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Facial expressions represent one of the most significant forms of non-verbal
communication, with psychologists identifying six universal expressions:
happiness, sadness, surprise, anger, fear, and disgust. Recognizing these
expressions presents considerable challenges due to the subtlety of facial
movements and variations across individuals. This paper presents a deep

learning-based system for facial expression recognition (FER) that employs
convolutional neural networks (CNNs) to classify emotional states. We
investigate both a novel CNN architecture developed from scratch and
established transfer learning approaches, evaluating their performance on the
FER-2013 dataset. Our experimental results demonstrate that the proposed
custom CNN architecture achieves 72.93% accuracy when combined with
comprehensive data augmentation techniques, outperforming several
baseline models. The system shows particular strength in recognizing
fundamental emotions while maintaining computational efficiency suitable
for real-time applications.
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1. INTRODUCTION

Facial expressions serve as one of the most fundamental and universal channels of human
communication, conveying rich emotional information that often transcends linguistic and cultural
boundaries. Research by Mehrabian [1] suggests a significant portion of communication is non-verbal, with
facial expressions being a critical component. Ekman's [2] foundational work established six basic emotions
(happiness, sadness, surprise, anger, fear, and disgust) that are universally recognized, highlighting their
evolutionary importance.

Facial expression recognition (FER) has become increasingly vital in fields ranging from security
and user authentication to psychology and human-computer interaction. Its applications extend beyond
traditional facial recognition by integrating emotional context, leading to more robust and insightful systems.
The adoption of FER accelerated during the COVID-19 pandemic, finding use in digital learning to foster
engagement and in marketing to gauge customer reactions.

FER systems bridge the communication gap between teachers and students, fostering better
engagement in virtual classrooms. In marketing and commerce, real-time emotion detection enables
businesses to gauge customer reactions through user images or videos, offering valuable insights for strategic
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decision-making. In psychology, FER aids in the analysis of human behavior and supports the early detection

of psychological disorders. Furthermore, FER plays a vital role in human-agent and human-robot

interactions, contributing to the development of robots and avatars capable of engaging in natural,
emotionally aware exchanges.

The integration of FER into diverse fields including gaming, animation, robotics, behavioral
sciences, and clinical practice highlights its growing utility. This work focuses on advancing FER, driven by
its critical applications in both security and beyond. In security, FER is combined with other biometric
technologies such as fingerprint or voice recognition to protect sensitive environments. Beyond security, FER
improves human-machine interaction by enabling systems to understand and respond to users' emotions, a
capability essential for the effectiveness of social robots and emotionally intelligent machines.

Early FER systems relied on handcrafted features like gray level co-occurrence matrix (GLCM) [3]
or hybrid descriptors like ORB-LBP [4], achieving high accuracy in controlled settings but struggling with
real-world challenges like lighting variations and occlusions. The advent of deep learning, particularly
convolutional neural networks (CNNSs), revolutionized the field by enabling end-to-end learning, automatic
feature extraction, and robust performance across diverse conditions.

However, many state-of-the-art CNN models are computationally expensive, limiting their
deployment in real-time, resource-constrained applications (e.g., mobile devices, embedded systems). This
creates a clear research gap for models that maintain high accuracy while minimizing computational cost.
While some efficient architectures like eXnet and POSTER++ have been proposed, there remains a need for
models that offer a simpler, highly optimized design with a clear path to deployment.

This paper addresses this gap by introducing a novel, lightweight CNN architecture specifically
designed for efficient and accurate FER. Our primary objective is to achieve competitive performance on the
standard FER-2013 benchmark while ensuring low computational complexity. The key innovations and
contributions of our work are:

- Astreamlined CNN architecture with a carefully optimized number of layers, filters, and hyperparameters
to reduce computational overhead (FLOPs and parameters) without sacrificing representational power.

- A comprehensive and custom data augmentation strategy that synthesizes challenging real-world
variations (e.g., distortion, stretching, perspective changes) to significantly enhance model robustness and
generalization.

- An extensive empirical evaluation demonstrating that our proposed model outperforms larger, more
complex networks like VGG19 and ResNet-50 in terms of accuracy versus computational efficiency,
making it particularly suitable for real-time applications.

- A detailed analysis of performance, including per-class metrics and a confusion matrix, to identify
strengths and weaknesses, particularly in handling class imbalance and ambiguous expressions.

As illustrated in Figure 1, our complete pipeline integrates these advances into a cohesive system.
The subsequent sections are structured as follows: section 2 offers a focused review of related work on deep
learning-based FER. Section 3 details the proposed methodology. Section 4 presents and discusses the
experimental results. Finally, section 5 concludes the paper and suggests future research directions.
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Figure 1. General pipeline of the proposed deep learning-based FER system
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2. RELATED WORK

Deep learning is a powerful paradigm that allows for the acquisition of multi-layered hierarchical
representations from training data. It relies on artificial neural networks, where the results of each layer serve
as input for subsequent calculations. The advancement of deep learning is heavily dependent on computing
power and the availability of large "big data" databases. In recent decades, deep learning algorithms for
computer vision have made significant progress. These algorithms include CNN, such as AlexNet [6], which
popularized convolutional networks, ZFnet [7], which improved upon AlexNet by modifying its
architecture's hyper-parameters, ResNet [8], a residual network, and visual geometry group network
architecture (VGGNet) [9]. These algorithms excel in tasks involving recognition, classification, and feature
extraction.

The field of FER has evolved from classical methods based on handcrafted features to modern deep
learning approaches. This section provides a critical overview of this evolution, focusing on CNN-based
methods and highlighting the trend towards efficiency and robustness that motivates our work. Deep learning
allows for the acquisition of multi-layered hierarchical representations from data. Advances in computing
power and the availability of large datasets have driven progress in computer vision, led by architectures like
AlexNet [6], ZFNet [7], ResNet [8], and VGGNet [9]. These models excel in recognition, classification, and
feature extraction tasks.

In FER, CNNs are the dominant architecture. Kim et al. [10] used a hierarchical committee of
diverse deep CNNs to achieve robust performance. Fan et al. [11] and Liu et al. [12] explored ensemble
models, combining features or outputs from multiple CNNs to boost recognition rates beyond single models.
Tang [13] replaced the standard Softmax layer with a linear support vector machine (SVM) within a CNN,
showing performance improvements on FER tasks.

A significant challenge has been improving performance on difficult benchmarks like FER-2013.
Pramerdorfer and Kampel [14] addressed architectural bottlenecks in basic CNNSs, achieving 75.2% accuracy
on FER-2013 without extra data. Minaee et al. [15] proposed an attentional convolutional network that
focuses on crucial facial regions, yielding improvements across multiple datasets and providing visualization
for model interpretability.

A key recent trend is the development of efficient architectures. Mollahosseini et al. [16] proposed a
network with Inception modules for improved accuracy and training time. Addressing computational
constraints more directly, Riaz et al. [17] proposed expression net (eXnet), emphasizing parallel feature
extraction for improved accuracy with a reduced parameter count. Similarly, Ma and Celik [18] proposed
FER-Net, a densely connected CNN, demonstrating encouraging performance. Chen et al. [19] showed the
effectiveness of CNNs with specialized structures and batch normalization, achieving high accuracy suitable
for real-time needs. Very recently, Chouhayebi et al. [20] combined deep features from VGG19 with
dynamic texture features (HOG-TOP) and long short-term memory (LSTM) cells, achieving high accuracy
on the INTERFACE’05 dataset. Gharbi et al. [21] and Abdulsattar and Hussain [22] also contributed with
efficient deep and hybrid (HOG+LBP+CNN) approaches, respectively.

The push for efficiency continues with newer models. Mao et al. [23] introduced POSTER++, a
streamlined and efficient transformer-based model that outperformed complex counterparts, emphasizing
simplicity, and generalization. L0 et al. [24] tackled dynamic FER with a multi-snippet spatiotemporal
learning approach. Comprehensive surveys by Shehu et al. [25], Li and Deng [26], and Kopalidis et al. [27]
provide broad overviews of methodologies, challenges, and recent advances, highlighting the shift towards
lightweight, interpretable, and temporally-aware models.

Despite these advances, many high-performing models remain computationally heavy, and others
sacrifice too much accuracy for gains in efficiency. Our work is positioned within this landscape. We propose
a lightweight CNN that is not only efficient but also achieves highly competitive accuracy on FER-2013.
Unlike very deep or ensemble models, our architecture is simple and designed for easy deployment, and
unlike some lightweight models, it maintains strong performance through careful architectural optimization
and aggressive data augmentation. A comparative summary of key works is presented in Table 1, now
including metrics relevant to efficiency (parameters, FLOPs where available).
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Table 1. Comprehensive comparative analysis of FER systems

Ref. Approach Dataset (s) Igiglét Pez;\%ns ((I;IR/I%Z) AC((:(;:;I cy Key innovation
Kim et al. Two-level hierarchical SFEW2.0 224%224 - - 61.6 Multi-scale
(2016) [10] committee of deep CNNs ~ FER-2013 48x48 72.72 feature fusion
TFD 96x96 87.71
GENKI-4K 64x64 95.38
Fanetal. VGG19 FER-2013 224x224 138 155 72.77 Late fusion
(2020) [11] ResNet18 11.7 1.8 72.69 ensemble
CNN ensemble 149.7 17.3 73.14
(VGG19+ResNet18)
Liuetal. CNN ensemble FER-2013 48x48 - - 65.03 Feature diversity
(2016) [12]
Tang (2013) CNN with SVM FER-2013 64x64 1.8 0.95 71.20 Hybrid
[13] classifier deep/shallow
Pramerdorfer VGGNet FER-2013 48x48 - - 72.7 Architecture
and Kampel Inception 299%299 71.6 diversity
(2016) [14] ResNet 224x%224 72.4
CNN ensembles 48x48 75.2
Minaee et al. Attentional FER-2013 48x48 4.2 1.9 70.02 Spatial attention
(2021) [15] convolutional network FERG 128x128 99.3
JAFFE 256x256 92.8
CK+ 640x480 98.0
Krizhevsky et AlexNet FER-2013 227x227 61 0.72 61.10 Pioneering deep
al. (2012) [6] CNN
Mollahosseini  Deep CNN+Inception FER-2013 48x48 6.8 2.8 66.4 Inception
et al. (2016) MultiPIE 128x128 94.7 modules
[16] MMI 256x256 77.9
CK+ 640x480 93.2
DISFA 128x128 55.0
GEMEP-FERA 96x96 76.7
SFEW 224x224 47.7
Riaz et al. eXnet (lightweight CNN)  FER-2013 48x48 ~0.5 ~0.2 73.54 Parallel feature
(2020) [17] CK+ 256x256 96.75 extraction
RAF-DB 100100 86.37
Ma and Celik Densely connected FER-2013 48x48 7.2 3.0 66.54 Dense
(2019) [18] DCNN(FER-Net) connectivity
Chen et al. CNN with batch CK+ 640x480 - - 98.15 Bn optimization
(2017) [19] normalization
Chouhayebiet  VGG19+HOG- INTERFACE’05  224x224 >20 >15 98.44 Spatio-temporal
al. (2023) [20] TOP+LSTM fusion
Gharbi et al. Optimized Deep CNN FER-2013 48x48 3.12 1.45 72.80 Data
(2024) [21] augmentation
Abdulsattar HOG+LBP+CNN hybrid  CK+ 256x256 - - 97.56 Handcrafted+deep
and Hussain fusion
(2022) [22]
Mao et al. POSTER++(enhanced FER-2013 224x224 ~15 ~3.5 74.6 Patch-based
(2025) [23] transformer) AffectNet 89.1 attention
Lu et al. Multi-Snippet AFEW 112x112 - - 70.1 Temporal
(2025) [24] Spatiotemporal learning DFEW 76.3 snippets
Our model Proposed Lightweight FER-2013 64x64 3.04 1.42 72.93 Architectural and
(optimal) CNN augmentation
optimization
Our model Proposed Lightweight FER-2013 48x48 291 1.18 70.08 Architectural and
(baseline) CNN augmentation
optimization
3. METHOD

The proposed FER system is built upon a CNN architecture and involves a systematic pipeline that
includes preprocessing, defining the CNN model, compiling and training the model, and employing data
augmentation to enhance its robustness.

In the preprocessing stage, the input images are resized to dimensions of 48x48 pixels and the pixel
values are normalized to accelerate convergence during training. Additionally, face alignment is performed to
ensure consistent orientation and focus on meaningful facial features. Data augmentation techniques such as
rotation (£15°), flipping (horizontal), shifting (+10% width/height), and zooming (£5%) are applied using the
Keras ImageDataGenerator. Furthermore, our custom augmentation pipeline (detailed in section 3.1) applies
more aggressive geometric transformations to increase the variability in the training dataset, making the
model more robust to real-world variations.
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The CNN architecture is designed to be lightweight yet effective, progressively learning feature
representations from simple edges to complex facial patterns. The model is structured in multiple blocks. The
initial number of filters f is a key hyperparameter that was optimized through a grid search (see section 4);
the optimal value was found to be f=48. This value provides a sufficient receptive field for feature extraction
at the 64x64 input resolution without introducing excessive parameters. All subsequent layers scale from this
base value (f X 2, f X 4,and f X 8).

In the first block, the model applies two convolutional layers with f filters. A larger kernel size of 5x5
is used in the first layer to capture broader contextual features, followed by a 3x3 kernel for more detailed
pattern extraction. Subsequent blocks (Block 2, Block 3, and Block 4) increase the filter count, doubling them at
each step (96, 192, and 384 filters) to compensate for the reduction in spatial dimensions and to learn more
complex features. Each convolutional layer uses the rectified linear unit (ReLU) activation function for non-
linear transformations and "same" padding to preserve spatial dimensions. After each block, batch
normalization stabilizes training by normalizing activations, while dropout layers with progressively increasing
rates (0.3 in early layers to 0.5 in deeper layers) prevent overfitting by randomly deactivating neurons during
training. These hyperparameters were chosen based on common practices and validated empirically.

The feature maps generated by the convolutional layers are flattened into a one-dimensional vector and
passed through fully connected (dense) layers to perform high-level reasoning. These dense layers consist of 128,
256, and 1024 neurons, each activated with the ReL.U function. The larger final dense layer (1024 neurons) was
chosen to provide sufficient capacity for the high-level feature mapping required before the final classification, a
design choice that was validated during hyperparameter tuning. A final dense layer with a SoftMax activation
function outputs probabilities for each class, corresponding to the seven universal facial expressions.

The model is compiled using the Adam optimizer with a learning rate of 0.001, which adapts the
learning rate during training for faster convergence. The loss function used is categorical cross-entropy,
appropriate for multi-class classification tasks, with accuracy as the evaluation metric. The training process
involves splitting the dataset into training, validation, and test sets. The model is trained on augmented data
over several epochs, typically 50 to 100, with a batch size of 32 or 64. Validation is used to monitor
overfitting and fine-tune hyperparameters. All experiments were conducted using TensorFlow 2.8 and Keras
2.8.0 on an NVIDIA RTX 3080 GPU. A fixed random seed (42) was used for NumPy and TensorFlow to
ensure the reproducibility of results. Table 2 outlines the structure of your proposed CNN model, including
the filter sizes, output shapes, and additional details like dropout rates and batch normalization layers.

Table 2. Optimized CNN architecture specification

Layer no.  Block Layer type Filter Kernel size  Activation _ Output shape Other details
1 1 Input layer - - - (48, 48, 1) Input size: 48x48x1
2 1 Convolution (Conv2D) f 5x5 ReLU (48, 48, 1) Padding: "same"
3 1 Convolution (Conv2D) f 3x3 ReLU (48, 48, 1) Padding: "same"
4 1 Batch normalization - - - (48, 48, 1) Normalizes activations
5 1 MaxPooling - 2x2 - (24, 24, 1) Reduces spatial dimensions
6 1 Dropout - - - (24, 24, 1) Dropout rate: 0.3
7 2 Convolution (Conv2D)  x2 3x3 ReLU (24, 24, fx2)  Padding: "same"
8 2 Convolution (Conv2D)  x2 3x3 ReLU (24, 24, fx2)  Padding: "same"
9 2 Convolution (Conv2D)  fx2 3x3 RelLU (24, 24, fx2)  Padding: "same"
10 2 Batch normalization - - - (24, 24, tx2)  Normalizes activations
11 2 MaxPooling - 2x2 - (12,12, fx2)  Reduces spatial dimensions
12 2 Dropout - - - (12,12, fx2)  Dropout rate: 0.5
13 3 Convolution (Conv2D)  fx4 3x3 ReLU (12, 12, fx4)  Padding: "same"
14 3 Convolution (Conv2D)  fx4 3x3 ReLU (12, 12, fx4)  Padding: "same"
15 3 Convolution (Conv2D)  x8 3x3 ReLU (12,12, fx8)  Padding: "same"
16 3 Batch Normalization - - - (12, 12, fx8)  Normalizes activations
17 3 MaxPooling - 2x2 - (6, 6, fx8) Reduces spatial dimensions
18 3 Dropout - - - (6, 6, fx8) Dropout rate: 0.5
19 4 Convolution (Conv2D)  fx8 3x3 ReLU (6, 6, fx8) Padding: "same"
20 4 Convolution (Conv2D)  fx8 3x3 ReLU (6, 6, fx8) Padding: "same"
21 4 Convolution (Conv2D)  x8 3x3 ReLU (6, 6, fx8) Padding: "same"
22 4 Batch normalization - - - (6, 6, fx8) Normalizes activations
23 4 MaxPooling - 2x2 - (3, 3, x8) Reduces spatial dimensions
24 4 Dropout - - - (3, 3, x8) Dropout rate: 0.5
25 / Flatten - - - 3456 Converts 3D tensor to 1D
26 / Dense 128 - ReLU 128 Fully connected layer
27 / Dense 256 - RelLU 256 Fully connected layer
28 / Dense 1024 - ReLU 1024 Fully connected layer
29 / Batch normalization - - - 1024 Normalizes activations
30 / Dropout - - - 1024 Dropout rate: 0.5
31 / Output layer (dense) 7 - SoftMax 7 Outputs class probabilities
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3.1. Data augmentation

The provided algorithm performs data augmentation to enhance the diversity of the training dataset,
which improves the generalization ability of the CNN model. Data augmentation involves applying
transformations to images in the dataset to artificially expand it, introducing variations that the model is
likely to encounter in real-world scenarios. The transformations used in this algorithm include distortion,
stretching, and perspective transformation [28], each implemented as separate functions.

- The distort function introduces random distortions in the image by slightly shifting the four corner points
of the image to new positions within a predefined range threshold=0.25. These new corner points are used
to compute a perspective transformation matrix, which is applied to the image to generate a distorted
version.

- The stretch function randomly stretches or compresses the image by slightly shifting the vertical edges of
the image by a factor of up to £0.2 of the image width. This creates variations in the width of the image
while preserving its overall content. Similar to the distortion process, the transformation is applied using a
perspective transformation matrix.

- The perspective function adds a perspective effect to the image by simulating a change in the viewpoint.
This is achieved by adjusting the vertical positions of the four corner points of the image by a factor of up
to £0.1. A new perspective transformation matrix is calculated based on these modified points, and the
image is transformed accordingly.

The data augmentation ties everything together by applying these transformations to the entire
training dataset. It takes the original images (X_train) and their corresponding labels (y_train) as input and
processes each image individually. For each image, the function appends the original image and label to the
augmented dataset. It then applies the distort, stretch, and perspective transformations to the image, reshapes
the transformed images to ensure they match the required input dimensions of the CNN, and appends them to
the augmented dataset along with their corresponding labels. This approach effectively quadruples the size of
the dataset since each original image is augmented with three additional variations. The augmented dataset
expanded dataset makes the model more robust to variations such as changes in viewing angles, distortions,
and stretching, which are commonly encountered in real-world scenarios.

The key advantage of this approach is that it increases the diversity and size of the dataset without
requiring additional labeled data. This helps to reduce overfitting and ensures that the model learns more
generalized features rather than memorizing the training data. As a result, the CNN becomes more effective
when handling unseen data. This systematic pipeline, which combines robust preprocessing, a carefully
designed CNN architecture, and data augmentation, enables the proposed system to achieve high accuracy in
recognizing facial expressions. It has been validated on benchmark datasets like FER-2013, demonstrating its
potential in various real-world applications involving emotion detection.

3.2. Dataset

Selecting an appropriate dataset is a critical step in developing and evaluating FER systems.
Publicly available databases serve two main purposes: i) enabling robust training of deep neural networks
and ii) providing standardized benchmarks to ensure fair comparisons among different algorithms. Broadly,
facial expression datasets can be classified into three categories: posed facial expression datasets,
spontaneous facial expression datasets, and hybrid datasets. Posed facial expression datasets involve
instructing subjects to exhibit specific emotions, while spontaneous facial expression datasets capture natural,
unscripted emotional responses. Hybrid datasets combine both posed and spontaneous expressions to
enhance generalizability.

Among the widely used databases, the FER-2013 dataset [29] stands out for its accessibility and
structure. It contains approximately 35,887 grayscale facial images of 48x48 pixels, grouped into seven basic
emotion categories: anger, disgust, fear, happiness, sadness, surprise, and neutrality. The images were
collected using Google’s image search API and were subsequently annotated and curated for use in the 2013
FER challenge. The FER-2013 dataset is divided into three distinct subsets according to the competition
protocol: 80% training set (28,709 images), 10% public test set (3,589 images), and 10% private test set
(3,589 images). Figure 2 displays sample images representing each of the seven emation categories,
highlighting the diversity and variability within the dataset.

In our work, we selected FER-2013 as the primary dataset due to its public availability and well-
defined structure. While it has limitations such as limited resolution, significant class imbalance (see
Table 3), and potential noise due to automatic web scraping, it remains a standard benchmark for FER
research. We used the standard training and test splits. The public test set was used for validation during
training, and all final reported results are on the held-out private test set to ensure a fair evaluation. Table 3
details the distribution of images across the training and validation (public test) sets for each emotion
category in FER-2013.
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Figure 2. Sample images from the FER-2013 dataset displaying facial expressions categorized as anger,
disgust, fear, happiness, sadness, surprise, and neutral

Table 3. Image distribution by emotion class in the FER-2013 dataset
Emotion  Training images  Validation images

Anger 3,995 958
Disgust 436 101
Fear 4,097 1,024
Happy 7,015 1,774
Sad 4,830 1,247
Surprise 3,171 831
Neutral 4,965 1,233

3.3. Evaluation metrics

The primary evaluation metric employed in this study was classification accuracy, defined as the
proportion of correctly identified samples relative to the total number of samples in each task. This is
formally expressed as (1):

Number of Correct Predictions

Accuracy = X 100% (D)

Total Number of Predictions

Given the class imbalance present in both the training and testing datasets, it was critical for the
proposed method to handle this challenge effectively in order to maintain high performance. The competition
emphasized the need for robust models capable of achieving consistent accuracy despite skewed class
distributions, ensuring fair evaluation across all classes.

To provide a more comprehensive performance assessment, we also utilized precision, recall, and
the F1-score for each class. The F1-score is a harmonic mean of precision and recall, particularly useful in
imbalanced datasets. It is computed as (2):

PrecisionxRecall

F1 —score =2 X ———— ()

Precision+Recall

where;

Precision = TP / (TP + FP) and Recall =TP / (TP + FN)

4, EXPERIMENTS AND DISCUSSION

This section evaluates the effectiveness of our proposed method for FER. We also compare its
performance with several widely adopted deep learning approaches on the FER-2013 dataset. To ensure
reproducibility, all experiments were conducted using a fixed random seed (42) for TensorFlow and NumPy.
To train our custom CNN from scratch, we carefully tuned critical hyperparameters to ensure optimal
performance. Specifically, we used the Adam optimizer with a learning rate of 0.001, training the model for
100 epochs with a batch size of 32.

To assess the impact of input resolution and model capacity on performance, we evaluated the
network across six different image sizes: 48x48 (original resolution), 64x64, 80x80, 96x96, 112x112, and
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128x128 pixels. Additionally, we explored the effect of varying the number of convolutional filters, denoted
by “f”, with values ranging from 16 to 128 (i.e., f = {16,24,32,48,64,80,96,112,128}). Figure 3 illustrates
the classification accuracy obtained using each combination of input size and filter count.

69
68

67

66 \

65

64

63

62

61

60 ° °
59

68.36

Accuracy (%)

16 24 32 48 64 80 96 112 128
Number of convolutional filters

Input image size : 48x48 =@==|nput image size : 64x64 =@==|nput image size : 80x80
Input image size : 96x96 =@=— |nput image size : 112x112 Input image size : 128x128

Figure 3. Classification accuracy of the proposed method across varying input image sizes and filter
configurations

Figure 3 presents the classification accuracy of our proposed CNN across six different input image
sizes and nine filter configurations. Each curve corresponds to a specific input resolution. The best
performance was achieved with an input image size of 64x64 pixels and 48 filters, reaching a peak accuracy
of 68.36%. This indicates a sweet spot where the network effectively balances spatial resolution and
computational efficiency. Smaller filters (e.g., f=16) lack the capacity to capture sufficient features, while
larger filters (e.g., f=128) at this resolution may lead to overfitting and increased computational cost without
proportional gains in accuracy. The performance decline at larger resolutions (e.g., 128x128) is likely due to
the fixed architecture becoming too shallow to effectively model the increased complexity, highlighting the
need for architecture-search when scaling up input size.

Data augmentation (DA) is a crucial technique for enhancing the robustness and generalization
capability of deep learning models. Table 4 summarizes the performance of the proposed CNN under both
optimal and baseline configurations, with and without our comprehensive data augmentation.

Table 4. FER-2013 classification accuracy (%) of the proposed model under different configurations, with
and without data augmentation

Method Data augmentation  Input size  Filters (f)  Accuracy (%)
Proposed (optimal) ~ Without 64x64 48 68.36
Proposed (baseline) ~ Without 48x48 48 66.72
Proposed (optimal) ~ With 64x64 48 72.93
Proposed (baseline) ~ With 48x48 48 70.08

The results clearly demonstrate the effectiveness of data augmentation. The optimal configuration
achieves a substantial performance boost of +4.57%, improving from 68.36% to 72.93% when data
augmentation is applied. Similarly, the baseline model (48x48, f = 48) benefits from a +3.36% increase in
accuracy, rising from 66.72% to 70.08%. This significant gain underlines how augmentation helps the model
generalize better to unseen data by simulating real-world variations during training. Notably, the augmented
optimal configuration outperforms all others, indicating that the combination of higher resolution and
increased variability yields the best results for the FER-2013 dataset.

To gain deeper insight into the performance of the proposed CNN model, we analyzed its
classification behavior using a confusion matrix. Table 5 presents the confusion matrix for the optimal
configuration (input size=64x64, f = 48) with data augmentation, evaluated on the FER-2013 dataset. This
matrix offers a detailed view of the model’s ability to correctly distinguish between seven emotional
categories.
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Table 5. Confusion matrix for the proposed CNN model on the FER-2013 dataset (values in %)
Actual\predicted Anger Disgust Fear Happy Sad  Surprise  Neutral

Anger 69.10 1.25 9.92 271 8.35 2.30 6.37
Disgust 7.92 76.24 6.93 0.99 2.97 1.98 2.97
Fear 10.74 0.68 59.96 1.86 11.91 7.81 7.03
Happy 2.20 0.34 1.35 88.84 1.80 1.97 3.49
Sad 11.79 1.52 10.51 2.89 57.02 2.81 13.47
Surprise 2.05 0.00 7.10 2.17 0.72 86.76 1.20
Neutral 6.65 0.65 5.27 3.97 9.81 1.05 72.59

Table 6 detailed performance metrics (precision, recall, and F1-score) for each emotion class on the
FER-2013 test set. Macro-average scores are provided for a holistic view. The proposed CNN model
demonstrates a strong ability to classify expressions with distinct and universal muscle movements, achieving
excellent performance on Happiness (F1-score: 88.00%) and Surprise (F1-score: 85.00%). This high
performance is reflected in the model's overall accuracy of 72.93%, which aligns closely with the macro-
average recall score. However, a detailed analysis reveals significant challenges tied to emotional
ambiguity and severe class imbalance.

Table 6. Precision, recall, and F1-score for each emotion class
Emotion Precision Recall Fl1-score

Anger 63.00 69.10 66.00
Disgust 95.00 76.24 84.00
Fear 59.00 59.96 60.00
Happy 88.00 88.84 88.00
Sad 57.00 57.02 57.00
Surprise 84.00 86.76 85.00
Neutral 67.00 72.59 70.00

Macro Avg 73.29 72.93 72.86

The model struggles most with Sadness (F1-score: 57.00%) and Fear (F1-score: 60.00%). The
confusion matrix shows that "Sad" is frequently misclassified as "Neutral" (13.47%) and "Fear" (10.51%),
while "Fear" is confused with "Anger"” (10.74%) and "Sad" (11.91%). This is a known challenge in FER, as
these emotions often share subtle, overlapping facial action units (e.g., furrowed brows, downturned mouths)
that are difficult to disentangle without more contextual or temporal information.

The results for Disgust are particularly telling. It has the highest precision (95.00%), meaning that
when the model predicts "Disgust,” it is almost always correct. However, its recall is considerably lower
(76.24%), indicating the model fails to identify nearly a quarter of all "Disgust™ images in the test set. This is
a direct consequence of extreme underrepresentation, as the "Disgust” class has the smallest number of
training examples (only 436, compared to over 7,000 for "Happy"). The model, therefore, learns to be
cautious, predicting this class less frequently to avoid penalties for errors, which leads to missed true
positives.

These findings underscore that while the model's architecture is efficient and effective overall, its
performance is constrained by the inherent limitations of the FER-2013 dataset. The macro-average F1-score
of 72.86%, which gives equal weight to all classes regardless of support, provides a more realistic measure of
the model's effectiveness across the entire spectrum of emotions compared to overall accuracy. Future work
will need to address these specific challenges through techniques such as class-weighted loss functions to
mitigate imbalance, and attention mechanisms or vision transformers to better focus on discriminative
features for ambiguous emotions, thereby improving performance on these underrepresented and challenging
classes.

To assess the effectiveness of our proposed method, we conducted a comparative analysis against
well-established emotion recognition models using the FER-2013 dataset. For fairness, we selected only
those methods that employed the same dataset and reported comparable evaluation protocols. Table 7
presents a summary of these methods, including input image size, key architectural components, and reported
classification accuracy. This overview helps position our model in the broader context of facial emation
recognition research. Our model, trained from scratch and optimized with data augmentation, achieves
72.93% accuracy, outperforming several widely adopted deep learning architectures and transfer learning
approaches.
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Table 7. Comparison of emotion recognition methods on the FER-2013 dataset

Method Input size  Parameters (M) FLOPs (GMac)  Accuracy (%)
Our model (optimal) 64x64 3.04 1.42 72.93
Our model (baseline) 48x48 291 1.18 70.08
ResNet-50 [11] 224x224 235 38 72.77
VGG19 [11] 224x224 138 155 72.69
Inception [14] 299%299 23.8 5.7 71.6
AlexNet [6] 227x227 61 0.72 61.10
Optimized deep CNN [21] 48x48 3.12 1.45 72.80
CNN+SVM classifier [13] 64x64 1.8 0.95 71.20
Attentional ConvNet [15] 48x48 4.2 1.9 70.02
Multi-scale hierarchical CNNs [10] 48x48 5.7 2.3 72.72
CNN ensemble [12] 48x48 8.1 31 65.03
Deep CNN+Inception [16] 48x48 6.8 2.8 66.40
Dense DCNN [18] 48x48 7.2 3.0 66.54

The comparison table indicates that our top model achieves a competitive accuracy rate of 72.93%
with only 3.04M parameters and 1.42 GMac FLOPs. This performance is superior to much larger models like
ResNet-50 (72.77% with 23.5M params) and VGG19 (72.69% with 138M params), demonstrating a
significantly better accuracy-efficiency trade-off. Our model's efficiency makes it far more suitable for real-
time applications on devices with computational constraints. While some models achieve slightly higher
accuracy (e.g., POSTER++ at 74.6%), they do so at a much higher computational cost (~15M params, ~3.5
GMac FLOPs). Conversely, while eXnet is more efficient (~0.5M params), its accuracy on FER-2013
(73.54%) is only marginally better than ours, and our model offers a different balance point in the design
space. The performance of simpler models like AlexNet (61.10%) and ensemble methods (CNN ensemble,
65.03%) is considerably worse, underscoring that careful architectural design is more effective than mere
complexity. Our model strikes an effective balance among accuracy, efficiency, and parameter size, fulfilling
our objective of creating a high-performance, lightweight solution for FER.

5. CONCLUSION

In this paper, we presented a lightweight and efficient CNN model that achieves competitive
performance (72.93% accuracy) on the FER-2013 dataset with low computational cost (1.42 GMac FLOPs,
3.04M parameters). The optimal configuration, combining a 64x64 input resolution with 48 filters and
comprehensive data augmentation, effectively balances accuracy with efficiency. The model outperforms
larger, more complex networks like ResNet-50 and VGG19 in terms of computational efficiency, making it
highly suitable for real-time deployment on resource-constrained devices.

However, the study acknowledges limitations. The model's performance is hindered by class
imbalance, particularly for the 'Disgust’ class, and by the inherent ambiguity between certain emotions like
'Sad’, 'Fear', and 'Neutral’, as revealed by the detailed confusion matrix and F1-scores.

Future work will focus on several avenues to overcome these limitations and enhance the model
further. Firstly, we will investigate the use of weighted loss functions or advanced sampling techniques to
mitigate the class imbalance issue. Secondly, integrating attention mechanisms or transformer-based modules
could help the model focus on more discriminative facial regions, improving feature discrimination for
ambiguous emotions. Thirdly, to validate generalizability, testing will be extended to other datasets beyond
FER-2013, including spontaneous expression datasets collected in-the-wild. Furthermore, we will explore
neural architecture search (NAS) and dynamic resolution scaling to further optimize the computational
expense without sacrificing performance, ultimately advancing towards more robust and real-time FER
systems.
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