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 Aquilaria-derived essential oils are chemically diverse and hold significant 

value in pharmaceuticals, fragrances, and traditional medicine. However, the 

complexity of their chemical composition presents challenges in statistical 

modelling, particularly due to multicollinearity among biosynthetically 

related compounds. This study investigates the extent of multicollinearity in 

Aquilaria essential oil data using multiple linear regression (MLR) and 

variance inflation factor (VIF) analysis. A regression model was constructed 

using three compounds, δ-guaiene, 10-epi-γ-eudesmol, and γ-eudesmol, 

across 360 samples, with VIF and collinearity diagnostics applied to assess 

model validity. The model explained 93% of the variance in species 

classification, which is substantially higher than values typically reported in 

earlier chemometric studies of Aquilaria oils. This demonstrates that even a 

limited number of carefully selected compounds, when supported by 

diagnostic safeguards, can achieve strong classification accuracy. These 

findings emphasize the importance of applying multicollinearity diagnostics 

to improve the interpretability and reliability of chemometric analyses. The 

study contributes a robust analytical framework for future research and 

practical applications in species authentication, essential oil quality control, 

and conservation of Aquilaria resources. 
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1. INTRODUCTION  

Essential oils are complex mixtures of volatile organic compounds that play important roles in 

pharmaceuticals, cosmetics, perfumery, and aromatherapy [1]–[3]. Among essential oil–producing plants, 

Aquilaria is particularly significant because it yields agarwood, a rare and highly valuable resinous wood [4]. 

The essential oils derived from Aquilaria species contain diverse terpenoid and sesquiterpene compounds 

whose concentrations vary according to species, geographical origin, and extraction method [3], [5]. This 

chemical diversity contributes to their high economic and medicinal value but also presents analytical 

challenges for classification and quality control. 

Previous studies have investigated the bioactive properties and chemical compositions of Aquilaria 

oils, often identifying characteristic compounds such as γ-eudesmol and δ-guaiene as significant indicators of 

species differentiation [6]. In parallel, metabolomics and chemometric approaches have been applied to 

essential oil data, demonstrating the potential of multivariate statistical models for capturing complex 
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chemical variation [7]. These studies established important foundations for linking chemical compounds to 

biological or taxonomic outcomes. 

Despite these advances, a major limitation remains: most existing analysis treat chemical 

compounds as independent variables, without accounting for multicollinearity. Multicollinearity, which 

arises when predictors are strongly correlated due to shared biosynthetic pathways, can inflate standard 

errors, distort regression coefficients, and reduce model interpretability [8]–[10]. As a result, models built 

without addressing collinearity may yield misleading results or overlook meaningful interactions among 

compounds. This limitation constrains the reliability of chemometric methods for Aquilaria species 

authentication and essential oil quality assessment [11], [12]. 

To address this problem, the present study integrates multicollinearity diagnostics into the statistical 

analysis of Aquilaria essential oils. Using 360 samples from four species, a multiple linear regression (MLR) 

model was constructed based on three consistently reported compounds: δ-guaiene, 10-epi-γ-eudesmol, and 

γ-eudesmol. Variance inflation factor (VIF), condition indices, and eigenvalue decomposition were employed 

to evaluate the extent of multicollinearity and its effect on model stability. This approach provides a means of 

testing whether regression models remain robust despite intercorrelated predictors. 

The contributions of this research are threefold. First, the study demonstrates that a model based on 

these three compounds explains more than 90% of the variation in species classification. Second, the findings 

confirm that moderate multicollinearity exists among biosynthetically related compounds, highlighting the 

necessity of applying diagnostics in chemometric research. Third, the study establishes a methodological 

framework that can enhance future applications in species authentication, essential oil quality control, and 

conservation monitoring. The remainder of this article is structured as follows. Section 2 describes the 

experimental design and statistical methods. Section 3 presents the regression results and multicollinearity 

diagnostics together with their analysis. Section 4 provides discussion of the findings and concludes the study 

by summarizing the main contributions and implications. 

 

 

2. METHOD 

This section outlines the procedures used to assess multicollinearity among chemical constituents in 

essential oils from Aquilaria species. Data collection and compound quantification were performed using 

chromatographic techniques, followed by MLR with three predictor compounds for species classification. 

Multicollinearity diagnostics, including VIF and condition index analysis, were applied to ensure 

interpretability and robustness of the results. 

 

2.1.  Experimental design and data acquisition 

A chemometric approach was applied to investigate statistical correlations in the chemical profiles 

of essential oils obtained from multiple Aquilaria species. The dataset was generated by the Bio Aromatic 

Research Centre of Excellence (BARCE) at Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA) using 

advanced chromatographic methods [13]–[15]. The overall workflow for sample collection, hydro-

distillation, compound selection, chemical analysis, and chemometric modelling is summarized in Figure 1. 

A total of 360 essential oil samples were collected from four species: A. beccariana (AB), A. 

malaccensis (AM), A. crassna (AC), and A. subintegra (AS). Three compounds were selected for detailed 

analysis: δ-guaiene (Compound C), 10-epi-γ-eudesmol (Compound D), and γ-eudesmol (Compound E). The 

selection was based on three criteria: 

− Consistency: these compounds were detected reliably across all four sampled species, ensuring 

comparability [6]. 

− Chemical and practical importance: they are widely recognized contributors to agarwood aroma, oil 

quality, and pharmacological activity [6]. 

− Chemotaxonomic relevance: prior studies identified these sesquiterpenes as diagnostic markers for 

differentiating Aquilaria species [6], [13]–[15]. 

By focusing on compounds with both biochemical significance and established presence in the 

literature, the analysis ensured that the predictors carried practical utility for authentication while also 

offering a robust test case for examining multicollinearity [9], [10], [12]. Their relative concentrations, 

expressed as peak area percentages, were used as predictor variables in the regression model, as shown in 

Table 1. This compound selection process ensured alignment with the study objective of linking statistical 

analysis to chemotaxonomic interpretation. 
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Figure 1. Workflow for Aquilaria essential oil analysis and chemometric modelling 

 

 

Table 1. Chemical compound profiles and corresponding peak area percentages across different Aquilaria 

species 

Code Compounds Indent. mode 
Peak area (%) 

AB AM AC AS 

C δ-guaiene MS and FID 0.74 2.02 0.21 0.35 

D 10-epi-γ-eudesmol  MS and FID 0.34 6.73 2.54 2.16 

E γ-eudesmol MS and FID 0.26 2.17 0.95 1.85 

 

 

Essential oils were extracted by hydro-distillation, following standard practice for volatile oil 

recovery [6], [13]. Agarwood chips were pre-soaked in water for 2–3 days to soften resin glands and improve 

extraction efficiency, and distillation was then carried out for 3–5 days. Hydro-distillation was selected 

because it is both traditional and reproducible [6], while ensuring recovery of the full range of volatile 

constituents. The extracted oils were diluted with analytical-grade dichloromethane (DCM) prior to analysis 

to maintain consistency in injection and detection. 

Chemical profiling employed gas chromatography–flame ionization detection (GC-FID) for 

quantification and gas chromatography–mass spectrometry (GC-MS) for compound identification [14]. The 

combined use of GC-FID and GC-MS was chosen because it ensures reproducibility while providing 

complementary strengths, with FID enabling precise quantification and MS allowing unambiguous structural 

confirmation. This dual approach is widely used because FID provides accurate quantitation of volatile 

compounds [15], while MS enables structural identification based on library matching, as depicted in Figure 2. 

Identification was confirmed by comparison with the National Institute of Standards and Technology (NIST) 

mass spectral library, using a similarity threshold of ≥80%. These procedures align with previously established 

protocols for essential oil characterization [6], [13]–[15] and are summarized in Table 1.  
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Figure 2. GC×GC system with dual detection: MS and FID [15] 

 

 

2.2.  Statistical analysis and multicollinearity diagnostics 

The statistical framework was designed to directly address the problem of multicollinearity outlined 

in the introduction. MLR was used to model species classification as a function of compounds C, D, and E. 

The predictors were entered simultaneously using the “Enter” method, enabling evaluation of each variable’s 

contribution while controlling for the others [16]. 

Linear regression was selected over other modelling methods such as principal component analysis 

(PCA), partial least squares (PLS), or artificial neural networks (ANN) because the objective was to quantify 

the direct contribution of individual compounds while testing for multicollinearity. PCA and PLS are 

effective for dimensionality reduction but obscure variable-level effects, while ANN models, though flexible, 

function largely as black-box predictors with limited interpretability [17]. In contrast, linear regression 

provides transparent coefficients, direct interpretability, and compatibility with multicollinearity diagnostics, 

making it the most appropriate choice for the aims of this study [16]. 

Prior to modelling, compound concentrations were standardized as relative peak area percentages to 

ensure comparability across samples. Homoscedasticity and normality of residuals were assessed through 

residual histograms and normal probability (P–P) plots. These checks confirmed the suitability of the dataset 

for parametric modelling, allowing coefficients to be interpreted without transformation. 

Multicollinearity was assessed primarily through the VIF, calculated as shown in (1). VIF values 

close to 1 indicate low collinearity, while values greater than 5 or 10 are generally considered indicative of 

moderate or severe multicollinearity [8]–[12], [18]–[20]. The formula for the VIF is expressed as (1): 

 

𝑉𝐼𝐹(𝑥𝑖) =
1

1−𝑅𝑖
2 (1) 

 

where 𝑅𝑖
2 is the coefficient of determination obtained by regressing 𝑥𝑖 on the remaining predictors. Because 

VIF alone may not fully capture collinearity structures, additional diagnostics were applied, including 

condition indices and eigenvalue decomposition [18], [19]. A condition index above 10, particularly when 

combined with high variance proportions for multiple variables, was considered evidence of problematic 

multicollinearity [19]. This dual approach provided both global and variable-level insights into the 

correlation structure. 

All analyses were performed in IBM SPSS Statistics version 26. SPSS was selected for its 

established reliability in regression modelling and collinearity diagnostics, as well as its ability to produce 

reproducible outputs. This combination of standard statistical software, validated diagnostic tools, and 

transparent procedures ensures that the analysis can be replicated by other researchers. 

 

 

3. RESULTS AND DISCUSSION 

This section presents the outcomes of the regression analysis and multicollinearity diagnostics, 

followed by a critical interpretation of their significance. The model’s performance metrics, including R2 

values and analysis of variance (ANOVA) results, are reported to assess the explanatory power of the 

selected predictor variables. Individual regression coefficients are examined to determine the relative 

contribution of each compound to species classification. In addition, multicollinearity is assessed using VIF 

values and collinearity diagnostics to evaluate potential interdependencies among predictors. The findings are 

then contextualised within existing literature to highlight their methodological and practical implications for 

essential oil analysis and species authentication. 
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3.1.  Model fit and summary statistics 

The MLR model demonstrated a strong overall fit, as summarized in Table 2. The coefficient of 

determination (R²) was 0.930, indicating that approximately 93% of the variability in the dependent variable 

(species classification) could be accounted for by the three predictor compounds: C, D, and E. The adjusted 

R² value of 0.928 further validated the model’s robustness by compensating for the number of predictors 

included. Additionally, the high correlation coefficient (R=0.964) underscored the strength of the linear 

relationship between the independent variables and the dependent outcome. 

  

 

Table 2. Regression model summary 
Model summary 

Model  R R2 Adjusted R2 Std. error of the estimate 
Change statistics 

R2 change  F change  df1 df2  Sig. F change 

1 0.964a 0.930 0.928 0.300 0.930 515.546 3 116 0.000 

a: Predictors: (constant), Compound_E, Compound_C, Compound_D 

 

 

The standard error of the estimate was recorded at 0.300, reflecting low dispersion between 

predicted and observed values. This indicates that the model performed with a high degree of accuracy in 

capturing the variation in species classification. Together, these metrics support the model’s adequacy and 

the relevance of its predictors. The overall statistical significance of the regression model was confirmed by 

the ANOVA results presented in Table 3. The F-statistic was 515.546 with a p-value <0.001, indicating that 

the model predicts the outcome variable significantly. The large F-value suggests that the variation explained 

by the model is substantially greater than the unexplained variance. No violations of underlying regression 

assumptions were observed at this stage of analysis. The combination of high R², low standard error, and 

significant F-value supported the reliability and precision of the model, justifying further examination of 

individual regression coefficients and multicollinearity diagnostics. 

  
   

Table 3. ANOVA for model significance 
ANOVAa 

Model Sum of squares df Mean square F Sig. 

1 Regression 139.535 3 46.512 515.546 0.000b 
 Residual 10.465 116 0.090   
 Total 150.000 119    

a: Dependent variable: species 

b: Predictors: (constant), Compound_E, Compound_C, Compound_D 

 

 

3.2.  Regression coefficients 

The individual contributions of each compound to the model are detailed in Table 4. The intercept 

(constant) was -0.199, with a standard error of 0.090, resulting in a t-value of -2.213 and a p-value of 0.029, 

indicating statistical significance. This establishes that the model has a meaningful baseline even in the 

absence of predictor variables. Compound_C had a positive unstandardized coefficient of 1.080 and a 

standardized beta of 0.646. The t-value of 21.209 and p-value <0.001 confirmed the significance of this 

variable in explaining the dependent variable. Its contribution, while strong, was moderate in comparison to 

the other predictors. 

 

 

Table 4. Coefficients and VIF values 
Coefficientsa 

Model 
Unstandardized coefficients 

Standardized  

coefficients t  Sig. 
Collinearity statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) -0.199 0.090  -2.213 0.029   

 Compound_C 1.080 0.051 0.646 21.209 0.000 0.648 1.543 
 Compound_D -0.782 0.024 -1.636 -32.851 0.000 0.242 4.125 

 Compound_E 3.049 0.078 2.070 39.168 0.000 0.215 4.645 

a: Dependent variable: species 

  

    

Compound_D had a negative coefficient of -0.782 and a standardised beta of -1.636, with a t-value 

of -32.851 and a p-value <0.001. These results indicate a strong inverse association with the dependent 
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variable, making it a key driver in the regression model. The magnitude of this coefficient suggested a 

substantial impact. Compound_E yielded the highest positive unstandardized coefficient of 3.049 and a 

standardised beta of 2.070. With a t-value of 39.168 and a p-value <0.001, it was identified as the most 

influential predictor in the model. This suggests that Compound_E plays a dominant role in determining 

species classification. 

The strong effect of γ-eudesmol (Compound_E) is consistent with its role as a dominant oxygenated 

sesquiterpene in Aquilaria oils. This compound is known to contribute to the resin’s characteristic fragrance 

and bioactivity, and it is frequently reported as abundant and chemically stable across multiple species  

[5], [6]. Its biochemical prominence likely explains its large predictive weight in the model. By contrast, the 

negative association of 10-epi-γ-eudesmol (Compound_D) may indicate species-specific differences in 

sesquiterpene biosynthesis, where shifts in enzymatic pathways influence compound ratios more than 

absolute concentrations. 

  

3.3.  Variance inflation factor and collinearity diagnostics 

The collinearity diagnostics presented in Table 5 provide important insights into the 

interrelationships among the predictor variables within the regression model [18], [19]. Multicollinearity 

arises when independent variables exhibit high correlations with one another, potentially resulting in biased 

regression coefficients, increased standard errors, and unstable parameter estimates [8], [10]. To assess the 

presence and severity of multicollinearity, VIF, and tolerance values were utilized [19]. Evaluating these 

metrics is essential for determining the extent of multicollinearity, thereby supporting the reliability and 

robustness of the model's parameter estimations [8], [12], [16], [19]. Multicollinearity was assessed using the 

VIF values presented in Table 6. 

 

 

Table 5. Collinearity statistics description 
Collinearity statistics Range Description 

VIF 1 Variables are not correlated 

1-5 Variables are moderately correlated 

>5 Variables are highly correlated 
Tolerance <0.1 There is significant multicollinearity 

>0.1 There is no significant multicollinearity 

 

 

Table 6. Assessment of collinearity diagnostics 
Collinearity diagnosticsa 

Model Dimension Eigenvalue Condition index 
Variance proportions 

(Constant) Compound_C Compound_D Compound_E 

1 1 3.323 1.000 0.01 0.01 0.01 0.00 
 2 0.491 2.601 0.01 0.27 0.03 0.02 

 3 0.158 4.584 0.28 0.19 0.20 0.01 

 4 0.028 10.908 0.70 0.53 0.76 0.96 

a: Dependent variable: species 

 

 

Compound_C exhibited a VIF of 1.543, suggesting a low degree of multicollinearity. This indicates 

that Compound_C is relatively independent from the other predictors and unlikely to introduce instability in 

the model. Compound_D recorded a VIF value of 4.125, which, while below the critical threshold of 5, 

indicates moderate multicollinearity. Its shared variance with the other variables may be due to biochemical 

similarity or co-expression in the essential oil profile. Although not a critical concern, this finding suggests 

some overlap that could affect coefficient interpretation. 

Compound_E had the highest VIF value of 4.645, which is close to the threshold typically used to 

flag multicollinearity issues. This suggests a higher level of correlation with one or more predictors, 

warranting caution in interpretation. However, the value remains within an acceptable range for practical 

applications. To further assess multicollinearity, a collinearity diagnostics table was generated. This included 

eigenvalues and condition indices, with one dimension showing a condition index of 10.908 and high 

variance proportions across multiple variables. These patterns confirmed moderate multicollinearity, 

reinforcing the VIF findings and indicating that model refinement may be warranted in future analyses with 

expanded variable sets.  

The observed collinearity between γ-eudesmol and 10-epi-γ-eudesmol reflects their shared 

derivation from the farnesyl diphosphate pathway, a common precursor in sesquiterpene biosynthesis  

[6], [21]. Enzymatic branching within this pathway likely results in correlated production of these 

compounds, which manifests statistically as moderate multicollinearity. This reinforces the idea that 
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chemometric correlations can mirror underlying metabolic linkages [22]. The normal P-P plot of the 

regression standardized residuals depicted in Figure 3 provides evidence supporting the appropriateness of 

the regression models employed. The observed linearity within the plot indicates that the residuals follow a 

normal distribution, thereby satisfying a key assumption underlying regression analysis. 

This finding enhances the credibility and applicability of the models. Overall, the models 

demonstrate strong potential by effectively integrating the complementary influences of Compounds C, D, 

and E. The consistently high R² values, together with the confirmation of normally distributed residuals, 

underscore the robustness and validity of the regression outcomes. For future research, emphasis should be 

placed on selecting compounds that exhibit minimal multicollinearity while contributing significantly to 

predictive accuracy, in order to maximize model efficacy [12], [18], [19]. 

 

 

 
 

Figure 3. Normal P-P plot illustrating standardized residuals in the regression model for species 

 

 

3.4.  Discussion  

Previous studies on Aquilaria essential oils have highlighted sesquiterpenes such as γ-eudesmol and 

δ-guaiene as chemotaxonomic markers [6]. However, most prior work focused on compound identification 

and classification models without explicitly addressing multicollinearity among biosynthetically related 

constituents [7], [17], [23]–[26]. Since multicollinearity can distort regression coefficients and weaken 

interpretability [8], this omission represents a critical gap. The present study addressed it by integrating VIF 

and condition index diagnostics into regression modelling, providing a safeguard often absent from 

fingerprinting research. 

A regression model based on δ-guaiene, 10-epi-γ-eudesmol, and γ-eudesmol explained 93% of 

species variation. γ-eudesmol was the strongest positive predictor, δ-guaiene contributed moderately, and 10-

epi-γ-eudesmol showed a strong negative effect. Diagnostics revealed moderate interdependence between γ-

eudesmol and 10-epi-γ-eudesmol, consistent with their biosynthetic proximity, but within acceptable 

thresholds, confirming model validity and interpretability. 

This work advances fingerprinting research by showing that i) a small, well-chosen set of 

compounds can match the predictive power of larger untargeted datasets and ii) safeguards such as VIF and 

condition indices enhance model reliability. Earlier studies often overlooked predictor correlations, risking 

inflated coefficients and reduced reproducibility [17], [27], [28]. By directly addressing multicollinearity, this 

study strengthens methodological rigor and interpretive reliability in chemometric applications. 

Beyond regression, multicollinearity also influences discriminant analysis (PLS-DA), support vector 

machines (SVM), and ANN, commonly used in metabolomic and essential oil classification [17], [28], [29]. 

While effective for large, correlated datasets, these methods may reduce transparency by obscuring predictor 

importance. In PLS-DA, collinearity inflates latent variable weights [29]; in SVM and ANN, redundancy can 

increase training complexity and reduce generalizability [17], [28]. By contrast, simple regression models with 
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diagnostics can reveal biosynthetic linkages (e.g., between γ-eudesmol and 10-epi-γ-eudesmol) while preserving 

interpretability. Table 7 situates this regression–diagnostics framework alongside other modelling approaches. 
 

 

Table 7. Comparison of modelling approaches for chemical fingerprinting of essential oils 
Approach Strengths Limitations Relevance to multicollinearity 

MLR with diagnostics 
(this study) 

Transparent coefficients; 
interpretable; and 

collinearity checked 

Limited for nonlinear 
relationships; fewer 

predictors 

Directly detects and quantifies 
collinearity (VIF and condition indices) 

PCA [25], [28] Reduces dimensionality; 
shows variance patterns 

Principal components hard 
to interpret biologically 

Collinearity absorbed in components, 
obscuring individual contributions 

PLS-DA [23], [29] Handles many predictors; 

accurate classification 

Prone to overfitting; 

loadings hard to interpret 

Collinearity inflates weights, 

complicates interpretation 
SVM [25], [28] High accuracy; robust to 

nonlinearities 

Black-box; limited 

interpretability 

Correlated predictors reduce 

transparency, add redundancy 

ANN [17] Captures complex 
nonlinear interactions 

Requires large datasets; 
low interpretability 

Collinearity adds redundancy; needs 
feature selection/regularization 

 

 

Importantly, multicollinearity is not merely statistical noise but reflects biosynthetic relationships 

with ecological meaning. Bridging diagnostics with chemical ecology, this study promotes fingerprinting 

methods that are both accurate and interpretable. Future work should extend the framework to larger 

compound sets, broader sampling, and advanced machine learning, while keeping multicollinearity checks 

central to maintain interpretability. 

In conclusion, δ-guaiene, 10-epi-γ-eudesmol, and γ-eudesmol are robust predictors of Aquilaria 

species. Moderate multicollinearity, though present, was effectively managed, illustrating how statistical 

safeguards can link biochemical insight with methodological rigor. This framework thus supports species 

authentication, conservation, and quality control. 

 

  

4. CONCLUSION  

This study demonstrated that δ-guaiene, 10-epi-γ-eudesmol, and γ-eudesmol can reliably classify 

Aquilaria species, with regression models explaining 93% of observed variance and multicollinearity 

diagnostics confirming moderate but manageable interdependence. The strong predictive weight of γ-

eudesmol reflects its biochemical prominence as a dominant oxygenated sesquiterpene, while the negative 

association of 10-epi-γ-eudesmol highlights species-specific variations in sesquiterpene biosynthesis. Beyond 

identifying key chemotaxonomic markers, the explicit integration of VIFs and condition indices advances 

chemometric methodology by addressing the often-overlooked issue of multicollinearity, thereby improving 

interpretability and robustness of models in natural product research. These findings carry practical 

significance for species authentication, essential oil quality control, and conservation monitoring, while also 

offering a framework that can be extended to metabolomic studies where correlated variables are the norm. 

Future research should expand analyses to include additional compounds, geographically diverse datasets, 

and advanced modelling approaches such as machine learning to enhance predictive power, reveal nonlinear 

interactions, and strengthen the application of chemometrics in sustainable resource management and 

pharmaceutical innovation. 
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