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 Accurate classification of electrocardiogram (ECG) signals is essential for 

early arrhythmia detection. This study compares the performance of 

unidirectional and bidirectional recurrent neural networks (RNN), specifically 

gated recurrent unit (GRU)-based architectures, for classifying ECG beats as 

normal or arrhythmic. ECG data were sourced from the MIT-BIH Arrhythmia 

Database using the WFDB toolkit. Each beat was segmented into a 128-

sample window centered on the R-peak and labeled into two classes. To 

address severe class imbalance (6,279 normal vs. 43 arrhythmic beats), data 

augmentation techniques—jittering and scaling—were applied, resulting in a 

balanced dataset. Both models were trained under identical conditions, with 

evaluation based on accuracy, precision, recall, F1-score, and other statistical 

metrics. The unidirectional RNN achieved poor recall (9.0%) despite high 

precision, yielding an overall accuracy of 54.0%. In contrast, the bidirectional 

RNN significantly outperformed, achieving 98.17% accuracy, 98.39% 

precision, 97.92% recall, and a 98.16% F1-score. The results demonstrate that 

bidirectional temporal modeling provides substantial improvements in ECG 

classification, especially for detecting minority class arrhythmias. This study 

highlights the importance of both data augmentation and model architecture 

in developing effective deep learning solutions for real-time ECG analysis and 

clinical diagnostics. 
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1. INTRODUCTION 

Cardiovascular diseases (CVDs) remain the foremost cause of global mortality, accounting for 

approximately 17.9 million deaths each year, according to the World Health Organization [1]. Among CVDs, 

cardiac arrhythmias constitute a major contributor to sudden cardiac arrest, long-term morbidity, and reduced 

quality of life. Early and reliable detection of arrhythmias is therefore crucial for effective clinical intervention 

and patient management. The electrocardiogram (ECG) is the primary diagnostic tool for identifying cardiac 

rhythm abnormalities; however, conventional manual ECG interpretation is labor-intensive, time-consuming, 

and prone to both intra- and inter-observer variability, even among experienced cardiologists [2], [3]. These 

limitations have motivated the development of automated ECG analysis systems aimed at improving diagnostic 

accuracy, consistency, and efficiency. A comprehensive systematic review of deep learning techniques applied 

to ECG-based arrhythmia classification was done [4]. The study analyzes various neural network architectures, 

datasets, and performance metrics, highlighting the superiority of deep learning models over traditional 
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methods in detecting complex cardiac abnormalities. The authors also discuss existing challenges such as data 

imbalance, model interpretability, and the need for clinically validated datasets for real-world deployment. 

Early automated arrhythmia detection approaches predominantly relied on handcrafted feature 

extraction combined with classical machine learning classifiers such as support vector machines (SVMs) [5], 

k-nearest neighbors (k-NN) [6], and decision tree-based models [7]. Although these techniques demonstrated 

reasonable performance in controlled settings, their effectiveness is constrained by the quality of manually 

engineered features and their limited ability to capture complex morphological variations and nonlinear 

temporal dynamics present in ECG signals [8]. Consequently, their generalization to diverse patient 

populations and real-world clinical data remains challenging. 

Recent advances in deep learning have significantly transformed ECG signal analysis by enabling 

end-to-end learning directly from raw or minimally processed signals. Ferretti et al. [9] demonstrated the 

effectiveness of a 1D convolutional neural networks (CNN) model for arrhythmia classification, achieving 

high accuracy by learning spatial features from ECG signals without manual feature engineering. CNNs, in 

particular, have been widely adopted due to their strong capability to automatically learn discriminative spatial 

and morphological features from ECG waveforms [10], [11]. Ribeiro et al. [12] demonstrated cardiologist-

level performance using deep neural networks for automatic ECG diagnosis, highlighting the clinical potential 

of CNN-based approaches. Nevertheless, CNNs primarily focus on local receptive fields and are inherently 

limited in modeling long-range temporal dependencies, which are essential for capturing rhythm-level patterns 

and beat-to-beat variability in ECG recordings [13]. To address temporal modeling limitations, recurrent neural 

networks (RNNs) have been extensively explored for ECG classification tasks. Architectures such as long short-

term memory (LSTM) networks and gated recurrent units (GRUs) are specifically designed to learn sequential 

dependencies in time-series data, making them well-suited for ECG analysis [14]–[16]. Recent studies have 

reported improved classification performance using LSTM- and GRU-based models, including micro-class and 

multi-task learning strategies that enhance sensitivity to subtle arrhythmic patterns [17]–[19]. However, 

conventional unidirectional RNNs process signals only in the forward temporal direction, which may limit 

contextual understanding of cardiac cycles. 

Bidirectional recurrent neural networks (Bi-RNNs) overcome this limitation by processing sequences 

in both forward and backward directions, thereby leveraging past and future contextual information 

simultaneously [20]. Such architectures have achieved remarkable success in speech recognition and sequence 

modeling tasks [21]. To address this limitation, RNNs, particularly long short-term memory (LSTM) 

architectures, have been explored for modeling ECG sequences. A bidirectional LSTM (Bi-LSTM) model that 

processes ECG signals in both forward and backward directions, allowing the network to capture richer 

temporal context and improve classification performance was proposed [22]. Building on this idea, a hybrid 

CNN–BiLSTM framework that combines spatial feature extraction with bidirectional temporal modeling, 

achieving enhanced diagnostic accuracy for arrhythmia detection was introduced [23]. Despite these 

improvements, class imbalance remains a major challenge in ECG datasets, where abnormal beats are often 

underrepresented. The issue using a micro-class approach that improves sensitivity to rare arrhythmia types 

was addressed [24]. Their results highlight the importance of designing models and training strategies that can 

effectively detect minority-class events, which are clinically critical for early diagnosis and intervention.  This 

imbalance often biases learning algorithms toward majority classes, reducing sensitivity to clinically critical but 

infrequent arrhythmias. To mitigate this issue, various data augmentation and resampling techniques have been 

proposed, including the synthetic minority over-sampling technique (SMOTE) [25], generative adversarial 

networks (GANs) [26], and domain-specific signal transformations such as jittering, scaling, and amplitude 

modulation [27], [28]. While GAN-based approaches can generate highly realistic synthetic ECG signals, simpler 

augmentation methods remain computationally efficient and effective for enhancing model robustness, especially 

when combined with hybrid deep learning architectures [29]. 

Despite advances in deep learning for ECG classification, three critical gaps remain: 

− Limited comparative studies on unidirectional vs. Bi-RNN under class-balanced conditions achieved 

through simple yet effective augmentation strategies. 

− Under exploration of augmentation techniques specifically optimized for temporal deep learning models in 

ECG analysis. 

− Lack of comprehensive evaluation metrics—such as receiver operating characteristic – area under the curve 

(ROC-AUC), Matthews correlation coefficient (MCC), and Cohen’s Kappa—beyond accuracy, 

particularly for minority-class performance. 

This study addresses these gaps by conducting a systematic comparison of GRU-based unidirectional 

and bidirectional architectures on an augmented MIT-BIH dataset. Jittering and scaling are applied to balance 

the dataset, and models are evaluated using an extensive set of performance metrics, including accuracy, 

precision, recall, F1-score, ROC-AUC, MCC, and Cohen’s Kappa. The contributions of this work are as follows: 
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− Demonstrating the superiority of bidirectional temporal modeling for arrhythmia detection under balanced 

data conditions. 

− Validating computationally efficient augmentation strategies for ECG classification. 

− Providing a comprehensive benchmark against recent state-of-the-art methods. 

The rest of the paper is organized as follows: section 2 details the materials and method, section 3 presents the 

results and discussion, and section 4 concludes with implications and future research directions. 

 

 

2. MATERIALS AND METHOD 

The methodology framework was designed to systematically evaluate the efficacy of unidirectional 

and bidirectional GRU models for ECG arrhythmia classification, leveraging the MIT-BIH Arrhythmia 

Database as the primary data source. ECG beats were extracted using the WFDB toolkit, with each heartbeat 

segmented into a 128-sample window centered on the R-peak, following established preprocessing protocols 

[24]. To address the severe class imbalance (6,279 normal vs. 43 arrhythmic beats), two computationally 

efficient augmentation techniques—jittering (addition of Gaussian noise) and scaling (amplitude 

modulation)—were applied to the minority class, balancing the dataset to 6,279 samples per class, as validated 

in recent works ([27], [28]). Both GRU architectures were constructed with identical hyperparameters (two 

layers, 64 hidden units, and Adam optimizer) and trained on 80% of the augmented data, while 20% was 

reserved for testing. Performance metrics, including accuracy, precision, recall, and F1-score, were computed 

to ensure comprehensive evaluation, with emphasis on minority-class detection. The bidirectional GRU 

processed sequences in forward and backward directions to capture contextual dependencies, contrasting with 

the unidirectional model’s restricted temporal scope ([28], [29]). This experimental design ensures a fair 

comparison, isolating the impact of bidirectional temporal modeling while maintaining uniformity in data 

handling, training protocols, and evaluation criteria. 

 

2.1.  Dataset and preprocessing 

The dataset used in this study is derived from the MIT-BIH Arrhythmia Database, a widely utilized 

and benchmarked resource for ECG signal analysis. Access to the dataset was facilitated through the WFDB 

Python toolkit, which enables efficient reading and manipulation of ECG recordings and annotations.  

This study uses the publicly available MIT-BIH Arrhythmia Database [24], a benchmark dataset 

extensively utilized in ECG classification research. It contains 48 half-hour two-channel ambulatory ECG 

recordings from 47 subjects, sampled at 360 Hz with 11-bit resolution over a 10 mV range. The dataset includes 

expert-annotated R-peak locations and beat-type labels. 

For this study, only Lead II signals were used, as it is the most commonly employed lead for 

arrhythmia detection and provides clinically relevant morphological information. Annotation symbols were 

grouped into two classes: 

− Class 0 (Normal beats): N, L, and R labels 

− Class 1 (Arrhythmic beats): V (ventricular ectopic), A (atrial ectopic), and F (fusion) 

The original dataset exhibits severe class imbalance, with 6,279 normal beats and only 43 arrhythmic 

beats (Class 1). 

Preprocessing was performed using the WFDB Python Toolkit [24], which enables direct access to 

signal waveforms and annotations. The following steps were applied: 

a. Beat segmentation – each heartbeat was extracted into a 128-sample fixed-length window centered on the 

R-peak. This window length captures both pre- and post-R-peak morphology while keeping computational 

complexity manageable. 

b. Z-score normalization – each segment was normalized individually by subtracting the mean and dividing 

by the standard deviation: 
 

𝑥′ =
𝑥−𝜇

𝜎
   

 

This ensures uniform amplitude scaling across beats and improves convergence during training. 

c. Artifact removal – beats with incomplete annotations or excessive baseline drift (>15% of signal range) 

were excluded. This quality control step reduced noise-related misclassifications. 

Each heartbeat was segmented into fixed-length windows comprising 128 samples, centered precisely 

at the R-peak to capture the most relevant part of the cardiac cycle for classification. For labeling purposes, the 

beats were grouped into two classes based on the annotation symbols. Class 0 included normal beats 

represented by N, L, and R annotations, while Class 1 consisted of arrhythmic beats categorized under V 

(ventricular ectopic), A (atrial ectopic), and F (fusion) types. To ensure consistency across samples and mitigate 
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the effects of amplitude variation and baseline drift, each beat underwent z-score normalization. This 

normalization technique involved subtracting the mean and dividing by the standard deviation for each 

individual beat, thus standardizing the input distribution and improving model convergence during training. 

 

2.2.  Data augmentation 

To address the extreme class imbalance and improve model generalization, two lightweight yet 

effective augmentation techniques were applied exclusively to Class 1 beats: 

− Jittering – Gaussian white noise N(0,σ2) with σ in the range [0.005, 0.02] was added to the signal. This 

simulates physiological and acquisition-related variations in ECG morphology. 

− Scaling – amplitude scaling factors between 0.9 and 1.1 were applied to mimic patient-specific variations 

in ECG voltage. 

Augmentation was repeated iteratively until Class 1 contained the same number of beats as Class 0 

(6,279 samples each), resulting in a balanced dataset of 12,558 beats. This choice of augmentation over more 

complex methods such as GANs or SMOTE was motivated by computational efficiency and the low risk of 

generating unrealistic beats. 

A critical challenge encountered in the dataset was the severe class imbalance, with only 43 

arrhythmic beats available compared to 6,279 normal beats. Such imbalance can severely bias the model 

towards the majority class, reducing its sensitivity to minority-class events. To address this, data augmentation 

techniques were applied exclusively to Class 1 samples. Two primary augmentation strategies were employed: 

jittering and scaling. Jittering involved adding small amounts of random noise to the ECG signal to simulate 

variability commonly observed in real-world recordings. Scaling, on the other hand, entailed amplifying the 

ECG beat signal to mimic variations in signal amplitude due to physiological or acquisition-related factors. 

These augmented samples were iteratively generated until the number of Class 1 samples matched that of Class 

0, resulting in a balanced dataset with 6279 samples in each class. This augmentation process not only 

addressed class imbalance but also introduced variability that contributed to the generalization capability of 

the deep learning model. 

 

2.3.  Model architecture 

Two GRU-based deep learning architectures were implemented: 

 

2.3.1. Unidirectional recurrent neural network 

In medical image segmentation tasks, particularly in areas such as tumor boundary identification or 

lesion segmentation, U-Net has emerged as a powerful deep learning architecture due to its encoder-decoder 

structure and high localization accuracy. The Figure 1 illustrates a step-by-step workflow typically used to 

implement a U-Net-based segmentation model. 
 
 

 
 

Figure 1. Workflow for training and evaluating a U-Net model for medical image segmentation 
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The unidirectional RNN model shown in Figure 1 employed in this study is based on the GRU, a 

variant of RNN known for its efficiency in capturing temporal dependencies in sequential data. The model 

begins with a GRU layer comprising 64 units, which processes the ECG signal in a forward direction—from 

the earliest to the latest time step—allowing it to learn the sequential structure of heartbeats. To prevent 

overfitting and improve the generalization ability of the model, a dropout layer with a rate of 0.3 is applied 

immediately after the GRU layer. This is followed by a dense (fully connected) layer containing 32 neurons, 

which transforms the temporal features into a higher-level representation. The final layer is a dense output node 

with a sigmoid activation function, which outputs a probability value indicating whether the input beat is 

normal or arrhythmic. This straightforward architecture is lightweight and effective for modeling temporal 

sequences, but its limitation lies in processing information in only one temporal direction. 

The flowchart begins with the loading of input images and their corresponding ground truth (GT) 

masks, which are essential for supervised learning. These images are then resized and normalized—typically 

to a resolution of 128×128 in grayscale format—to ensure uniformity and reduce computational complexity. 

The dataset is split into training and testing subsets, commonly in an 80/20 ratio, to allow both learning and 

evaluation. A U-Net architecture, which consists of an encoder (for context capture) and a decoder (for precise 

localization), is constructed. The model is compiled using the Adam optimizer, binary cross-entropy loss 

(BCE), and accuracy as the evaluation metric. Training is carried out on the prepared dataset. Once training 

concludes, the model’s performance is assessed on the test set, followed by predictions on unseen test images. 

Finally, results are visualized by comparing input images, GT masks, and the model’s predicted outputs, 

enabling qualitative assessment of segmentation accuracy. 

 

2.3.2. Bidirectional recurrent neural network 

Accurate classification of ECG beats is vital in automated cardiac monitoring systems. Leveraging 

deep learning, particularly RNN like GRU, offers a robust approach for modeling temporal patterns in ECG 

signals. The Figure 2 illustrates a complete pipeline for classifying ECG beats using a GRU-based deep 

learning model trained on the MIT-BIH dataset. 

 

 

 
 

Figure 2. Workflow for ECG beat classification using a GRU-based deep learning model 
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The Bi-RNN model shown in Figure 2 extends the unidirectional architecture by incorporating a 

bidirectional GRU layer with 64 units. Unlike the unidirectional GRU, which only considers past inputs, the 

bidirectional GRU processes the sequence in both forward and backward directions, enabling the model to 

learn from both past and future contexts of each time step. This dual-pass mechanism significantly enhances 

the model’s ability to capture complex temporal dependencies in ECG signals, which often include features 

that span both sides of the R-peak. Similar to the unidirectional model, a dropout layer with a 0.3 rate is used 

after the Bi-GRU layer to reduce overfitting. This is followed by a dense layer with 32 units that consolidates 

the bidirectional features, and finally, a sigmoid-activated dense output layer that classifies the beat as either 

normal or arrhythmic. By leveraging information from the entire sequence, the bidirectional GRU model 

typically offers improved accuracy and robustness in sequence classification tasks. The process begins with 

loading ECG recordings from the MIT-BIH dataset and extracting individual beat segments around annotated 

peaks. 

These segments are then normalized to have zero mean and unit variance, ensuring uniformity across 

samples. To address class imbalance, data augmentation techniques such as jittering and amplitude scaling are 

applied to underrepresented classes. All beat segments—original and augmented—are merged, normalized 

again, and shuffled to ensure randomization. The dataset is then split into training and testing sets. A GRU-

based neural network is constructed, featuring a sequence of GRU, dropout, and dense layers, optimized for 

temporal signal processing. Training utilizes callbacks like early stopping and learning rate reduction to prevent 

overfitting and stabilize learning. The model is trained using the training set and validated on the validation 

split. Post-training, predictions are evaluated for performance, and results are visualized using a confusion 

matrix and training accuracy plots to analyze classification effectiveness and training progression. 

 

2.4.  Training configuration 

The training of the GRU-based ECG beat classification model was configured using the Adam 

optimizer, known for its efficiency and adaptive learning rate capabilities. The loss function employed was 

binary crossentropy, appropriate for the binary classification task. Training was conducted using a batch size 

of 32 samples, with the number of epochs set to a maximum of 30. However, to prevent overfitting and optimize 

learning, early stopping and learning rate reduction callbacks were incorporated. The dataset was partitioned 

into 80% for training and 20% for testing, ensuring a sufficient amount of data for both model learning and 

performance evaluation. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Introduction to results 

This study aimed to evaluate the effect of bidirectional temporal modeling on ECG arrhythmia 

detection by comparing unidirectional and bidirectional GRU architectures under balanced data conditions 

achieved through jittering and scaling augmentation. While both models were trained under identical 

conditions, the results show a substantial performance advantage for the bidirectional model, particularly in 

minority-class detection. This addresses a key limitation of many prior ECG classification models, which often 

report high overall accuracy but fail to maintain balanced sensitivity across classes 

The results shown in Table 1 clearly demonstrate the superiority of the Bi-RNN over the traditional 

RNN across all evaluated metrics. The RNN achieved an overall accuracy of just 54.0%, with extremely poor 

recall (9.0%) and F1-score (17.0%) for Class 1 (typically the minority or abnormal class), indicating severe 

limitations in detecting critical beat types. In stark contrast, the Bi-RNN achieved an outstanding 98.17% 

accuracy, with high precision (98.39%), recall (97.92%), and F1-score (98.16%) for Class 1, showcasing its 

ability to reliably classify both normal and abnormal ECG beats. 

 

 

Table 1. Performance comparison of standard RNN vs. Bi-RNN on ECG beat classification 
Metric RNN Bi-RNN 

Accuracy 54.0% 98.17% 

Precision (Class 1) 95.0% 98.39% 

Recall (Class 1) 9.0% 97.92% 
F1-score (Class 1) 17.0% 98.16% 

ROC AUC - 0.9968 

Matthews Corrcoef - 0.9634 
Cohen's Kappa - 0.9634 

log loss - 0.0628 

Balanced accuracy 54.0% 98.17% 
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3.2.  Summary of key findings 

ECG beat classification relies heavily on the ability of machine learning models to interpret sequential 

patterns in biomedical signals. RNN and Bi-RNNs are both designed for such time-series data, but Bi-RNNs 

offer the distinct advantage of processing inputs in both forward and backward directions. This enables better 

temporal context comprehension, which is crucial for detecting subtle abnormalities in ECG waveforms. The 

table below presents a comparative performance analysis of standard RNN and Bi-RNN models for ECG beat 

classification. 

The unidirectional GRU achieved an overall accuracy of 54.0%, with precision of 95.0% but recall of 

only 9.0% for arrhythmic beats, resulting in an F1-score of 17.0% for Class 1. These results indicate severe 

under-detection of arrhythmic beats despite the model’s ability to correctly classify the majority class. In 

contrast, the bidirectional GRU attained 98.17% accuracy, 98.39% precision, 97.92% recall, and a 98.16% F1-

score for Class 1, demonstrating a well-balanced ability to detect both normal and arrhythmic beats. 

Advanced metrics further highlight the robustness of the Bi-RNN model. It recorded a near-perfect 

ROC AUC of 0.9968, reflecting excellent discrimination between classes. The Matthews Correlation 

Coefficient (0.9634) and Cohen’s Kappa (0.9634) indicate a strong agreement between predictions and true 

labels, even in the presence of class imbalance. A low log loss (0.0628) confirms the model’s confident and 

accurate probability estimates. 

The 3D horizontal bar plot shown in Figure 3 provides a comparative visualization of key performance 

metrics for two neural network architectures—RNN and Bi-RNN—in the context of ECG beat classification. 

Each metric, including accuracy, precision, recall, F1-score, and balanced accuracy, is represented along the 

horizontal axis, while the vertical axis distinguishes between the two models. The depth and height of the bars 

encode the corresponding performance values, offering a clear visual comparison. The color gradient, scaled 

from 1 to 5, represents the index of metrics for enhanced interpretability. The plot reveals that Bi-RNN 

significantly outperforms RNN across all evaluated metrics, especially in recall and F1-score, emphasizing its 

superior ability to capture both past and future contextual dependencies in sequential ECG data. 

 

 

 
 

Figure 3. 3D horizontal bar plot (bar3h) comparing RNN and Bi-RNN performance metrics for ECG beat 

classification 

 

 

3.3.  Interpretation of results 

The results confirm that bidirectional sequence modeling substantially enhances ECG classification 

performance. By processing input sequences in both forward and backward directions, the Bi-GRU model 

effectively leverages post-R-peak waveform information, which can be critical for detecting subtle 

morphological variations associated with arrhythmias. This advantage was particularly evident in the recall 

metric for the arrhythmic class, which improved from 9.0% in the unidirectional model to 97.92% in the 

bidirectional model. 

This bubble chart shown in Figure 4 visually compares the performance of RNN and Bi-RNN models 

across five critical metrics: accuracy, precision, recall, F1-score, and balanced accuracy in ECG beat 

classification. Each bubble represents the score of a model for a specific metric, with its size proportional to 

the value. Blue bubbles indicate RNN scores, while red bubbles represent Bi-RNN scores. The chart clearly 
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illustrates Bi-RNN's superior performance, with significantly larger bubbles across all metrics, especially in 

recall (97.92% vs. 9%) and F1-score (98.16% vs. 17%). The stark contrast highlights the advantage of using a 

bidirectional architecture, which captures both past and future sequence information more effectively than a 

traditional RNN. The stark performance disparity highlights the importance of capturing future context in ECG 

signals for effective arrhythmia detection. Unidirectional RNNs may underperform due to their limited access 

to contextual information that follows the R-peak, a limitation not present in Bi-RNNs. Data augmentation 

significantly improved the model's sensitivity to minority class features, enabling the Bi-RNN to learn robust 

patterns. In summary, while the standard RNN struggles with poor generalization and fails to capture temporal 

dependencies effectively, the Bi-RNN leverages bidirectional context to deliver highly accurate and balanced 

classification performance, making it the clearly superior choice for ECG beat classification tasks. These 

findings are consistent with Sarankumar et al. [23], who reported superior minority-class detection when 

applying Bi-GRU architectures to atrial fibrillation detection, and Lv et al. [22], who achieved a 4% recall 

improvement in Bi-LSTMs over unidirectional LSTMs for ECG classification. However, the magnitude of 

improvement in the present study is greater, likely due to the combination of bidirectional modeling and 

targeted augmentation strategies that ensured balanced exposure to minority-class examples during training. 

 

 

 
 

Figure 4. Bubble chart comparison of RNN and Bi-RNN models based on key performance metrics 

 

 

3.4.  Comparison with previous works 

When compared to earlier CNN-based ECG classification models, such as Ribeiro et al. [12] (97% 

accuracy) and Ferretti et al. [9] (96.5% accuracy), the proposed Bi-GRU model achieves competitive or 

superior performance while offering better temporal feature modeling. Unlike purely convolutional 

approaches, which primarily capture spatial features, the Bi-GRU captures sequential dependencies that are 

crucial for rhythm classification. Similarly, hybrid CNN-RNN approaches like Islam et al. [29] achieved 98.2% 

accuracy, closely matching the results of this work, but often at higher computational cost due to more complex 

feature extraction stages. 

 

3.5.  Limitations and implications 

Despite these encouraging results, it is important to note that the model was trained and evaluated on 

a single benchmark dataset (MIT-BIH). While the balanced augmentation strategy improved generalization 

within the dataset, performance on real-world clinical ECG data with different patient demographics or 

acquisition hardware remains to be validated. Additionally, while jittering and scaling are effective for 

simulating variability, they may not capture the full range of morphological patterns seen in rare arrhythmias. 

The clinical implications of these findings are significant. A reduction in false negatives — as 

evidenced by the high recall of the Bi-GRU — directly translates to improved detection of potentially life-

threatening arrhythmic events in real-time monitoring systems. The computational efficiency of the model, 

combined with its high accuracy, makes it a viable candidate for deployment in portable ECG devices and 

continuous cardiac monitoring systems. 
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3.6.  Directions for future work 

Building on these results, future research could explore integrating attention mechanisms into the Bi-

GRU framework to improve interpretability, enabling clinicians to visualize which parts of the ECG sequence 

most influence classification decisions. Testing the model across multiple datasets, including multi-lead ECG 

signals, would provide stronger evidence of its generalizability. Furthermore, incorporating more advanced 

augmentation techniques, such as GAN-based synthetic beat generation, or combining augmentation with real 

beats from complementary datasets like INCART or AHA DB, could further enhance performance on rare 

arrhythmia classes. 

 

 

4. CONCLUSION 

This study presented a comprehensive comparative analysis of unidirectional and bidirectional GRU 

architectures for ECG arrhythmia classification using the MIT-BIH Arrhythmia Database, enhanced with 

jittering and scaling to address extreme class imbalance. The results demonstrated that the bidirectional GRU 

significantly outperformed its unidirectional counterpart across all performance metrics, achieving 98.17% 

accuracy, 98.39% precision, 97.92% recall, and a 98.16% F1-score. In contrast, the unidirectional GRU 

struggled to detect minority-class arrhythmic beats, with a recall of only 9%, highlighting the critical advantage 

of bidirectional temporal modeling in capturing both past and future contextual dependencies within ECG 

sequences. The superior performance of the Bi-GRU was further validated by advanced metrics, including an 

ROC-AUC of 0.9968, MCC of 0.9634, and low log loss of 0.0628, indicating high robustness and reliability 

even under balanced data conditions achieved via augmentation. The findings emphasize that computationally 

lightweight augmentation techniques, when combined with bidirectional sequence modeling, can yield highly 

accurate and generalizable models for clinical arrhythmia detection. Importantly, the notable reduction in false 

negatives suggests a tangible clinical benefit, as missed arrhythmic events can have serious implications for 

patient outcomes. Despite these promising results, several limitations should be acknowledged.  

The study used data from a single benchmark dataset (MIT-BIH), which may not fully capture the 

diversity of ECG patterns across different populations, acquisition devices, or pathological conditions. 

Additionally, the augmentation strategies, while effective, were limited to jittering and scaling; more diverse 

transformations or multi-database fusion could further improve generalization. Future research could extend 

this work in several directions. First, evaluating the proposed approach on multiple large-scale, multi-lead ECG 

datasets would validate its generalizability. Second, incorporating advanced augmentation strategies such as 

GAN-based synthetic beat generation or hybrid oversampling methods could enhance robustness against rare 

arrhythmia types. Third, exploring lightweight model compression techniques, including quantization and 

pruning, would facilitate real-time deployment on wearable or portable ECG monitoring devices. Finally, 

integrating attention mechanisms into bidirectional architectures could improve interpretability, enabling 

clinicians to better understand the temporal features influencing model predictions. Overall, the findings of this 

study strongly support the use of bidirectional GRU architectures, coupled with efficient data augmentation, 

as a practical and high-performing solution for automated ECG arrhythmia detection, with clear potential for 

deployment in real-world clinical monitoring systems. 
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