot of application areas of image, objects, and so on,
including object detection, image segmentation, image recognition, classification and the like. Medical image
segmentation is also a widely studied topic, given that it plays a critical role in computerized diagnosis and
treatment planning. Several imaging modalities have been utilized for the studies, such as CT, ultrasound
(US), X-ray and MRI, and each one of them is suitable for a specific clinical context. Depending on the
application, various organs and anatomical structures such as brain, lungs, polyp, heart, and tumors are each
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aimed to be segmented. Each study commonly relies on a segmentation method to solve the problem. The
proposed methods are also evaluated with Clinical data or public datasets and quantitative measurements
such as Hausdorff distance (HD), precision and recall, intersection over union (loU), and dice similarity
coefficient are used to verify the effectiveness and accuracy of the proposed algorithms. The challenging and
variable nature of medical image segmentation can be assessed through studies that demonstrate the
complexity and adaptability required for successful solutions.

4.1. State of the art

Research by Tseng et al. [38] an semi-supervised CNN bridging dense block with U-Net
architecture for cardiac MRI segmentation named DNetUnet were introduced and it was trained using
ACDC2017 dataset. By introducing GAN architecture on unlabeled data samples, focal and boundary loss on
imbalanced classes and knowledge distillation for mobile deployment, the model surpassed U-Net and
ResUNet in hearts' structures segmentation task, and thus providing trustworthy automation for diagnosis of
diseases such as myocardial infarction and cardiomyopathy. Cao et al. [39] proposed Swin-Unet, the first U-
shaped architecture for medical image segmentation consisting only of transformer blocks, benefiting from
hierarchical Swin Transformer blocks, shifted-window self-attention, and convolution-free up-sampling.
When applied to Synapse CT and ACDC MRI data, it performed advancing of CNN and hybrid models,
which demonstrates the success of pure transformer that at the cost of increased computation would hold as
considerable potential for medical imaging project of the future. Yue et al. [40] developed an automatic DL
pipeline for bronchiectasis identification on LDCT, in a workflow that consisted of image enhancement
(ACER), automatic lung-lobe segmentation (RDU-Net), and lesion classification (HDC Mask R-CNN).
Show that a system that was taught using 1992 annotated images was competitive in terms of accuracy, could
produce output in approximately 1 second and showed promise as a fast and reliable tool to help radiologists
detect bronchiectasis. Azad et al. [41] developed TransDeepLab, a transformer-modified architecture (based
on DeepLabv3+) TransDeepLab autoregressively replaces CNN layers with Swin-Transformer blocks, and
incorporates a Swin SPP module and cross-contextual attention; delivering better multi-scale fusion and
boundary segmentation. It also obtained state-of-the-art performance on Synapse CT and skin lesion datasets,
demonstrating that pure transformer structures can achieve quite useful representations of 3D volumes
despite having to rely on pre-training with ImageNet and taking 2D as input. Sun et al. [42] introduced DA-
TransUNet, which is a Transformer U-Net variant integrated with PAM and CAM attention modules in order
to capture the spatial (PAM) and channel (CAM) characteristics and alleviate the gaps between the encoder
and decoder and the redundancy of the filters. The network was tested on Synapse, CVC-ClinicDB, and
ISIC2018 datasets where it achieved the state-of-the-art performance on organ, polyp, and skin lesion
segmentation, providing accurate boundary localization with efficiently learned parameters but with
additional architectural complexity. Bukhori et al. [28] has idea to predeveloped a paper regarding the
application pose of breast cancer image segmentation based on CNN model to the U-Net architecture. In this
paper, we focus on the easier task of diagnosing breast cancer in the mammogram as it is a challenging one
because of its low contrast and high noise, and use ultrasound USG images to ensure a better accuracy. The
proposed U-Net model consists of the encoder, bottleneck, and decoder components and is evaluated for
various scenarios involving varying training to testing data ratio. It is noted that the best Mean IU attains the
conclusion that the U-Net is effective for breast cancer segmentation. Innani et al. [43] presented EGAN and
MGAN, both GAN-based unsupervised methods for skin lesion segmentation on ISIC 2018. EGAN adopts a
squeeze-and-excitation encoder-decoder structure that combines a patchGAN discriminator with
morphology-based loss for accurate segmentation, while MGAN integrates ASPP with MobileNetV2 for
efficient deployment. Both EGAN and MGAN outperform CNN and transformer baselines, with EGAN
mainly better in accuracy and MGAN often better in efficiency, although they face challenges in
computational cost and cross-dataset generalization. Wan et al. [44] also use a glioma-special MRI
segmentation architecture based on the improved DeepLabv3+ and RegNet, together with an attribute
encoder for multimodal data fusion. Furthermore, achieving state-of-the-art results on the LGG dataset (94.36
Dice and 91.83 loU) by utilizing cross-entropy, Dice, and outlier-region loss, we demonstrated the
effectiveness of multimodal fusion and the use of sophisticated loss functions, leaving some room for
improvement in multi-class and 3D segmentation. Qin et al. [45] proposed DB-SAM - a dual-branch variant
of the Segment Anything Model for universal medical image segmentation. DB-SAM gains advantage over
both SAM and MedSAM on as many as 30 segmentation tasks (87.05% Dice and 85.31% NSD) by
integrating one ViT body for high-order features and a convolutional counterpart for domain-specific details
with bilateral cross-attention for feature fusion. It is capable to efficiently process small or complex structures
and multimodal data, however it remains problematic for 3D volume reconstruction and increased
computational expenses. Igbal et al. [46], which proposed TBConvL-Net, a hybrid CNN-ViT-BConvLSTM
network for medical image segmentation. It employs CNNs for local detail extraction, transformers for global
context, BConvLSTM for temporal feature learning, Swin blocks in skip connections and composite loss for
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boundary accuracy. It surpassed state-of-the-art methods in Dice, Jaccard and sensitivity on ten different
datasets, while being lightweight and fast (19.1 ms inference), showing strong generalization and robustness.
Ruan et al. [47] proposed VM-UNet, a segmentation model based on the Mamba state space model (SSM)
framework with Visual State Space (VSS) blocks for effective long-range dependency modeling. By using a
content specific asymmetric encoder decoder and efficient skip connections rather than convolution or self-
attention, it outperforms state-of-the-art methods on ISIC17, I1SIC18, and Synapase datasets and is much
more parameter/ computation efficient. Although it is not good at capturing fine boundaries and large inputs,
it serves as the first pure SSM-based baseline for medical image segmentation.

Table 1 compares 11 representative methods and highlights their salient features, advantages, and
limitations to facilitate the selection of a suitable method by the researchers and the clinicians. We have
selected a subset of these strategies for further study in this work based on the summarized knowledge for

each method.

Table 1. Performance comparison of supervised medical image segmentation methods

Method Core features Advantage Limitations

DNetUnet Dense block feature extractor Superior segmentation accuracy, High computational requirements for
to preserve relevant features effective handling details, training, limited performance
Semi-supervised learning using  reduced training improvement
labelled and unlabeled data
Focal loss and boundary loss

Swin-Unet Pure transformer architecture Global context modeling, high Computational cost, pre-training
Shifted window mechanism accuracy, edge preservation dependency, and 3D data handling
Patch expanding layer
Hierarchical design

Mask R-CNN ACER image enhancement High accuracy, fast processing, Limited dataset, hardware
RDU-net segmentation lobe-wise scoring constraints, and tongue lobe not
HDC Mask R-CNN segmented separately.

TransDeepLab Shifted window mechanism Multi-scale fusion and Pre-training dependency

DA-TRANSUNET

U-Net

GAN

DeepLabv3+

DB-SAM

TBConvL-Net

VM-UNet

SSPP module

Dual attention (DA-Blocks)
Transformer integration
Optimized skip connections

Data augmentation
Hyperparameter testing
Mean loU metric

Unsupervised learning
Boundary-aware segmentation
Multi-scale feature extraction
Computational efficiency
Multimodal fusion

Advanced loss functions
ASPP module

Dual-branch encoder
(ViT+CNN)

Channel attention blocks in
VIiT to enhance medical-
specific features

Efficient adaptation
Depth-wise separable
convolutions

Dense connections
BConvLSTM in skip
connections

Swin Transformer blocks
Composite loss function
Transfer learning

Pure SSM-based design
VSS

SS2D module

Asymmetric encoder-decoder
Simple skip connections

computational efficiency
Generalizability: effective across
modalities

Superior accuracy

Multi-scale feature fusion
Generalizability: effective across
diverse

Robust skip connections

High accuracy,

Automated segmentation

Robust to noise

Flexible training

High accuracy

Data efficiency

Real-time deployment
Robustness

Higher accuracy

Noise reduction

Multimodal integration
Efficiency: uses 2D CNNs (faster
than 3D CNNs)

Superior accuracy

Handles complex structures
Multimodal compatibility

High segmentation accuracy
Efficient computation
Robust feature learning
Strong generalization

High segmentation accuracy
Linear computational complexity
Parameter-efficient

Strong generalization

Robust in complex scenarios

2D focus: not evaluated on 3D
High-resolution demands

Computational cost
Pre-training dependency

Dependence on data quality
Moderate performance in some cases
Limited generalization
Computational cost

Computational cost

Generalizability

Dependence on ISIC data

Small dataset

Transformer underperformance
Noise size dependency

No 3D segmentation

2D processing for 3D data
Dependence on bounding box
prompts

Transformer component still
computationally heavier than pure
CNNs

Requires moderate hardware
Preprocessing needed

No 3D segmentation

Sensitivity to fine details
Performance degradation at higher
resolutions

Generalization limitations of SSMs
No attention or multi-scale fusion
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Table 2 provides a comparison of the 11 selected methods, with emphasis on four key aspects:
reference source, imaging modalities utilized, anatomical regions segmented, and evaluation metrics
considered. Through these facilitating factors like Dice coefficients, accuracy, and sensitivity, these schemes
offer a complete evaluation of the quality of segmentation in various medical imaging domains. Collecting
this information, Table 2 enables a better comparison between the effectiveness and appropriateness of these

methodologies for certain medical imaging applications.

Table 2. Performances evaluation of a list of papers

Ref Modalities Segmented area Evaluations
Tseng et al. Cardiac MRI images Segmenting left ventricle, right Achieves dice coefficients of 0.942
2020 [38] ventricle, and myocardium (LV), 0.908 (RV), and 0.894 (MYO)
Outperforms existing methods like U-
Net, ResUNet, and DenseUNet
Cao et al. Multi-organ CT/Cardiac Aorta, gallbladder, kidneys, liver, Synapse dataset: 79.13% dice similarity
2021 [39] MRI pancreas, spleen, coefficient (DSC), 21.55 HD
stomach/Left/right ventricles ACDC dataset: 90.00% DSC (best in
(LV/RV), myocardium (MYO) LV/MYO segmentation)
Yue et al. CT Lung lobes Classification accuracy: 91.4%
2022 [40] loU: 88.8%
Sensitivity: 88.6%
Specificity: 85.4%
Segmentation loU (RDU-Net): 98.3%
Azad et al. CT, MRI (cardiac), Synapse dataset: 8 abdominal Synapse: 80.16% DSC, 21.25 HD
2022 [41] dermoscopy, (skin lesions) organs (aorta, liver, and pancreas) Skin lesions: 92.39%
ACDC: cardiac structures Model efficiency: 21.14M
(left/right ventricles, myocardium)  SSPP levels: 2-level optimal for DSC;
Skin lesions: ISIC 2017/2018, PH2  3-level improves HD
datasets Cross-attention: +1% DSC over basic
fusion.
Sunetal. CT (Synapse: abdominal Organs: liver, pancreas, kidneys, DSC: primary overlap accuracy (79.80%
2024 [42] organs) Lesions: polyps (CVC-ClinicDB), on synapse)
MRI (cardiac structures). skin cancer (ISIC2018) HD: Boundary precision (23.48 mm on
X-ray (tuberculosis Pathologies: tuberculosis (Chest X-  synapse)
detection) ray)
Endoscopy/dermoscopy
(polyps, skin lesions)
Bukhorietal.  Ultrasound (USG) images Breast tumor Primary metric: mean loU
2023 [28]
Innani et al. Dermoscopic images Skin lesions Dice coefficient (90.1% for EGAN),
2023 [43] Jaccard index (83.6%), Accuracy
(94.5%)
Sensitivity (93.6%) and specificity
(95.5%) for clinical relevance
Speed MGAN achieves 13 FPS
Wan et al. MRI Brain tumor DSC: 94.36, loU: 91.83
2023 [44]
Qinetal. 3D: MRI Brain: ventricles, tumors, DSC: 87.05% (3D), 82.00% (2D),
2024 [45] 2D: X-ray, ultrasound, cerebellum (NSD): 85.31% (3D), 91.81% (2D)
endoscopy, retinal imaging, Abdomen: liver, pancreas,
pathology gallbladder, tumors
Thorax: lungs, pleural effusion,
heart ventricles, other: prostate,
head-neck tumors, retinal vessels,
colon glands
Igbal et al. Optical imaging Skin lesions Jaccard index (loU)
2025 [46] Ultrasound Thyroid nodules Dice coefficient
Whole slide imaging (WSI) Breast tumors Accuracy
X-ray — chest radiographs Cell nuclei Sensitivity (recall)
(MC) Optic discs Specificity
Fundus photography Fluorescent cells
Microscopy Chest and brain abnormalities
MRI
Ruan et al. Dermoscopy images Skin lesions Mean intersection over union (mloU)
2024 [47] CT Images Aorta, gallbladder, left/right DSC
kidneys, liver, pancreas, spleen, Accuracy
stomach Sensitivity (recall)
Specificity

HD95 (95th percentile HD)
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5. RESULTS AND DISCUSSION

In this review, we demonstrated an in-depth analysis of the performance and developmental journey
of DL models applied to supervised segmentation tasks in medical imaging. Even though most of the
previous works heavily investigated the efficiency of CNN-based architectures, including but not limited to
U-Net, for achievements in specific fields, relatively few studies were dedicated to these networks’ clear
disadvantages in terms of long-range modeling, low robustness over multiple domains, and real-life
applicability. Therefore, one can outline three methodological waves: updated CNN-based architectures,
transformer-based models, and developing generalists. Our examination of 11 seminal works demonstrates a
direct pattern. The first group, CNN-based models with densely connected/atrous convolutions and specific
losses, demonstrate a leading Dice score on small and specific tasks, specifically, 90.18% on the skin lesions
dataset with 93.5% accuracy, proving limited effectiveness in complicated scenarios. By contrast, the
transformer-based models, Swin-Inst, included DA-TransUNet, confirmed an undoubted advantage in multi-
organ tasks and the ACDC cardiac dataset via 90.62% DSC with one head and 79.13% DSC on Synapse. The
third wave of models, including state-space architectures like VM-UNet and prompted networks, gave a
boost to the real-world deployment and explanation capacity, while losing a battle of generality. Our results
indicate that the high level of segmentation quality can be achieved without DL if it is assigned a certain task
or issue for local smoothing. For example, boundary-aware loss, included in many articles, increases the
segmentation of tiny and irregular bodies, a significant issue of early CNN-based models. The success of the
transformer-based models from Swin, Naive, and DA could be easily explained by global context
understanding in terms of shifted windows and dual mechanisms, emphasizing the current-voltage oncell
masks, which is the same as witnessed by Cao et al. [39] and Azad et al. [41]. who forgot to mention the
massive uptrend of HD. Nevertheless, various paradigms GANs and SSMs demonstrate that the model
benefits immensely from the unsupervised part or simplification without a serious cost to accuracy on less
labeled tasks. While this study could analyze a broad number of different methods and fields, its result is
derived from quick mentioned works, which do not provide a completely integrated analysis of proposed in
the compare performance benchmarks. Thus, the need for additional research continues even with the
reported limitations: transformer high computational cost, reshuffling of the structures in SSMs, and
increased importance of pre-learning, particularly in challenging clinical settings and lower-quality image
modalities.

Our findings indicate that the field is shifting towards an equilibrium among accuracy, efficiency,
and generalization instead of optimizing a single metric. Forthcoming research could focus on multiple
directions: i) cross-modality and multi-institutional benchmarking to inhibit networks from overfitting small
and homogeneous cohort of data as well as ensure clinical relevance and portability across populations and
equipment; ii) intelligible models that supply a clinical reasoning tool simultaneously with the mask, to give
clinicians some degree of trust; and iii) realistic ways to seamlessly insert the tool in the pipeline of diagnosis
and prognosis, not as an isolated block but as a part of a device with the specific role of helping the doctor.

Recent studies suggest that the trend of medical image segmentation is moving from tailored CNNs
towards context-aware transformers and the direction of easy-to-use models. Our results provide clear
evidence that this evolution is driven by a fundamental shift in design priority - the tradeoff between
accuracy and computational demand/annotation cost, as opposed to a single architectural innovation. Model
selection now becomes largely application-specific.: CNNs in resource-constrained environments,
transformers in context-driven tasks, and new models such as SSMs for scalable, efficient use.

6. CONCLUSION

In this article, we have presented the long way of DL for medical image segmentation from CNN-
embedded architectures, through state-space models and other light-weight methodologies. Our results from
the reviewed studies give rise to 3 major implications for developers and clinical practitioners. Firstly, the
choice of the model should be application-oriented. CNN-based structures still have a marginal edge in low-
data and strict-computational restricted regimes. In contrast, transformer and hybrid models are more
appropriate for complex, multi-organ tasks where global contextual information is important. Second, the
interest in only the highest accuracy on a benchmark is giving way to the demand for robustness,
reproducibility, and validation on a variety of datasets and institutions. Third, computation and annotation
efficiency are moving from an engineering convenience to a clinical necessary, for real-time or bedside
integration, such as facilitated by light-weighted GANs and state-space models. For the algorithm
development community, these results highlight the importance of developing relevant and deployable
algorithms. Much future work will need to prioritize large scale cross-modality benchmarking, interpretable
models that explain their reasoning, and development of segmentation tools directly in clinical diagnostic
pathways. What this means to the clinician, we argue, is that while frontier models may trump in terms of
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numbered precision, their practicable strength, interpretability and capacity to survive the sheer diversity of
real-world clinical imaging are the real benchmark. In this context, semi-supervised CNNs, promptable
SAM-like models, and efficient SSMs can be seen as complementary directions to transfer research
developments into useful instruments to be actually deployed in the radiology rooms. Finally, the field is
going to iterate towards a more subtle trade-off between precision, brevity and interpretability. Striking this
balance will require an unprecedented degree of collaboration among computer scientists, clinicians, and
regulatory agencies to ensure that these advanced segmentation methods achieve not only state-of-the-art
performance but also meaningful, quantifiable improvements in patient outcomes and clinical workflows.
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