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The caesarean section is one of the most frequently performed surgical
procedures worldwide, with profound implications for maternal and neonatal
health. Accurate prediction of delivery mode is essential for guiding clinical
decisions, minimizing unnecessary surgical interventions, and improving
patient outcomes. This study introduces a deep neural learning technique
based on a temporal convolutional neural network (DNLTC) to classify
delivery type—caesarean section versus normal vaginal delivery using
maternal and obstetric data. The proposed model was evaluated against
traditional machine learning (ML) approaches, including artificial neural
networks (ANN), support vector machines (SVM), and decision trees (DT).
Experimental results show that the DNLTC achieved the highest overall
accuracy (85%), surpassing ANN (80%), SVM (68.8%), and DT (65%).
TCNN also demonstrated strong clinical reliability, with a sensitivity of
94%, specificity of 91%, and a perfect F1-score of 100%. These findings
highlight the advantages of incorporating temporal feature learning into

delivery mode prediction, enabling the detection of subtle, sequential
patterns that conventional models may overlook. By providing more
accurate and robust predictions, the proposed framework can support
obstetricians in making timely, evidence-based decisions, ultimately
enhancing maternal and newborn health outcomes.
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1. INTRODUCTION

Accurate prediction of delivery mode, whether a normal vaginal birth or a caesarean section, is a
crucial aspect of obstetric decision-making. This choice has significant implications for maternal and
neonatal health, influencing complication rates, recovery time, and healthcare costs. While caesarean sections
can be lifesaving in emergencies, unnecessary procedures increase the risks of haemorrhage, infection, and
long-term reproductive complications. As maternal and obstetric datasets grow in size and complexity, there
is a growing opportunity to apply advanced data-driven methods to support clinicians in making these critical
decisions with greater precision and consistency [1].

Machine learning (ML) offers powerful tools for extracting predictive insights from clinical and
demographic data, enabling earlier intervention and more efficient resource allocation. Traditional statistical
approaches often struggle with high-dimensional, non-linear medical data, whereas ML techniques, such as
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support vector machines (SVM), decision trees (DT), and artificial neural networks (ANN), have shown
promise in detecting patterns that are not immediately apparent to human observers. In the context of
obstetrics, these algorithms have been applied to predict fetal distress, classify delivery mode, and detect
anomalies in cardiotocography (CTG) signals. For example, Huang et al. [2] employed DT, ANN, and
discriminant analysis (DA) for delivery classification, reporting ANN accuracy of 97.78%, while Ocak [3]
used SVM combined with genetic algorithms (GAs) to achieve near-perfect accuracy in distinguishing
normal from pathological cases. Other studies have incorporated Naive Bayes (NB) with feature selection
(FS), random forests (RFs), or boosting methods, achieving high accuracies but often omitting critical
metrics such as sensitivity and specificity measures that are essential for evaluating clinical reliability.

Despite these advances, three key limitations remain. First, many models rely on static feature sets
and fail to capture temporal patterns in medical data, such as variations in maternal vital signs or fetal health
indicators over time. Second, imbalanced datasets, common in obstetrics, can bias model performance toward
majority classes, leading to unreliable predictions for less frequent but clinically important outcomes. Third,
there is a lack of direct comparative evaluation between advanced deep learning models and conventional
ML approaches on the same obstetric datasets, making it difficult to determine the most effective method for
real-world applications.

This study addresses these gaps by introducing a deep neural learning technique based on a temporal
convolutional neural network (DNLTC). Unlike static classifiers, temporal convolutional neural network
(TCNN) architectures can model sequential dependencies in clinical variables, improving the detection of
subtle risk patterns associated with delivery mode. We benchmark the DNLTC against established methods
SVM, DT, and ANN using a publicly available obstetric dataset. Our evaluation includes not only accuracy
but also sensitivity, specificity, and F1-score, ensuring a comprehensive assessment of clinical applicability.
The contributions of this paper are the development of a TCNN-based classification framework for predicting
delivery mode from maternal and obstetric data, and a direct comparison of TCNN performance with widely
used ML models (SVM, DT, and ANN) on the same dataset. Then, comprehensive performance analysis,
including accuracy, sensitivity, specificity, and F1-score to reflect both predictive power and clinical
reliability. Finally, interpretation of findings in the context of reducing unnecessary caesarean sections and
improving decision support systems in obstetrics.

The remainder of this paper is organized as follows. Section 2 reviews related work on delivery
mode prediction and ML applications in obstetrics. Section 3 introduces the ML techniques, including FS and
TCNN architecture. Section 4 describes the dataset and method. Section 5 presents the discussion of the
results and comparative performance analysis. Section 6 introduces the experimental results. Finally,
section 7 concludes the paper by summarizing contributions and highlighting the potential for TCNN
integration into real-time decision support systems.

2. RELATED WORKS

Numerous papers regarding the caesarean section procedure are available in the literature. Huang et al.
[2] reviewed DT, ANN, and DA as classifiers within comparative investigations. The ANN classifier yielded a
total accuracy of 97.78%. The other two classifiers, the DT and DA, came in second and third place with
accuracy rates of 86.36% and 82.1%, respectively. As noted, the performance estimates do not include
sensitivity and specificity components, making accuracy alone a questionable metric, particularly for binary
classifiers. For evaluations where the datasets are heavily weighted in one class and the prior probabilities differ
significantly, accuracy presents this problem. Similar research by Ocak [3] examined SVM and GA classifiers
for normal and pathological instances, reporting accuracy rates of 99.3% and 100%, respectively. The same
results were noted in [4], [5]. As before, these studies did provide sensitivity and specificity data. Predicting
food quality through the detection of certain compounds using sensors was also done with KNN, DT, and LDA
[6]. Alam et al. [7] used several ML techniques on radiographic images for bone fracture detection.

The researchers focused on the methods and problems encountered during caesarean section in [8],
[9]. One of the main problems with a caesarean section is the complication of overwhelming hemorrhage.
Blood loss, together with the associated studies, can be found in [10]. Comprehensive details on the
prevention of fatal injury while performing caesarean delivery, classification, and risk factors are provided in
[11]. For advanced studies and developments, one can look into [12], [13]. Work by Menai et al. [14]
incorporated a NB classifier with four FS methods: mutual information, correlation-based, ReliefF, and
information gain. It was found that having the NB classifier along with features created by ReliefF gave the
best results for classifying foetal state, achieving 93.97% accuracy, 91.58% sensitivity, and 95.79%
specificity.

In the work by Karabulut and Ibrikci [15] shows that the contribution of AdaBoost ensemble is to
C4.5 DT and accuracy is improved up to 95.01%. Spilka et al. [16] using the CTG-UHB dataset reported
CTG-UHB dataset, with 72 and 78% sensitivity and specificity values, with LCA based RF classifiers. With
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the same dataset, attempted to identify hypoxia using the C4.5 DT, NB, and SVM, the SVM was shown to
have the highest results, 73.4% sensitivity and 76.3% specificity.

3. MACHINE LEARNING TECHNIQUES

ML applications have made great strides in the last few years in the area of clinical diagnostics and
have shown promise for other clinical applications as well, such as disease prevention, diagnosis, prognosis,
drug discovery, and clinical trial design [17], [18]. Generally speaking, supervised learning algorithms have
shown the most promise in the area of clinical diagnostics to date and are the most commonly used.
However, unsupervised learning algorithms and reinforcement learning are also available for use and are
better suited for some problems in the clinical setting as shown in Figure 1 and described in the Glossary.
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Figure 1. Main types of ML.: supervised (classification, regression), unsupervised (clustering), and
reinforcement learning

3.1. Deep neural learning technique classifier

A technique from deep neural learning (DNLTC) uses temporal convolution and builds on nearest
neighbor classification. Its dynamic component allows the method to adapt to local trends in the data. This
method enhances static distance measures by considering the developing patterns in time series data, and it
consequently makes a better prediction of the class labels.

3.2. Support vector machine

The development of SVMs has been carried out by Cortes and Vapnik [19], Cristianini and Scholkopf
[20], and Joachims [21], and these methods are gaining a lot of attention thanks to various nice features and
what seems to be very promising experimental performance. In the ML community, SVM is a well-known
technique and celebrated by many for being a state-of-the-art method that has performed very well over the past
decade. When you look at the application domain of SVMs, they cover a lot of interesting ground, as you can
see in the next paragraph, and they occupy a prominent role in a lot of different ML research areas [22].

3.3. Neural network

A popular ML method is ANNSs with back propagation (BP) [23], which has numerous advantages,
like better approximation capabilities. Still, it has certain drawbacks, like the selection of the number of
hidden layer neurons, slow convergence, and an imprecise learning rate, among others. ANNSs are different
from conventional methodologies in that they can be trained by examples to solve the problem, rather than
being told what to do by a fixed algorithm [24]-[26]. For more details, interested readers can consult
references [27]-[30].

3.3. Decision tree

The reason that DTs are popular is that they are simple to understand and easy to explain. If you
have an uncertain situation that you want to decide about a DT can give you a strategic answer [31]. It can
also handle problems with nonlinear relationships quite well [32].
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4. MATERIALS AND METHODS

Data used in our approach is obtained from the UC irvine ML repository [33]. Having cesarean
results conducted on 80 pregnant females with most severe delivery troubleshooting at the hospital
department familiar, and that gathered and used for ML classifiers that are ANN, SVM, and DT testing and
training. The cesarean section and normal vaginal deliveries are classified with the help of deep learning by
several means. One is to scan the medical imaging data to determine the mode of delivery using TCNN. The
models are trained on extensive medical record databases that contain data about the type of delivery
performed and then used to predict the type of delivery to be performed on future patients.

This article categorizes an obstetric database of caesarean sections into four levels of urgency. These
outpatient categories, recommended by the UK National Confidential Enquiry into Patient Outcome and
Death (NCEPOD), the Royal College of Obstetricians and Gynaecologists (RCOG), and the Royal College of
Anesthetists (RCA), are now well established in UK practice. 80 case data are employed for training and for
assessing ML classifiers, specifically, ANN, SVM, and DT, for the task of predicting uterine rupture. The
data instances have set a caesarean section operation as 'yes' and class (1). In contrast, those cases having the
final verdict that a caesarean section surgery should not be performed are classified (0) and assigned the
value 'no’. The technique used most for initial labor fetal monitoring is CTG. Clinical decisions are usually
based on the visual examination of the CTG traces. The poor human interpretation of them has a reason,
though. A large body of research has shown that obstetricians have little agreement with each other when it
comes to even the basic interpretation of CTG. In essence, poor human CTG interpretation is the reason why
some very large interval studies have led to the kind of very poor consensus we have today. That interval
study poor consensus then leads to poor obstetrical outcomes, like unnecessary cesarean sections, which is a
big CTG interpretation cost factor problem. In this study, we use stochastic gradient descent (SGD) to
minimize the loss function. We also utilize the dropout regularization technique. This guarantees that, when a
specific training sample is used, the activity of each neuron in the network is suppressed with probability P
during forward propagation. For input neurons, this coefficient is normally 0.2, while for hidden neurons, it is
0.5. Dropout allows an ensemble of an exponentially large number of models to be averaged, which reduces
overfitting and improves generalization. We modify backpropagation using momentum and learning rate
annealing so that previous iterations can affect the current version of the model. In particular, we define a
velocity vector, v, to change the updates.

The model’s loss function is minimized using a standard (SGD) optimization procedure. We apply
dropout regularization during training, where neurons are randomly deactivated with predefined probabilities,
using rates of 0.2 for input layers and 0.5 for hidden layers [32]. By preventing co-adaptation of neurons,
dropout typically leads to improved generalization performance, as it effectively approximates the averaging
of an ensemble of sub-networks [34].

5. RESULTS AND DISCUSSIONS

The following are the results and overall performance of four common classification methods: ANN,
SVM, DT, and a specific type of neural network, the TCNN. Almost ALL the results you will see in this
paper, and the associated algorithms, were created on a Windows 10 operating system running MATLAB
R2017a and an Intel Core i7@ 2.6 GHz with 16 GB RAM. A caesarean section can be divided into four
categories. Category (1) represents the immediate threats to the mother's life or that of the foetus, whereas (2)
accounts for mothers' or foetuses' compromise that is not immediately life-threatening. In (3), early delivery
is required with no compromise to mothers or foetuses, while (4) shows the delivery time suitable for the
woman and staff (elective). The attributes in the dataset are the input variables and are named as follows: age
of instance, number of pregnancies, time of delivery, blood pressure, and heart status. These five attributes
are applied to 80 instances. Table 1 represents these attributes and their kinds.

Table 1. The attributes and their kinds

Attributes Age No. of pregnant Delivery time Blood pressure Heart status  Caesarean
Kinds Numerical Numerical Time, premature, latecomer  Low, normal, high Inept, apt Yes, no
Number 17:40 1:4 0,1,2 0,1,2 1,0 1,0
represented

5.1. Artificial neural networks

One of the key strengths of ANNSs is their ability to handle multidimensional and non-linear
associations between variables and outcomes. This is particularly valuable in obstetrics, where the decision
for a C-section is influenced by a dynamic and complex interplay of factors like maternal age, BMI,
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gestational age, and fetal health. Figure 2 shows NN training results by presenting Figure 2(a) the neural
network feed forward, Figure 2(b) the confusion matrix, Figure 2(c) the validation performance, Figure 2(d)
the histogram of errors, Figure 2(e) the receiver operating characteristic (ROC) for training model (validation
and testing), and Figure 2(f) display the gradient and validation checks. In Figure 2(a), the network is
performing at 0.03 seconds of the training data time consumed in 20 iterations out of 1000 epochs with a
performance of 0.381 and a gradient of 0.0787 within the interval [0.592, 1.00e-06]. The error indicating
samples which are not classified (unexhibitable samples) are 19.6, 25, and 16.66 for train, validation, and test
sets, respectively. Also, minimum cross-entropy results in correct classification, which states that for training,
validation, and testing give 0.506, 0.7287, and 0.7299, respectively.
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Figure 2. All results of applied ANN on caesarean section dataset; (a) the ANN network, (b) the confusion
matrix, (c) the validation performance, (d) histogram of errors, (e) the ROC curve, and (f) the gradient and
validation checks

All the confusion matrices pertaining to the training, validation, and testing processes of the network
NN in Figures 2(c)—(f), the manuscript presents a comprehensive explanation of the validation performance,
error histogram, ROC curves, and gradient/validation checks, ensuring full clarity and alignment with
editorial requirements. In the up left quarter, the training confusion matrix holds two green examples among
the five cells featuring the right answer and corresponding proportion by the count of instances with the
correct classification. For further granularity, out of the 20 instances (samples), 20 are correctly classified, as
they will not result in doing the cesarean section operation with a TN. The analysis focuses on the predictive
accuracy of a classification model concerning caesarean section operations. Out of 80 total instances
analyzed, the model correctly classified 35.7% of cases as either undergoing or not undergoing the procedure.
Specifically, 25 instances were accurately identified as those that would undergo a caesarean, reflecting a
44.6% success rate. However, there were instances of misclassification, with 10.7% wrongly identified as
candidates for surgery when they were not, and 8.9% of those who undergo the procedure misclassified as
not. The data reveals a high level of accuracy in predictions overall. For cases classified as not undergoing
the operation, 76.9% were predicted correctly, while 83.3% of those predicted to undergo the caesarean were
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accurate. The training confusion matrix indicates that 80.4% of predictions were correct, with additional
validation showing 75% accuracy and 83.3% during testing. The model’s performance metrics indicate 80
true positives (TP), 27 true negatives (TN), 7 false positives (FP), and 9 false negatives (FN). In conclusion,
the classification model demonstrates a robust predictive capability, achieving an overall accuracy of 80%.
The sensitivity and specificity measures also indicate reliable performance, with values of 80.43% and
79.41%, respectively. These results suggest that while the model is effective, there remains room for
improvement in reducing misclassifications to enhance overall diagnostic accuracy.

The study focuses on evaluating the performance of different DT models in a classification task. It
highlights the validation performance, reaching its optimal value of 0.47006 at epoch 14, indicating potential
overfitting during earlier epochs. The training, validation, and test curves displayed distinct patterns, with
significant improvements noted in the test curve. Figure 2(e) illustrates the training errors and the ROC
curves, suggesting effective classification as the curves are positioned closer to the upper left corner.

5.2. Support vector machine

SVMs often perform well because they are good at handling complex, non-linear relationships in the
data. However, their performance can be sensitive to the choice of kernel and hyperparameters, and they may
be less effective when the number of features is much greater than the number of samples. The study
evaluates various SVM models applied to cesarean data, focusing on their performance metrics such as
accuracy, sensitivity, and specificity. The findings, summarized in Table 2, detail the outcomes of different
models, along with their training times, kernel scales, and number of observations. A 5-fold cross-validation
approach was employed to ensure the reliability of the results, with specific attention to the target attribute
outlined in Table 1. Among the models assessed, the Quadratic SVM achieved the highest accuracy at 68.8%
and specificity of 67.65%, requiring 1.9141 seconds for training with an automatic kernel scale. In contrast,
the coarse Gaussian model recorded a remarkable sensitivity of 100%, albeit with a specificity of 0%, and
had a training time of 1.7186 seconds. The linear model performed the worst in terms of accuracy, achieving
only 56.3%, while the fine Gaussian model exhibited the lowest sensitivity at 76.09%. Notably, both fine and
medium Gaussian models displayed identical accuracies of 65%.

Table 2. Different kinds of SVM models

Number of observations

SVM Accuracy (%)  Sensitivity (%)  Specificity (%) Training time  Kernel scale ™ TN FP EN
Quadratic SVM 68.8 69.57 67.65 19.141 Auto 32 23 11 14
Cubic SVM 67.5 78.26 52.94 17.148 Auto 36 18 16 10
Fine Gaussian 65 76.09 50 13.478 0.56 35 17 17 1
Medium Gaussian 65 82.6 41.18 12.364 2.2 38 14 20 8
Coarse Gaussian 57.5 100 0 17.186 8.9 46 0 34 0
Linear SVM 56.3 89.13 11.76 20.081 Auto 41 4 30 5

In conclusion, the results indicate that while the Quadratic SVM model excels in accuracy and
specificity, the coarse Gaussian model stands out in sensitivity, highlighting the trade-offs between different
performance metrics. The findings underscore the importance of selecting appropriate SVM models based on
the specific objectives of data classification tasks, particularly in medical datasets where both precision and
recall are critical.

The green cell on the bottom row in Figure 3(a) contains all instances that will do the operation of
caesarean sections, all having a true class. In the columns provided, it is shown that 70% of the instances
have been correctly classified as will do the operation of caesarean section, thus having a 70% TP rate for
correctly classified value in this class. Also, in the above green cell, 68% of the instances have been correctly
classified as will not do the operation of caesarean section. Thus, so has a 68% TN rate for classified value in
the correct of class as green column TP rate. The other instances, which are in the same row, remain
misclassified. They have been marked in red color cells: 30% of the personnel are incorrectly classified as
will do the operation, and, in turn, 32% incorrectly as will not do the operation of caesarean section. Thus,
termed FN rate for incorrectly classified class values, red cells. Figure 3(b) presents a parallel coordinates
graph for understanding relationships between features and classifying the useful attributes by using the
separating classes with visualized training data and misclassified values plotted in dashed lines, whereas
classified ones in lines, (0)’s in orange lines, and (1)’s classes in color blue. Figure 3(c) gives the ROC curve.
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Figure 3. Quadratic SVM model, the trained attributes, and ROC graph; (a) Quadratic SVM model confusion
matrix, (b) attributes of Quadratic SVM model, and (c) ROC of Quadratic SVM model

5.3. Decision tree

The simplicity of DTs can be both a strength and a weakness. They are prone to overfitting,
especially with complex datasets, which means they may not generalize well to new data. Their performance
can be highly dependent on the structure of the tree, and even a small change in the data can lead to a very
different tree. The results, summarized in Table 3, reveal that the complex tree achieved the highest accuracy
at 65%, with 27 TP and 25 TN, while recording 9 FP and 19 FN. The medium tree excelled in sensitivity,
reaching 70.72%, whereas the simple tree achieved the highest specificity at 76.47%.

Table 3. Different kinds of DTs

Number of observations

DT Accuracy (%)  Sensitivity (%)  Specificity (%)  Training time TP TN FP EN
Complex tree 65 58.7 73.53 0.6037 27 25 9 19
Simple tree 62.5 52.17 76.47 0.35641 24 26 8 22
Medium tree 61.3 70.72 53.49 0.38932 26 23 20 11

These findings demonstrate the varying strengths of each tree model in handling the classification of
pregnant women based on the dataset. In conclusion, the analysis underscores the effectiveness of DT
algorithms in classification tasks, with each model exhibiting unique advantages. While the complex tree
provided the best accuracy, the medium tree's high sensitivity and the simple tree's strong specificity
highlight the importance of selecting the appropriate model based on specific classification needs. This study
contributes valuable insights into the application of DTs in healthcare-related data analysis, emphasizing the
need for careful evaluation of model performance across multiple metrics.

The analysis of DTs applied to caesarean section operation data reveals varying levels of accuracy
and performance among different tree complexities. The complex DT achieved the highest accuracy at 65%
with a training time of 0.6037 seconds, utilizing a maximum of 100 splits and 10 surrogate splits based on
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deviance reduction. Conversely, the simple DT, while faster at 0.35641 seconds, achieved 62.5% accuracy
and demonstrated the highest specificity at 76.4%, but had lower sensitivity at 52.17%. The medium DT
performed the least effectively with an accuracy of 61.3% and specificity of 53.49%, taking 0.38932 seconds
for training. Figures 4(a)—(c) displays the tree structures; Figures 4(d)—(f) displays the confusion matrices;
and Figures 4(g)—(i) present ROC curves for complex, simple, and medium trees respectively.
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Figure 4. The kinds of DT constructions and performances; (a) the complex DT, (b) the simple DT, (c) the
medium DT, (d) complex tree confusion matrix, (e) simple tree confusion matrix, (f) medium tree confusion
matrix, (g) ROC of complex tree, (h) ROC of simple tree, and (i) ROC of medium tree

In further detail, the construction and pruning of the DTs vary, with the complex and medium trees
pruned to 7 levels, while the simple tree was pruned to 3 levels. Each tree utilized a maximum of 10
surrogate decision splits, which aids in enhancing model performance. The confusion matrix for the complex
DT illustrates its effectiveness, showing that 59% of the instances were accurately predicted for undergoing a
caesarean section (TP rate), while 74% were correctly identified as not needing the operation (TN rate). In
conclusion, while the complex DT outperformed the others in accuracy, the simple DT's higher specificity
highlights the different strengths of each model. The results emphasize the importance of model selection
based on the specific needs of classification tasks, as accuracy, sensitivity, and specificity can vary
significantly. This analysis serves as a useful reference for future DT applications in medical contexts.

The text discusses the performance evaluation of DT models for classification tasks, specifically
focusing on the accuracy rates of simple, medium, and complex DTs. The confusion matrices reveal that the
simple DT achieved a TP rate of 52% and a TN rate of 76%, while misclassifications were recorded at 48%
for FP and 24% for FN. The medium DT showed slight improvements with TP and TN rates of 57% and
68%, respectively, and corresponding FP and FN rates of 43% and 32%. In contrast, the complex DT had a
TP rate of 59% and an FP rate of 26%, indicating a better classification ability compared to the simpler
models.

5.4. Temporal convolutional neural network

TCNNSs and other deep learning models are very good at automatically learning complex features
from raw data, which is a significant advantage over traditional methods where features need to be manually
engineered. This makes them particularly effective for time-series data like CTG traces. However, these
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models can be computationally expensive to train, require large amounts of data to perform well, and their
"black box" nature can make it difficult to understand the reasoning behind their predictions.

The TCNN architecture comprises three convolutional layers followed by max pooling layers and
two fully connected layers, ultimately classifying the data into two output nodes. The training process of
TCNN employs SGD with backpropagation to optimize performance, measured through accuracy, precision,
recall, and F1-scores on a testing set. By leveraging a TCNN, medical decision-making can potentially be
enhanced, resulting in better outcomes for patients through data-driven assessments of delivery methods.

The discussed model employs a binary cross-entropy loss function alongside the Adam optimizer,
featuring specific hyperparameters such as a learning rate of 0.0001 and beta values of 0.9 and 0.999.
Figure 5 shows that the training process involves 500 epochs with a batch size of 32, while 10% of the
training data is set aside for validation. The evaluation metrics used to assess model performance include
accuracy and Logloss, ensuring a comprehensive analysis of the model's effectiveness. Key findings indicate
that the model’s performance on the validation set peaked with a weight parameter (W) set to 200, achieving
the highest area under curve (AUC) and the lowest Logloss values. The Logloss metric converged around
0.50 after completing the 500 epochs, suggesting stable performance without significant overfitting. These
results underscore the model's capability to generalize well to unseen data while maintaining robustness
throughout the training process.

Loss

— train
val

0 100 200 300 400 600
epoch

Figure 5. TCNN training and validation for NCEPOD dataset

6. EXPERIMENTAL RESULTS
These results indicate that while many artificial intelligence (Al) models are effective, the best-

performing model can depend heavily on the specific characteristics of the dataset. The ultimate goal of these

models is to serve as a clinical decision support system, providing doctors with valuable, real-time

information to help them make better decisions for their patients:

— TCNN models excel with time-series data and often achieve the highest accuracy and other metrics,
especially when combined with data pre-processing techniques.

— ANNSs can achieve a high level of accuracy in predicting C-sections. While specific results vary widely
based on the dataset, features used, and network architecture.

— SVM is a strong performer, especially with well-structured, non-time-series data, and can achieve very
high accuracy with proper tuning.

— DT provide a good baseline and are highly interpretable, but they generally have lower accuracy
compared to more advanced models and can be prone to overfitting.

7. CONCLUSION

This study demonstrates the potential of deep learning, particularly TCNNSs, in improving the
prediction of delivery mode in obstetrics. Using maternal and obstetric data, the proposed deep neural
learning technique (DNLTC) achieved higher predictive accuracy than conventional ML approaches,
outperforming ANN, SVM, and DT models. Notably, the TCNN delivered strong sensitivity and specificity,
underscoring its reliability for clinical decision support. Compared with traditional classifiers, the temporal
learning capability of TCNN enables it to capture sequential patterns and subtle variations in patient data that
static models may overlook. This strength is particularly valuable in obstetric decision-making, where early
recognition of risk factors can guide timely interventions and reduce the likelihood of unnecessary caesarean
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sections. The comparative evaluation provided in this study also offers clarity on model performance trade-
offs, which is often missing in existing literature.

The findings have practical implications for developing intelligent decision support systems in
maternity care. By integrating TCNN-based models into clinical workflows, healthcare providers could
enhance the consistency and accuracy of delivery mode predictions, leading to better maternal and neonatal
outcomes. In addition, the comprehensive use of performance metrics beyond accuracy ensures that such
models are assessed in a clinically meaningful way.

Future research should focus on validating the proposed approach with larger, more diverse datasets,
exploring multi-modal inputs such as real-time physiological signals and imaging data, and addressing
dataset imbalance through advanced resampling or cost-sensitive learning techniques. Expanding the scope to
include other obstetric outcomes could further increase the impact of this work on maternal healthcare. In
summary, this research contributes both a methodological advancement through the application of TCNN to
delivery mode prediction, and a comparative framework for evaluating ML and DL models in clinical
settings. These results suggest that deep temporal architectures can play a significant role in advancing
precision medicine in obstetrics, bridging the gap between data analytics and real-world clinical decision-
making.
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