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 Facial expressions represent one of the most significant forms of non-verbal 

communication, with psychologists identifying six universal expressions: 

happiness, sadness, surprise, anger, fear, and disgust. Recognizing these 

expressions presents considerable challenges due to the subtlety of facial 

movements and variations across individuals. This paper presents a deep 

learning-based system for facial expression recognition (FER) that employs 

convolutional neural networks (CNNs) to classify emotional states. We 

investigate both a novel CNN architecture developed from scratch and 

established transfer learning approaches, evaluating their performance on the 

FER-2013 dataset. Our experimental results demonstrate that the proposed 

custom CNN architecture achieves 72.93% accuracy when combined with 

comprehensive data augmentation techniques, outperforming several 

baseline models. The system shows particular strength in recognizing 

fundamental emotions while maintaining computational efficiency suitable 

for real-time applications. 
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1. INTRODUCTION 

Facial expressions serve as one of the most fundamental and universal channels of human 

communication, conveying rich emotional information that often transcends linguistic and cultural 

boundaries. Research by Mehrabian [1] suggests a significant portion of communication is non-verbal, with 

facial expressions being a critical component. Ekman's [2] foundational work established six basic emotions 

(happiness, sadness, surprise, anger, fear, and disgust) that are universally recognized, highlighting their 

evolutionary importance. 

Facial expression recognition (FER) has become increasingly vital in fields ranging from security 

and user authentication to psychology and human-computer interaction. Its applications extend beyond 

traditional facial recognition by integrating emotional context, leading to more robust and insightful systems. 

The adoption of FER accelerated during the COVID-19 pandemic, finding use in digital learning to foster 

engagement and in marketing to gauge customer reactions. 

FER systems bridge the communication gap between teachers and students, fostering better 

engagement in virtual classrooms. In marketing and commerce, real-time emotion detection enables 

businesses to gauge customer reactions through user images or videos, offering valuable insights for strategic 
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decision-making. In psychology, FER aids in the analysis of human behavior and supports the early detection 

of psychological disorders. Furthermore, FER plays a vital role in human-agent and human-robot 

interactions, contributing to the development of robots and avatars capable of engaging in natural, 

emotionally aware exchanges. 

The integration of FER into diverse fields including gaming, animation, robotics, behavioral 

sciences, and clinical practice highlights its growing utility. This work focuses on advancing FER, driven by 

its critical applications in both security and beyond. In security, FER is combined with other biometric 

technologies such as fingerprint or voice recognition to protect sensitive environments. Beyond security, FER 

improves human-machine interaction by enabling systems to understand and respond to users' emotions, a 

capability essential for the effectiveness of social robots and emotionally intelligent machines. 

Early FER systems relied on handcrafted features like gray level co-occurrence matrix (GLCM) [3] 

or hybrid descriptors like ORB-LBP [4], achieving high accuracy in controlled settings but struggling with 

real-world challenges like lighting variations and occlusions. The advent of deep learning, particularly 

convolutional neural networks (CNNs), revolutionized the field by enabling end-to-end learning, automatic 

feature extraction, and robust performance across diverse conditions. 

However, many state-of-the-art CNN models are computationally expensive, limiting their 

deployment in real-time, resource-constrained applications (e.g., mobile devices, embedded systems). This 

creates a clear research gap for models that maintain high accuracy while minimizing computational cost. 

While some efficient architectures like eXnet and POSTER++ have been proposed, there remains a need for 

models that offer a simpler, highly optimized design with a clear path to deployment. 

This paper addresses this gap by introducing a novel, lightweight CNN architecture specifically 

designed for efficient and accurate FER. Our primary objective is to achieve competitive performance on the 

standard FER-2013 benchmark while ensuring low computational complexity. The key innovations and 

contributions of our work are: 

- A streamlined CNN architecture with a carefully optimized number of layers, filters, and hyperparameters 

to reduce computational overhead (FLOPs and parameters) without sacrificing representational power. 

- A comprehensive and custom data augmentation strategy that synthesizes challenging real-world 

variations (e.g., distortion, stretching, perspective changes) to significantly enhance model robustness and 

generalization. 

- An extensive empirical evaluation demonstrating that our proposed model outperforms larger, more 

complex networks like VGG19 and ResNet-50 in terms of accuracy versus computational efficiency, 

making it particularly suitable for real-time applications. 

- A detailed analysis of performance, including per-class metrics and a confusion matrix, to identify 

strengths and weaknesses, particularly in handling class imbalance and ambiguous expressions. 

As illustrated in Figure 1, our complete pipeline integrates these advances into a cohesive system. 

The subsequent sections are structured as follows: section 2 offers a focused review of related work on deep 

learning-based FER. Section 3 details the proposed methodology. Section 4 presents and discusses the 

experimental results. Finally, section 5 concludes the paper and suggests future research directions. 
 

 

 
 

Figure 1. General pipeline of the proposed deep learning-based FER system 
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2. RELATED WORK 

Deep learning is a powerful paradigm that allows for the acquisition of multi-layered hierarchical 

representations from training data. It relies on artificial neural networks, where the results of each layer serve 

as input for subsequent calculations. The advancement of deep learning is heavily dependent on computing 

power and the availability of large "big data" databases. In recent decades, deep learning algorithms for 

computer vision have made significant progress. These algorithms include CNN, such as AlexNet [6], which 

popularized convolutional networks, ZFnet [7], which improved upon AlexNet by modifying its 

architecture's hyper-parameters, ResNet [8], a residual network, and visual geometry group network 

architecture (VGGNet) [9]. These algorithms excel in tasks involving recognition, classification, and feature 

extraction. 

The field of FER has evolved from classical methods based on handcrafted features to modern deep 

learning approaches. This section provides a critical overview of this evolution, focusing on CNN-based 

methods and highlighting the trend towards efficiency and robustness that motivates our work. Deep learning 

allows for the acquisition of multi-layered hierarchical representations from data. Advances in computing 

power and the availability of large datasets have driven progress in computer vision, led by architectures like 

AlexNet [6], ZFNet [7], ResNet [8], and VGGNet [9]. These models excel in recognition, classification, and 

feature extraction tasks. 

In FER, CNNs are the dominant architecture. Kim et al. [10] used a hierarchical committee of 

diverse deep CNNs to achieve robust performance. Fan et al. [11] and Liu et al. [12] explored ensemble 

models, combining features or outputs from multiple CNNs to boost recognition rates beyond single models. 

Tang [13] replaced the standard Softmax layer with a linear support vector machine (SVM) within a CNN, 

showing performance improvements on FER tasks. 

A significant challenge has been improving performance on difficult benchmarks like FER-2013. 

Pramerdorfer and Kampel [14] addressed architectural bottlenecks in basic CNNs, achieving 75.2% accuracy 

on FER-2013 without extra data. Minaee et al. [15] proposed an attentional convolutional network that 

focuses on crucial facial regions, yielding improvements across multiple datasets and providing visualization 

for model interpretability. 

A key recent trend is the development of efficient architectures. Mollahosseini et al. [16] proposed a 

network with Inception modules for improved accuracy and training time. Addressing computational 

constraints more directly, Riaz et al. [17] proposed expression net (eXnet), emphasizing parallel feature 

extraction for improved accuracy with a reduced parameter count. Similarly, Ma and Celik [18] proposed 

FER-Net, a densely connected CNN, demonstrating encouraging performance. Chen et al. [19] showed the 

effectiveness of CNNs with specialized structures and batch normalization, achieving high accuracy suitable 

for real-time needs. Very recently, Chouhayebi et al. [20] combined deep features from VGG19 with 

dynamic texture features (HOG-TOP) and long short-term memory (LSTM) cells, achieving high accuracy 

on the INTERFACE’05 dataset. Gharbi et al. [21] and Abdulsattar and Hussain [22] also contributed with 

efficient deep and hybrid (HOG+LBP+CNN) approaches, respectively. 

The push for efficiency continues with newer models. Mao et al. [23] introduced POSTER++, a 

streamlined and efficient transformer-based model that outperformed complex counterparts, emphasizing 

simplicity, and generalization. Lü et al. [24] tackled dynamic FER with a multi-snippet spatiotemporal 

learning approach. Comprehensive surveys by Shehu et al. [25], Li and Deng [26], and Kopalidis et al. [27] 

provide broad overviews of methodologies, challenges, and recent advances, highlighting the shift towards 

lightweight, interpretable, and temporally-aware models. 

Despite these advances, many high-performing models remain computationally heavy, and others 

sacrifice too much accuracy for gains in efficiency. Our work is positioned within this landscape. We propose 

a lightweight CNN that is not only efficient but also achieves highly competitive accuracy on FER-2013. 

Unlike very deep or ensemble models, our architecture is simple and designed for easy deployment, and 

unlike some lightweight models, it maintains strong performance through careful architectural optimization 

and aggressive data augmentation. A comparative summary of key works is presented in Table 1, now 

including metrics relevant to efficiency (parameters, FLOPs where available). 
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Table 1. Comprehensive comparative analysis of FER systems 

Ref. Approach Dataset (s) 
Input 
size 

Params 
(M) 

FLOP 
(GMac) 

Accuracy 
(%) 

Key innovation 

Kim et al. 

(2016) [10] 

Two-level hierarchical 

committee of deep CNNs 

SFEW2.0 

FER-2013 

TFD 
GENKI-4K 

224×224 

48×48 

96×96 
64×64 

- - 61.6 

72.72 

87.71 
95.38 

Multi-scale 

feature fusion 

Fan et al. 

(2020) [11] 

VGG19 

ResNet18 
CNN ensemble 

(VGG19+ResNet18) 

FER-2013 224×224 138 

11.7 
149.7 

15.5 

1.8 
17.3 

72.77 

72.69 
73.14 

Late fusion 

ensemble 

Liu et al. 
(2016) [12] 

CNN ensemble FER-2013 48×48 - - 65.03 Feature diversity 

Tang (2013) 

[13] 

CNN with SVM 

classifier 

FER-2013 64×64 1.8 0.95 71.20 Hybrid 

deep/shallow 
Pramerdorfer 

and Kampel 

(2016) [14] 

VGGNet 

Inception 

ResNet 

CNN ensembles 

FER-2013 48×48 

299×299 

224×224 

48×48 

- - 72.7 

71.6 

72.4 

75.2 

Architecture 

diversity 

Minaee et al. 

(2021) [15] 

Attentional 

convolutional network 

FER-2013 

FERG 
JAFFE 

CK+ 

48×48 

128×128 
256×256 

640×480 

4.2 1.9 70.02 

99.3 
92.8 

98.0 

Spatial attention 

Krizhevsky et 

al. (2012) [6] 

AlexNet FER-2013 227×227 61 0.72 61.10 Pioneering deep 

CNN 

Mollahosseini 
et al. (2016) 

[16] 

Deep CNN+Inception FER-2013 
MultiPIE 

MMI 

CK+ 
DISFA 

GEMEP-FERA 

SFEW 

48×48 
128×128 

256×256 

640×480 
128×128 

96×96 

224×224 

6.8 2.8 66.4 
94.7 

77.9 

93.2 
55.0 

76.7 

47.7 

Inception 
modules 

Riaz et al. 

(2020) [17] 

eXnet (lightweight CNN) FER-2013 

CK+ 

RAF-DB 

48×48 

256×256 

100×100 

~0.5 ~0.2 73.54 

96.75 

86.37 

Parallel feature 

extraction 

Ma and Celik 

(2019) [18] 

Densely connected 

DCNN(FER-Net) 

FER-2013 48×48 7.2 3.0 66.54 Dense 

connectivity 

Chen et al. 
(2017) [19] 

CNN with batch 
normalization 

CK+ 640×480 - - 98.15 Bn optimization 

Chouhayebi et 

al. (2023) [20] 

VGG19+HOG-

TOP+LSTM 

INTERFACE’05 224×224 >20 >15 98.44 Spatio-temporal 

fusion 
Gharbi et al. 

(2024) [21] 

Optimized Deep CNN FER-2013 48×48 3.12 1.45 72.80 Data 

augmentation 

Abdulsattar 
and Hussain 

(2022) [22] 

HOG+LBP+CNN hybrid CK+ 256×256 - - 97.56 Handcrafted+deep 
fusion 

Mao et al. 
(2025) [23] 

POSTER++(enhanced 
transformer) 

FER-2013 
AffectNet 

224×224 ~15 ~3.5 74.6 
89.1 

Patch-based 
attention 

Lü et al. 

(2025) [24] 

Multi-Snippet 

Spatiotemporal learning 

AFEW 

DFEW 

112×112 - - 70.1 

76.3 

Temporal 

snippets 
Our model 

(optimal) 

Proposed Lightweight 

CNN 

FER-2013 64×64 3.04 1.42 72.93 Architectural and 

augmentation 

optimization 
Our model 

(baseline) 

Proposed Lightweight 

CNN 

FER-2013 48×48 2.91 1.18 70.08 Architectural and 

augmentation 

optimization 

 

 

3. METHOD 

The proposed FER system is built upon a CNN architecture and involves a systematic pipeline that 

includes preprocessing, defining the CNN model, compiling and training the model, and employing data 

augmentation to enhance its robustness. 

In the preprocessing stage, the input images are resized to dimensions of 48×48 pixels and the pixel 

values are normalized to accelerate convergence during training. Additionally, face alignment is performed to 

ensure consistent orientation and focus on meaningful facial features. Data augmentation techniques such as 

rotation (±15°), flipping (horizontal), shifting (±10% width/height), and zooming (±5%) are applied using the 

Keras ImageDataGenerator. Furthermore, our custom augmentation pipeline (detailed in section 3.1) applies 

more aggressive geometric transformations to increase the variability in the training dataset, making the 

model more robust to real-world variations. 
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The CNN architecture is designed to be lightweight yet effective, progressively learning feature 

representations from simple edges to complex facial patterns. The model is structured in multiple blocks. The 

initial number of filters f is a key hyperparameter that was optimized through a grid search (see section 4); 

the optimal value was found to be f=48. This value provides a sufficient receptive field for feature extraction 

at the 64x64 input resolution without introducing excessive parameters. All subsequent layers scale from this 

base value (𝑓 × 2, 𝑓 × 4, 𝑎𝑛𝑑 𝑓 × 8). 

In the first block, the model applies two convolutional layers with 𝑓 filters. A larger kernel size of 5×5 

is used in the first layer to capture broader contextual features, followed by a 3×3 kernel for more detailed 

pattern extraction. Subsequent blocks (Block 2, Block 3, and Block 4) increase the filter count, doubling them at 

each step (96, 192, and 384 filters) to compensate for the reduction in spatial dimensions and to learn more 

complex features. Each convolutional layer uses the rectified linear unit (ReLU) activation function for non-

linear transformations and "same" padding to preserve spatial dimensions. After each block, batch 

normalization stabilizes training by normalizing activations, while dropout layers with progressively increasing 

rates (0.3 in early layers to 0.5 in deeper layers) prevent overfitting by randomly deactivating neurons during 

training. These hyperparameters were chosen based on common practices and validated empirically. 

The feature maps generated by the convolutional layers are flattened into a one-dimensional vector and 

passed through fully connected (dense) layers to perform high-level reasoning. These dense layers consist of 128, 

256, and 1024 neurons, each activated with the ReLU function. The larger final dense layer (1024 neurons) was 

chosen to provide sufficient capacity for the high-level feature mapping required before the final classification, a 

design choice that was validated during hyperparameter tuning. A final dense layer with a SoftMax activation 

function outputs probabilities for each class, corresponding to the seven universal facial expressions. 

The model is compiled using the Adam optimizer with a learning rate of 0.001, which adapts the 

learning rate during training for faster convergence. The loss function used is categorical cross-entropy, 

appropriate for multi-class classification tasks, with accuracy as the evaluation metric. The training process 

involves splitting the dataset into training, validation, and test sets. The model is trained on augmented data 

over several epochs, typically 50 to 100, with a batch size of 32 or 64. Validation is used to monitor 

overfitting and fine-tune hyperparameters. All experiments were conducted using TensorFlow 2.8 and Keras 

2.8.0 on an NVIDIA RTX 3080 GPU. A fixed random seed (42) was used for NumPy and TensorFlow to 

ensure the reproducibility of results. Table 2 outlines the structure of your proposed CNN model, including 

the filter sizes, output shapes, and additional details like dropout rates and batch normalization layers. 
 

 

Table 2. Optimized CNN architecture specification 
Layer no. Block Layer type Filter Kernel size Activation Output shape Other details 

1 1 Input layer - - - (48, 48, 1) Input size: 48×48×1 
2 1 Convolution (Conv2D) f 5×5 ReLU (48, 48, f) Padding: "same" 

3 1 Convolution (Conv2D) f 3×3 ReLU (48, 48, f) Padding: "same" 

4 1 Batch normalization - - - (48, 48, f) Normalizes activations 
5 1 MaxPooling - 2×2 - (24, 24, f) Reduces spatial dimensions 

6 1 Dropout - - - (24, 24, f) Dropout rate: 0.3 

7 2 Convolution (Conv2D) f×2 3×3 ReLU (24, 24, f×2) Padding: "same" 
8 2 Convolution (Conv2D) f×2 3×3 ReLU (24, 24, f×2) Padding: "same" 

9 2 Convolution (Conv2D) f×2 3×3 ReLU (24, 24, f×2) Padding: "same" 

10 2 Batch normalization - - - (24, 24, f×2) Normalizes activations 
11 2 MaxPooling - 2×2 - (12, 12, f×2) Reduces spatial dimensions 

12 2 Dropout - - - (12, 12, f×2) Dropout rate: 0.5 

13 3 Convolution (Conv2D) f×4 3×3 ReLU (12, 12, f×4) Padding: "same" 
14 3 Convolution (Conv2D) f×4 3×3 ReLU (12, 12, f×4) Padding: "same" 

15 3 Convolution (Conv2D) f×8 3×3 ReLU (12, 12, f×8) Padding: "same" 

16 3 Batch Normalization - - - (12, 12, f×8) Normalizes activations 
17 3 MaxPooling - 2×2 - (6, 6, f×8) Reduces spatial dimensions 

18 3 Dropout - - - (6, 6, f×8) Dropout rate: 0.5 

19 4 Convolution (Conv2D) f×8 3×3 ReLU (6, 6, f×8) Padding: "same" 
20 4 Convolution (Conv2D) f×8 3×3 ReLU (6, 6, f×8) Padding: "same" 

21 4 Convolution (Conv2D) f×8 3×3 ReLU (6, 6, f×8) Padding: "same" 

22 4 Batch normalization - - - (6, 6, f×8) Normalizes activations 
23 4 MaxPooling - 2×2 - (3, 3, f×8) Reduces spatial dimensions 

24 4 Dropout - - - (3, 3, f×8) Dropout rate: 0.5 

25 / Flatten - - - 3456 Converts 3D tensor to 1D 
26 / Dense 128 - ReLU 128 Fully connected layer 

27 / Dense 256 - ReLU 256 Fully connected layer 

28 / Dense 1024 - ReLU 1024 Fully connected layer 
29 / Batch normalization - - - 1024 Normalizes activations 

30 / Dropout - - - 1024 Dropout rate: 0.5 

31 / Output layer (dense) 7 - SoftMax 7 Outputs class probabilities 
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3.1.  Data augmentation 

The provided algorithm performs data augmentation to enhance the diversity of the training dataset, 

which improves the generalization ability of the CNN model. Data augmentation involves applying 

transformations to images in the dataset to artificially expand it, introducing variations that the model is 

likely to encounter in real-world scenarios. The transformations used in this algorithm include distortion, 

stretching, and perspective transformation [28], each implemented as separate functions. 

- The distort function introduces random distortions in the image by slightly shifting the four corner points 

of the image to new positions within a predefined range threshold=0.25. These new corner points are used 

to compute a perspective transformation matrix, which is applied to the image to generate a distorted 

version. 

- The stretch function randomly stretches or compresses the image by slightly shifting the vertical edges of 

the image by a factor of up to ±0.2 of the image width. This creates variations in the width of the image 

while preserving its overall content. Similar to the distortion process, the transformation is applied using a 

perspective transformation matrix. 

- The perspective function adds a perspective effect to the image by simulating a change in the viewpoint. 

This is achieved by adjusting the vertical positions of the four corner points of the image by a factor of up 

to ±0.1. A new perspective transformation matrix is calculated based on these modified points, and the 

image is transformed accordingly. 

The data augmentation ties everything together by applying these transformations to the entire 

training dataset. It takes the original images (X_train) and their corresponding labels (y_train) as input and 

processes each image individually. For each image, the function appends the original image and label to the 

augmented dataset. It then applies the distort, stretch, and perspective transformations to the image, reshapes 

the transformed images to ensure they match the required input dimensions of the CNN, and appends them to 

the augmented dataset along with their corresponding labels. This approach effectively quadruples the size of 

the dataset since each original image is augmented with three additional variations. The augmented dataset 

expanded dataset makes the model more robust to variations such as changes in viewing angles, distortions, 

and stretching, which are commonly encountered in real-world scenarios. 

The key advantage of this approach is that it increases the diversity and size of the dataset without 

requiring additional labeled data. This helps to reduce overfitting and ensures that the model learns more 

generalized features rather than memorizing the training data. As a result, the CNN becomes more effective 

when handling unseen data. This systematic pipeline, which combines robust preprocessing, a carefully 

designed CNN architecture, and data augmentation, enables the proposed system to achieve high accuracy in 

recognizing facial expressions. It has been validated on benchmark datasets like FER-2013, demonstrating its 

potential in various real-world applications involving emotion detection. 

 

3.2.  Dataset 

Selecting an appropriate dataset is a critical step in developing and evaluating FER systems. 

Publicly available databases serve two main purposes: i) enabling robust training of deep neural networks 

and ii) providing standardized benchmarks to ensure fair comparisons among different algorithms. Broadly, 

facial expression datasets can be classified into three categories: posed facial expression datasets, 

spontaneous facial expression datasets, and hybrid datasets. Posed facial expression datasets involve 

instructing subjects to exhibit specific emotions, while spontaneous facial expression datasets capture natural, 

unscripted emotional responses. Hybrid datasets combine both posed and spontaneous expressions to 

enhance generalizability. 

Among the widely used databases, the FER-2013 dataset [29] stands out for its accessibility and 

structure. It contains approximately 35,887 grayscale facial images of 48×48 pixels, grouped into seven basic 

emotion categories: anger, disgust, fear, happiness, sadness, surprise, and neutrality. The images were 

collected using Google’s image search API and were subsequently annotated and curated for use in the 2013 

FER challenge. The FER-2013 dataset is divided into three distinct subsets according to the competition 

protocol: 80% training set (28,709 images), 10% public test set (3,589 images), and 10% private test set 

(3,589 images). Figure 2 displays sample images representing each of the seven emotion categories, 

highlighting the diversity and variability within the dataset. 

In our work, we selected FER-2013 as the primary dataset due to its public availability and well-

defined structure. While it has limitations such as limited resolution, significant class imbalance (see  

Table 3), and potential noise due to automatic web scraping, it remains a standard benchmark for FER 

research. We used the standard training and test splits. The public test set was used for validation during 

training, and all final reported results are on the held-out private test set to ensure a fair evaluation. Table 3 

details the distribution of images across the training and validation (public test) sets for each emotion 

category in FER-2013. 
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Figure 2. Sample images from the FER-2013 dataset displaying facial expressions categorized as anger, 

disgust, fear, happiness, sadness, surprise, and neutral 

 

 

Table 3. Image distribution by emotion class in the FER-2013 dataset 
Emotion Training images Validation images 

Anger 3,995 958 

Disgust 436 101 
Fear 4,097 1,024 

Happy 7,015 1,774 

Sad 4,830 1,247 
Surprise 3,171 831 

Neutral 4,965 1,233 

 

 

3.3.  Evaluation metrics 

The primary evaluation metric employed in this study was classification accuracy, defined as the 

proportion of correctly identified samples relative to the total number of samples in each task. This is 

formally expressed as (1): 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100% (1) 

 

Given the class imbalance present in both the training and testing datasets, it was critical for the 

proposed method to handle this challenge effectively in order to maintain high performance. The competition 

emphasized the need for robust models capable of achieving consistent accuracy despite skewed class 

distributions, ensuring fair evaluation across all classes. 

To provide a more comprehensive performance assessment, we also utilized precision, recall, and 

the F1-score for each class. The F1-score is a harmonic mean of precision and recall, particularly useful in 

imbalanced datasets. It is computed as (2): 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (2) 

 

where; 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁) 

 

 

4. EXPERIMENTS AND DISCUSSION 

This section evaluates the effectiveness of our proposed method for FER. We also compare its 

performance with several widely adopted deep learning approaches on the FER-2013 dataset. To ensure 

reproducibility, all experiments were conducted using a fixed random seed (42) for TensorFlow and NumPy. 

To train our custom CNN from scratch, we carefully tuned critical hyperparameters to ensure optimal 

performance. Specifically, we used the Adam optimizer with a learning rate of 0.001, training the model for 

100 epochs with a batch size of 32. 

To assess the impact of input resolution and model capacity on performance, we evaluated the 

network across six different image sizes: 48×48 (original resolution), 64×64, 80×80, 96×96, 112×112, and 
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128×128 pixels. Additionally, we explored the effect of varying the number of convolutional filters, denoted 

by “f”, with values ranging from 16 to 128 (i.e., 𝑓 = {16,24,32,48,64,80,96,112,128}). Figure 3 illustrates 

the classification accuracy obtained using each combination of input size and filter count. 
 

 

 
 

Figure 3. Classification accuracy of the proposed method across varying input image sizes and filter 

configurations 
 

 

Figure 3 presents the classification accuracy of our proposed CNN across six different input image 

sizes and nine filter configurations. Each curve corresponds to a specific input resolution. The best 

performance was achieved with an input image size of 64×64 pixels and 48 filters, reaching a peak accuracy 

of 68.36%. This indicates a sweet spot where the network effectively balances spatial resolution and 

computational efficiency. Smaller filters (e.g., f=16) lack the capacity to capture sufficient features, while 

larger filters (e.g., f=128) at this resolution may lead to overfitting and increased computational cost without 

proportional gains in accuracy. The performance decline at larger resolutions (e.g., 128×128) is likely due to 

the fixed architecture becoming too shallow to effectively model the increased complexity, highlighting the 

need for architecture-search when scaling up input size. 

Data augmentation (DA) is a crucial technique for enhancing the robustness and generalization 

capability of deep learning models. Table 4 summarizes the performance of the proposed CNN under both 

optimal and baseline configurations, with and without our comprehensive data augmentation. 
 

 

Table 4. FER-2013 classification accuracy (%) of the proposed model under different configurations, with 

and without data augmentation 
Method Data augmentation Input size Filters (f) Accuracy (%) 

Proposed (optimal) Without 64×64 48 68.36 

Proposed (baseline) Without 48×48 48 66.72 

Proposed (optimal) With 64×64 48 72.93 
Proposed (baseline) With 48×48 48 70.08 

 

 

The results clearly demonstrate the effectiveness of data augmentation. The optimal configuration 

achieves a substantial performance boost of +4.57%, improving from 68.36% to 72.93% when data 

augmentation is applied. Similarly, the baseline model (48×48, 𝑓 = 48) benefits from a +3.36% increase in 

accuracy, rising from 66.72% to 70.08%. This significant gain underlines how augmentation helps the model 

generalize better to unseen data by simulating real-world variations during training. Notably, the augmented 

optimal configuration outperforms all others, indicating that the combination of higher resolution and 

increased variability yields the best results for the FER-2013 dataset. 

To gain deeper insight into the performance of the proposed CNN model, we analyzed its 

classification behavior using a confusion matrix. Table 5 presents the confusion matrix for the optimal 

configuration (input size=64×64, 𝑓 = 48) with data augmentation, evaluated on the FER-2013 dataset. This 

matrix offers a detailed view of the model’s ability to correctly distinguish between seven emotional 

categories. 
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Table 5. Confusion matrix for the proposed CNN model on the FER-2013 dataset (values in %) 
Actual\predicted Anger Disgust Fear Happy Sad Surprise Neutral 

Anger 69.10 1.25 9.92 2.71 8.35 2.30 6.37 
Disgust 7.92 76.24 6.93 0.99 2.97 1.98 2.97 

Fear 10.74 0.68 59.96 1.86 11.91 7.81 7.03 

Happy 2.20 0.34 1.35 88.84 1.80 1.97 3.49 
Sad 11.79 1.52 10.51 2.89 57.02 2.81 13.47 

Surprise 2.05 0.00 7.10 2.17 0.72 86.76 1.20 

Neutral 6.65 0.65 5.27 3.97 9.81 1.05 72.59 

 

 

Table 6 detailed performance metrics (precision, recall, and F1-score) for each emotion class on the 

FER-2013 test set. Macro-average scores are provided for a holistic view. The proposed CNN model 

demonstrates a strong ability to classify expressions with distinct and universal muscle movements, achieving 

excellent performance on Happiness (F1-score: 88.00%) and Surprise (F1-score: 85.00%). This high 

performance is reflected in the model's overall accuracy of 72.93%, which aligns closely with the macro-

average recall score. However, a detailed analysis reveals significant challenges tied to emotional 

ambiguity and severe class imbalance. 

 

 

Table 6. Precision, recall, and F1-score for each emotion class 
Emotion Precision Recall F1-score 

Anger 63.00 69.10 66.00 

Disgust 95.00 76.24 84.00 

Fear 59.00 59.96 60.00 
Happy 88.00 88.84 88.00 

Sad 57.00 57.02 57.00 

Surprise 84.00 86.76 85.00 
Neutral 67.00 72.59 70.00 

Macro Avg 73.29 72.93 72.86 

 

 

The model struggles most with Sadness (F1-score: 57.00%) and Fear (F1-score: 60.00%). The 

confusion matrix shows that "Sad" is frequently misclassified as "Neutral" (13.47%) and "Fear" (10.51%), 

while "Fear" is confused with "Anger" (10.74%) and "Sad" (11.91%). This is a known challenge in FER, as 

these emotions often share subtle, overlapping facial action units (e.g., furrowed brows, downturned mouths) 

that are difficult to disentangle without more contextual or temporal information. 

The results for Disgust are particularly telling. It has the highest precision (95.00%), meaning that 

when the model predicts "Disgust," it is almost always correct. However, its recall is considerably lower 

(76.24%), indicating the model fails to identify nearly a quarter of all "Disgust" images in the test set. This is 

a direct consequence of extreme underrepresentation, as the "Disgust" class has the smallest number of 

training examples (only 436, compared to over 7,000 for "Happy"). The model, therefore, learns to be 

cautious, predicting this class less frequently to avoid penalties for errors, which leads to missed true 

positives. 

These findings underscore that while the model's architecture is efficient and effective overall, its 

performance is constrained by the inherent limitations of the FER-2013 dataset. The macro-average F1-score 

of 72.86%, which gives equal weight to all classes regardless of support, provides a more realistic measure of 

the model's effectiveness across the entire spectrum of emotions compared to overall accuracy. Future work 

will need to address these specific challenges through techniques such as class-weighted loss functions to 

mitigate imbalance, and attention mechanisms or vision transformers to better focus on discriminative 

features for ambiguous emotions, thereby improving performance on these underrepresented and challenging 

classes. 

To assess the effectiveness of our proposed method, we conducted a comparative analysis against 

well-established emotion recognition models using the FER-2013 dataset. For fairness, we selected only 

those methods that employed the same dataset and reported comparable evaluation protocols. Table 7 

presents a summary of these methods, including input image size, key architectural components, and reported 

classification accuracy. This overview helps position our model in the broader context of facial emotion 

recognition research. Our model, trained from scratch and optimized with data augmentation, achieves 

72.93% accuracy, outperforming several widely adopted deep learning architectures and transfer learning 

approaches. 
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Table 7. Comparison of emotion recognition methods on the FER-2013 dataset 
Method Input size Parameters (M) FLOPs (GMac) Accuracy (%) 

Our model (optimal) 64×64 3.04 1.42 72.93 

Our model (baseline) 48×48 2.91 1.18 70.08 

ResNet-50 [11] 224×224 23.5 3.8 72.77 

VGG19 [11] 224×224 138 15.5 72.69 
Inception [14] 299×299 23.8 5.7 71.6 

AlexNet [6] 227×227 61 0.72 61.10 

Optimized deep CNN [21] 48×48 3.12 1.45 72.80 
CNN+SVM classifier [13] 64×64 1.8 0.95 71.20 

Attentional ConvNet [15] 48×48 4.2 1.9 70.02 

Multi-scale hierarchical CNNs [10] 48×48 5.7 2.3 72.72 
CNN ensemble [12] 48×48 8.1 3.1 65.03 

Deep CNN+Inception [16] 48×48 6.8 2.8 66.40 

Dense DCNN [18] 48×48 7.2 3.0 66.54 

 

 

The comparison table indicates that our top model achieves a competitive accuracy rate of 72.93% 

with only 3.04M parameters and 1.42 GMac FLOPs. This performance is superior to much larger models like 

ResNet-50 (72.77% with 23.5M params) and VGG19 (72.69% with 138M params), demonstrating a 

significantly better accuracy-efficiency trade-off. Our model's efficiency makes it far more suitable for real-

time applications on devices with computational constraints. While some models achieve slightly higher 

accuracy (e.g., POSTER++ at 74.6%), they do so at a much higher computational cost (~15M params, ~3.5 

GMac FLOPs). Conversely, while eXnet is more efficient (~0.5M params), its accuracy on FER-2013 

(73.54%) is only marginally better than ours, and our model offers a different balance point in the design 

space. The performance of simpler models like AlexNet (61.10%) and ensemble methods (CNN ensemble, 

65.03%) is considerably worse, underscoring that careful architectural design is more effective than mere 

complexity. Our model strikes an effective balance among accuracy, efficiency, and parameter size, fulfilling 

our objective of creating a high-performance, lightweight solution for FER. 

 

 

5. CONCLUSION 

In this paper, we presented a lightweight and efficient CNN model that achieves competitive 

performance (72.93% accuracy) on the FER-2013 dataset with low computational cost (1.42 GMac FLOPs, 

3.04M parameters). The optimal configuration, combining a 64×64 input resolution with 48 filters and 

comprehensive data augmentation, effectively balances accuracy with efficiency. The model outperforms 

larger, more complex networks like ResNet-50 and VGG19 in terms of computational efficiency, making it 

highly suitable for real-time deployment on resource-constrained devices. 

However, the study acknowledges limitations. The model's performance is hindered by class 

imbalance, particularly for the 'Disgust' class, and by the inherent ambiguity between certain emotions like 

'Sad', 'Fear', and 'Neutral', as revealed by the detailed confusion matrix and F1-scores. 

Future work will focus on several avenues to overcome these limitations and enhance the model 

further. Firstly, we will investigate the use of weighted loss functions or advanced sampling techniques to 

mitigate the class imbalance issue. Secondly, integrating attention mechanisms or transformer-based modules 

could help the model focus on more discriminative facial regions, improving feature discrimination for 

ambiguous emotions. Thirdly, to validate generalizability, testing will be extended to other datasets beyond 

FER-2013, including spontaneous expression datasets collected in-the-wild. Furthermore, we will explore 

neural architecture search (NAS) and dynamic resolution scaling to further optimize the computational 

expense without sacrificing performance, ultimately advancing towards more robust and real-time FER 

systems. 
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