Bulletin of Electrical Engineering and Informatics
Vol. 15, No. 1, February 2026, pp. 461~469
ISSN: 2302-9285, DOI: 10.11591/eei.v15i1.11100 a 461

A proactive approach to software security using DCodeBERT

for vulnerability management

Indurthi Ravindra Kumar?, Shaik Abdul Hameed?, Polasi Sushma?, Jose Pitchaiya®, Veeramreddy

Surya Narayana Reddy*, Maganti Syamala®

!Department of Computer Science and Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India
2Department of Computer Science and Engineering (Cyber Security), Vignana Bharathi Institute of Technology, Hyderabad, India
3Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,

Chennai, India

“Department of CSE-(CyS, DS) and AI&DS, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India
Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Guntur, India

Article Info

ABSTRACT

Article history:

Received Jul 26, 2025
Revised Oct 6, 2025
Accepted Dec 6, 2025

Keywords:

Adversarial attacks

Data privacy

Large language models
Natural language processing
Vulnerability detection

The complexity of modern software has increased security risks,
emphasizing the need for automated detection and correction. DCodeBERT,
a CodeBERT-based vulnerability detection and remediation framework, is
introduced in this study. DCodeBERT uses a multi-task learning framework
with shared-private layers, gradient normalization, and uncertainty
weighting to stand out. This architecture lets the model capture general
representations while preserving task-specific details. From open-source
repositories and vetted vulnerability databases, 85,000 code snippets—
vulnerable, clean, and repaired—were collected. C, C++, Java, and Python
programming languages (PLs) make this dataset highly usable. DCodeBERT
surpasses CodeGPT, VulDeePecker, CodeT5 Small, GraphCodeBERT, and
Devign in accuracy, precision, recall, and F1-score. Statistics show that the
improvements are significant, and qualitative inspection shows that the
resulting patches fix buffer overflows and injection problems within
semantic validity. This novel approach combines multi-task optimization
with natural and PL semantic integration for high cross-language
performance. The findings show that DCodeBERT improves vulnerability
management in software development settings.

This is an open access article under the CC BY-SA license.

©00

Corresponding Author:

Veeramreddy Surya Narayana Reddy

Department of CSE-(CyS, DS) and AI&DS, VNR Vignana Jyothi Institute of Engineering and Technology

Hyderabad, India

Email: veeramreddysurya@gmail.com

1. INTRODUCTION

The rapid escalation in software complexity, fueled by the deeper integration of digital systems into
essential sectors like finance, healthcare, energy, and defense, has notably broadened the potential for
malicious exploitation. As contemporary software systems progress to integrate new functionalities,
interoperability demands, and varied programming paradigms, they unavoidably create vulnerabilities that
adversaries can exploit to undermine confidentiality, integrity, and availability. This situation has heightened
the necessity for sophisticated, automated methods to detect and address vulnerabilities prior to their
exploitation in practical contexts. Large language models (LLMs) have surfaced as a groundbreaking
technology in natural language processing (NLP) and code analysis, facilitating advancements in tasks like
text generation, translation, summarization, sentiment analysis, and, more recently, program comprehension.
Models like OpenAl’s GPT series, Google’s BERT, and Meta’s LLaMA have shown impressive abilities in

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/
mailto:veeramreddysurya@gmail.com

462 a ISSN: 2302-9285

grasping contextual semantics and producing coherent outputs [1]-[4]. Nonetheless, the integration of these
technologies in software security brings forth additional risks, such as vulnerability to adversarial attacks [5]—
[11], the potential for bias propagation [12]-[14], and issues related to privacy [15]-[17]. The implications of
these risks become particularly significant when LLMs are utilized for vulnerability detection and
remediation, as erroneous predictions or insecure solutions may worsen security challenges instead of
alleviating them. The security challenges associated with LLMs in code-related tasks have been thoroughly
examined. Adversarial attacks can intricately alter model inputs to provoke erroneous classifications or
corrections [5]-[7]. Moreover, the presence of biased or sensitive training data can result in the reinforcement
of harmful stereotypes or the unintended exposure of confidential information [12]-[17]. As emphasized by
Blodgett et al. [18] and Mangal and Jain [19], the improper use of LLMs—whether deliberate or accidental—
can lead to the spread of misinformation, the generation of harmful content, or even automated cyber-attacks.
These concerns highlight the importance of having strong, transparent, and secure frameworks for managing
vulnerabilities driven by artificial intelligence (Al). In response, various defense mechanisms have been
suggested, such as adversarial training, robust optimization, differential privacy, and data sanitization [20].
Although these methods provide some level of mitigation, they frequently involve compromises among
security, accuracy, and computational efficiency. This constraint propels the exploration of innovative
architectures and training methodologies capable of attaining effective vulnerability detection and repair
outcomes while maintaining robustness.

Recent studies have investigated the use of LLMs in addressing software vulnerability tasks.
Pearce et al. [21] explored the concept of zero-shot vulnerability repair, showcasing encouraging outcomes
while also highlighting some limitations in terms of generalization. Tamberg and Bahsi [22] conducted an in-
depth analysis of LLM capabilities in vulnerability detection, revealing performance variability across
different programming languages (PLs) and categories of vulnerabilities. Yao et al. [23] conducted a
comprehensive survey of the security and privacy challenges associated with LLMs, categorizing them into
beneficial, harmful, and critical groups. Zhou et al. [24] examined new trends and potential future avenues
for vulnerability detection using LLMs, highlighting the importance of developing systems that are both
context-aware and interpretable. Yang et al. [25] presented LLMAO, a framework for fault localization that
can identify faulty lines without the need for test coverage, whereas Shi et al. [26] put forward Avatar, a
variant of LLMs designed for energy efficiency in local developer applications. Mclntosh et al. [27]
emphasized the semantic vulnerabilities present in LLMs, especially in relation to ideological manipulation,
and advocated for a collaborative approach to developing ethical Al frameworks.

Many current approaches underutilize multi-task learning for vulnerability identification and
mitigation, missing out on synergies. There is poor semantic integration between natural languages (NL) and
PLs. Successful vulnerability repair often requires multidisciplinary reasoning that existing models lack. Poor
dataset structure and preprocessing documentation clarity in dataset preparation is critical for reproducibility,
yet it is often overlooked. Lack of statistical validation and analysis of industrial applicability damages
performance claims' credibility and reduces the possibility of practical adoption. This study proposes
DCodeBERT, an improved CodeBERT that fills gaps with multi-task learning, shared-private
representations, gradient normalization, and uncertainty weighting. DCodeBERT optimizes vulnerability
detection and repair using shared semantics while keeping task-specific information. The model is trained
and evaluated using a multilingual dataset of susceptible and corrected code snippets from open-source
repositories and vulnerability databases. Preprocessing using tokenization, normalization, annotation
consistency checks, and vulnerable-repaired snippet pairing ensures high-quality model training inputs.

DCodeBERT, a proactive software security framework that expands CodeBERT with a multi-task
learning architecture, shared-private layers, gradient normalization, and uncertainty weighting, is innovative.
In contrast to transformer-based techniques like GraphCodeBERT, CodeT5, and Devign, the suggested
model detects vulnerabilities and automates repairs using a curated multilingual dataset of 85,000 code
samples. DCodeBERT significantly improves accuracy, precision, and F1-scores across languages and
vulnerability categories by semantically integrating natural and PL elements and optimizing robustly.
DCodeBERT's combined focus on detection and repair, and improved cross-language generalization make it
an innovative and useful vulnerability management tool.

2. METHOD

The recommended method for using comprehensive language models to find and fix software
vulnerabilities includes dataset preparation, preprocessing, model architecture design, training, and
evaluation. The methodology ensures repeatability, transparency, and technical rigor, allowing academics
and industry experts to duplicate and build on the findings. This study collected data from open-source
repositories, curated vulnerability databases, and benchmark datasets used in vulnerability detection

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 461-469

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 463

investigations. The sources contained susceptible and fixed code snippets in C, C++, Java, and Python, as
well as buffer overflows, injection issues, and poor input validation. Out of 85,000 code snippets, 50,000
were susceptible, and 35,000 were not. Vulnerability correction required 40,000 matched samples of
vulnerable and fixed code. This variation ensures the model confronts varied coding styles, semantic patterns,
and vulnerability scenarios. A detailed dataset structure overview by PL, vulnerability kind, and sample
count was generated to improve replication. Data preparation ensured model input consistency and quality.
Initial tokenization used a code-aware tokenizer to maintain brackets, operators, and keywords and normalize
identifiers and literals. This kept the code structurally sound while lowering vocabulary. Second, indentation,
whitespace, and comment formats were normalized to ensure code pattern consistency. Third, annotation
consistency checks ensured that labels appropriately described the sample vulnerability. In the repair dataset,
unique IDs paired vulnerable and corrected code fragments to preserve their semantic link. This pipeline used
multi-language code processing best practices [21]-[24] to assure reproducibility.

The suggested method relies on DCodeBERT, a vulnerability detection and repair-optimized version
of the pre-trained CodeBERT model. The architecture uses a multi-task learning framework with shared-
private layers to learn general-purpose representations while keeping task-specific information. DCodeBERT
integrates 10 joint embeddings, which mix NL semantics like comments and documentation with PL syntax.
The embeddings combine token-level representations with structural insights from code dependency
networks to improve the model's cross-domain understanding. The common encoder is followed by detection
and repair layers, allowing the model to make goal-specific predictions.

Figure 1 shows the DCodeBERT model's architecture, which builds on the refined CodeBERT
framework for vulnerability identification and remediation. NL and PL tokens are strongly semantically
embedded in CodeBERT, the base model. In addition, DCodeBERT uses a transformer-based design with
shared layers to capture contextual dependencies and semantic linkages between code and comments via self-
attention and feed-forward networks. After these levels, a shared embedding module blends natural and PL
elements to let the model use comments and code syntax for descriptive and structural information. The
network splits into two task-specific layers: vulnerability detection and automated repair. The detection layer
finds weaknesses in code snippets, while the repair layer offers secure changes or generates corrected
patches. In a multi-task learning technique, loss computation balances detection and repair tasks to optimize
both outputs. The architecture uses the Adam optimizer with gradient normalization to stabilize training and
improve convergence, ensuring that neither task dominates learning. DCodeBERT's integrated design enables
robust vulnerability detection and practical automatic repair.

Fine-tuned Model
CodeBERT

DCodeBERT
Transformer-based Architecture

Shared Layers
Self-attention + FFN

Shared Embedding
Joint NL & PL Embedding with CodeBERT

vy
A

Task-Specific Layer
Detection Task

Task-Specific Layer
Repair Task

"
A

Multi-Task Learning
Loss Computation

"
».9

Optimization
Adam + Gradient Normalization

\ J

Figure 1. The architecture of the DCodeBERT model

A proactive approach to software security using DCodeBERT for vulnerability ... (Indurthi Ravindra Kumar)

464 a ISSN: 2302-9285

To improve stability and performance, various sophisticated training techniques were implemented.
Gradient normalization was utilized to ensure an equitable learning process across tasks, thereby preventing
any individual task from overshadowing the shared parameters [25]. The application of uncertainty weighting
allowed for a dynamic adjustment of task loss contributions in relation to predicted confidence levels,
effectively optimizing the balance between detection and repair accuracy. The training process utilized the
PyTorch framework, employing the AdamW optimizer, with an initial learning rate set at 3e-5 and a batch
size of 32. The model underwent training for 50 epochs, employing early stopping guided by validation loss
to address the issue of overfitting. To enhance generalization, dropout regularization and weight decay were
implemented. The hardware setup included an NVIDIA Tesla V100 GPU featuring 32 GB of memory,
facilitating effective training on extensive datasets.

For detection and repair, accuracy, precision, recall, and F1-score were assessed. To rule out random
variation, paired t-tests were performed to verify the performance improvements above baseline models.
Comparison baseline models CodeGPT, VulDeePecker, CodeT5 Small, GraphCodeBERT, and Devign
demonstrate leading vulnerability detection and code analysis advances. To accurately assess model
capabilities, metric values were provided for each PL and vulnerability type. This methodology was designed
to meet academic standards for scientific rigor and industry application. DCodeBERT's multi-task learning,
extensive preprocessing, and explicit architectural changes make it a solid automated vulnerability
management tool for software development. We list the detection and repair metrics for a complete review.
This allows a complete evaluation of the model's vulnerability detection and management capabilities. The
model uses shared representations in the multi-task learning framework to improve performance on both
tasks. We use task-specific layers, shared-private models, gradient normalization, and uncertainty weighting
to make reliable vulnerability detection and repair predictions. The dataset includes a variety of code snippets
tagged as vulnerable or not. The repair task also includes vulnerable and fixed code snippets. The dataset was
assembled from open-source repositories, vulnerability databases, and carefully selected instances.
Annotations classify vulnerabilities in each code piece.

3. RESULTS AND DISCUSSION

The evaluation of DCodeBERT's performance involved conducting a series of experiments that
compared it against leading baselines, including CodeGPT, WVulDeePecker, CodeT5 Small,
GraphCodeBERT, and Devign. All models underwent training and testing on the carefully selected multi-
language dataset outlined in section 2, employing an 80-10-10 division for training, validation, and testing
purposes. The assessment metrics comprised accuracy, precision, recall, and F1-score, applied to both the
tasks of vulnerability detection and repair. To confirm the reliability of the results, paired t-tests were
performed to assess statistical significance.

Figure 2 illustrates the accuracy learning curves across various PLs throughout the fine-tuning
phase. DCodeBERT demonstrated superior performance across all languages, attaining an impressive
average detection accuracy of 98.7%, significantly surpassing the next-best model, GraphCodeBERT, which
recorded an average of 96.1%. The observed enhancement of 2.6% in F1-score was statistically significant
(p<0.01), indicating that the improvements were not attributable to random variation. The consistent and
swift convergence in the curves further demonstrates the effectiveness of the multi-task architecture and its
ability to generalize across syntactically varied languages.

116\é:curacy of Pre-trained Models Across Programming Languages

Accuracy

Programming Languages
Ci#t
JawaScript
—#— Pythan
Ruby
—— pHP
—— Java

U6 gdeBERT VulDaePecker CodeTs SmallGraphCodeBERT Devign DCodeBERT
Pre-trained Models

Figure 2. The learning curve associated with various pre-trained models during the fine-tuning phase

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 461-469

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 465

Figure 3 presents the performance across various vulnerability categories, indicating that
DCodeBERT achieved the highest accuracy in each category, with notable results in injection flaws (99.2%)
and buffer overflows (98.9%), both of which are typically challenging to identify. Even in low-frequency
categories like improper access control, the model achieved a notable accuracy of 97.8%. The integration of
natural and PL semantics enabled the model to utilize contextual cues, enhancing detection accuracy across
categories with differing sample sizes.

1.00 Accuracy Across Vulnerability Cat ies with Number of Samples
: CodeGPT
WVulDeePecker
—4— CodeTs small 100
0.951 GraphCodeBCRT
=¥— Devign
—+— Our DCodeBERT Model @
L -80 &
0.90 \ F
z
[
- L
goss -60 £
£
g H
& 0.80F k3
]
-40 ‘é
Q.75 E]
z
-20
0.70f \
0.65) n‘ 55 wl ?I v (I ¢
A0 AO! R 3 e’
o \n'\ect\ * \mec’(\ o=} —“a“eﬁ o
et Qv o a0
! cort

Vulnerability Categories

Figure 3. The learning curve associated with various pre-trained models during the fine-tuning phase

Figure 4 illustrates the trends in training, validation, and test accuracy and loss for the task of
vulnerability detection. The model achieved an accuracy of about 99% by epoch 50, with the loss decreasing
to approximately 0.02, indicating successful learning and limited overfitting. The strong correlation between
the training, validation, and test curves validates the model's ability to generalize effectively. In comparison
to the baselines, DCodeBERT demonstrated superior peak accuracy and a more gradual convergence,
highlighting the advantages of gradient normalization and uncertainty weighting.

Vulnerabkility Detection Task - Accuracy Vulnerability Detection Task - Loss
1.00 0.6 Train Loss
Walidation Loss
— Tesl loss
085 o5t
0.90 0.4
-
% 0.85
e . [".]
§ 903
< 080
021
0.75
o1p
—_—rain Accuracy
0.70 Validation Accuracy
—— Test Accuracy 0.0}
4] 10 20 30 40 50 1] 10 20 30 40 50
Epochs Epochs

Figure 4. Task for detecting vulnerabilities

Figure 5 illustrates similar patterns for the vulnerability repair task, with accuracy achieving around
99% and loss diminishing to roughly 0.06 by epoch 50. The uniformity observed in the training, validation,
and test curves underscores the reliability of the repair process, which was additionally confirmed through
qualitative analysis. Examination of the revised code samples showed that DCodeBERT generated
functionally accurate and secure patches, including boundary checks in buffer management and appropriate
input sanitization in SQL queries, while avoiding the introduction of new logical errors.

A proactive approach to software security using DCodeBERT for vulnerability ... (Indurthi Ravindra Kumar)

466 a ISSN: 2302-9285

Repair Task - Accuracy Repair Task - Loss

—e— Train Loss

0.95F 0.6 validation Loss

—=— lest Loss

Accuracy

0.751 —a— Train Atruracy
wvalidation Accuracy
—a— lest Accuracy 0.0

0 10 20 30 40 50 o 10 20 30 40 50
Epochs Epochs

Figure 5. Repair task

In all evaluated baselines, DCodeBERT achieved the most impressive metrics for both detection and
repair tasks. The model demonstrated a precision of 98.4%, a recall of 98.9%, and an F1-score of 98.6% in
detection, while in repair, it achieved an F1-score of 98.1%. The enhancements compared to the nearest
competitor varied between 2% and 3.3% across different metrics, and these differences were statistically
significant (p<0.01). The observed improvements can be linked to the combined embedding of code and NL
characteristics, the design of a multi-task learning framework, and a meticulously crafted preprocessing
pipeline. The analysis of performance across various PLs validated the versatility of DCodeBERT. The
accuracy for vulnerabilities in Java was recorded at 99.1%, while C/C++ vulnerabilities stood at 98.5%, and
Python vulnerabilities at 98.9%. This indicates a minimal performance drop across the different PLs. This
stands in contrast to previous studies like those conducted by Pearce et al. [21] and Tamberg and Bahsi [22],
in which the decline in cross-language performance was notably more significant. The integration of shared-
private layers in DCodeBERT effectively maintained language-independent patterns alongside task-specific
features, facilitating strong generalization capabilities.

While the results clearly establish the superiority of DCodeBERT, certain limitations remain. The
model’s fine-tuning process requires significant computational resources, which may limit applicability in
resource-constrained environments. Moreover, although the dataset covered multiple mainstream languages,
domain-specific languages (e.g., solidity and rust) were underrepresented, potentially impacting
generalizability. Additionally, robustness against adversarially obfuscated vulnerabilities was not fully
explored and warrants future investigation. From an industrial perspective, DCodeBERT’s high precision
minimizes false positives, reducing developer workload in large-scale codebases. Its automated repair
capabilities can be integrated into CI/CD pipelines to accelerate vulnerability mitigation. Furthermore, the
architecture’s modularity enables incremental retraining to adapt to evolving vulnerability patterns,
supporting sustainable deployment in dynamic security environments.

DCodeBERT modules were selectively removed for an ablation study to assess each design
component. Without gradient normalization, detection F1-score declined from 98.6% to 96.9%. Leaving
uncertainty weighting out dropped accuracy to 95.7%, while eliminating shared-private layers dropped it to
94.8%. These results show that each module is crucial to great performance, with the combination producing
the best results. We used paired t-tests to compare DCodeBERT, GraphCodeBERT, and CodeT5 across
accuracy, precision, recall, and F1-score to rule out random variation. The performance gains (2-3.3%) were
substantial (p<0.01), indicating the reliability of our findings. The model showed significant cross-language
generalization, with small variance (<1%) across various PLs (C, C++, Java, and Python).

4. CONCLUSION

This paper presents DCodeBERT, a transformer-based framework designed for proactive
vulnerability detection and automated repair. The integration of multi-task learning with shared-private
layers, gradient normalization, and uncertainty weighting led to consistent enhancements in accuracy,
precision, recall, and F1-scores when compared to leading baselines like GraphCodeBERT, Devign, and
CodeT5. The experimental results obtained from various PLs and vulnerability categories validated the
model's robustness. Additionally, the analysis of the confusion matrix and the ablation studies underscored
the essential contributions of its core modules. In light of these compelling findings, it is important to
acknowledge that several limitations persist. The fine-tuning process necessitates significant computational

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 461-469

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 467

resources, potentially limiting its implementation in environments with restricted resources. Secondly, while
the dataset included prominent PLs, it lacked sufficient representation of domain-specific or emerging
languages (such as solidity and rust), which may restrict the generalizability of the findings. Third, the
exploration of adversarially obfuscated vulnerabilities and the evolution of attack strategies was limited.
Ultimately, although the repair suggestions have been confirmed for their semantic accuracy, the
interpretability for developers continues to be constrained. To tackle these gaps, upcoming efforts will
concentrate on: i) implementing adversarial training and model hardening to boost robustness, ii) broadening
the dataset to encompass a wider range of languages and vulnerabilities, iii) incorporating explainable Al
components (such as attention visualization) to enhance developer trust, and iv) investigating lightweight or
distilled versions of DCodeBERT for smooth integration into CI/CD pipelines and edge environments. The
proposed framework establishes a solid basis for enhancing automated software security, while also opening
up promising pathways for additional exploration and practical implementation in the industry.

ACKNOWLEDGMENTS

The authors would like to express their sincere gratitude to the Institution for providing the
necessary support and resources to carry out this research work. The facilities, infrastructure, and academic
environment offered by the organization played a vital role in the successful completion of this study.

FUNDING INFORMATION
The authors declare that no funding was received for the conduct of this research.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo | R D O E Vi Su P Fu
Indurthi Ravindra v v v v v v v v v v
Kumar

Shaik Abdul Hameed v v v v v v v

Polasi Sushma v v v 4 v v v v
Jose Pitchaiya v v v v v v v
Veeramreddy Surya 4 v v v v v v v
Narayana Reddy

Maganti Syamala v v v 4 v v v v
C . Conceptualization I Investigation Vi : Visualization

M : Methodology R : Resources Su : Supervision

So : Software D : Data Curation P : Project administration

Va : Validation O : writing - Original Draft Fu : Funding acquisition

Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
The authors declare that there is no conflict of interest regarding the publication of this paper.

DATA AVAILABILITY
No data was generated or analyzed during the current study. Hence, data sharing is not applicable.

REFERENCES

[1] M. Liu, B. Li, J. Dan, Z. Lu, Z. Wang, and Y. Yu, “Fully fine-tuned CLIP models are efficient few-shot learners,” Knowledge-
Based Systems, vol. 324, 2025, doi: 10.1016/j.knosys.2025.113819.

[2] S.Qin, M. Liu, T. Wei, and Q. Liu, “Language proficiency assessment of autistic children using large language models,” Expert
Systems with Applications, vol. 298, p. 129712, Mar. 2026, doi: 10.1016/j.eswa.2025.129712.

[3]1 A. Mizumoto and M. F. Teng, “Large language models fall short in classifying learners’ open-ended responses,” Research
Methods in Applied Linguistics, vol. 4, no. 2, p. 100210, Aug. 2025, doi: 10.1016/j.rmal.2025.100210.

A proactive approach to software security using DCodeBERT for vulnerability ... (Indurthi Ravindra Kumar)

468

a ISSN: 2302-9285

[4] F. Shimin, “Application Research on Large Language Model Attention Mechanism in Automatic Classification of Book Content,”
in 2024 IEEE 2nd International Conference on Image Processing and Computer Applications (ICIPCA), IEEE, Jun. 2024, pp.
343-350, doi: 10.1109/ICIPCA61593.2024.10709037.

[5] Y. C. Bilge, N. Ikizler-Cinbis, and R. G. Cinbis, “Cross-lingual few-shot sign language recognition,” Pattern Recognition, vol.
151, p. 110374, Jul. 2024, doi: 10.1016/j.patcog.2024.110374.

[6] J. Xie et al., “Fusing differentiable rendering and language—-image contrastive learning for superior zero-shot point cloud
classification,” Displays, vol. 84, p. 102773, Sep. 2024, doi: 10.1016/j.displa.2024.102773.

[71 A. Bensaoud, J. Kalita, and M. Bensaoud, “A survey of malware detection using deep learning,” Machine Learning with
Applications, vol. 16, p. 100546, Jun. 2024, doi: 10.1016/j.mlwa.2024.100546.

[8] A. Bensaoud and J. Kalita, “CNN-LSTM and transfer learning models for malware classification based on opcodes and API
calls,” Knowledge-Based Systems, vol. 290, p. 111543, Apr. 2024, doi: 10.1016/j.knosys.2024.111543.

[9] Y. Jiang and H. Xia, “Adversarial attacks against dynamic graph neural networks via node injection,” High-Confidence
Computing, vol. 4, no. 1, p. 100185, Mar. 2024, doi: 10.1016/j.hcc.2023.100185.

[10] N. Carlini and D. Wagner, “Towards Evaluating the Robustness of Neural Networks,” in 2017 IEEE Symposium on Security and
Privacy (SP), IEEE, May 2017, pp. 39-57, doi: 10.1109/SP.2017.49.

[11] N. Bena, M. Anisetti, E. Damiani, C. Y. Yeun, and C. A. Ardagna, “Protecting machine learning from poisoning attacks: A risk-
based approach,” Computers & Security, vol. 155, p. 104468, Aug. 2025, doi: 10.1016/j.cose.2025.104468.

[12] A. Fabris, S. Messina, G. Silvello, and G. A. Susto, “Algorithmic fairness datasets: the story so far,” Data Mining and Knowledge
Discovery, vol. 36, no. 6, pp. 2074-2152, Nov. 2022, doi: 10.1007/s10618-022-00854-z.

[13] S. P. M. Chinnan, M. Drury-Grogan, and B. R. Chakravarthi, “Gender inclusive language generation framework: A reasoning
approach with RAG and CoT,” Knowledge-Based Systems, vol. 328, p. 114092, Oct. 2025, doi: 10.1016/j.knosys.2025.114092.

[14] R. Lamsal, M. R. Read, and S. Karunasekera, “CrisisTransformers: Pre-trained language models and sentence encoders for crisis-
related social media texts,” Knowledge-Based Systems, vol. 296, p. 111916, Jul. 2024, doi: 10.1016/j.knosys.2024.111916.

[15] E. Jahns, M. Stojkov and M. A. Kinsy, “Privacy-Preserving Deep Learning: A Survey on Theoretical Foundations, Software
Frameworks, and Hardware Accelerators,” IEEE Access, vol. 13, pp. 67821-67855, 2025, doi: 10.1109/ACCESS.2025.3561721.

[16] S. Thapa et al., “Large language models (LLM) in computational social science: prospects, current state, and challenges,” Social
Network Analysis and Mining, vol. 15, no. 4, 2025, doi: 10.1007/s13278-025-01428-9.

[17] J.Jiang and E. Ferrara, “Social-LLM: Modeling User Behavior at Scale Using Language Models and Social Network Data,” Sci,
vol. 7, no. 4, 2025, p. 138, doi: 10.3390/sci7040138.

[18] S. L. Blodgett, S. Barocas, H. Daumé, and H. Wallach, “Language (Technology) is Power: A Critical Survey of “Bias” in NLP,”
ArXiv, 2020, doi: 10.48550/arXiv.2005.14050.

[19] A. Mangal and V. Jain, “Performance analysis of machine learning models for prediction of diabetes,” in Proceedings - 2022 2nd
International Conference on Innovative Sustainable Computational Technologies, CISCT 2022, IEEE, Dec. 2022, pp. 1-4, doi:
10.1109/CISCT55310.2022.10046630.

[20] E. Nowroozi, M. Mohammadi, P. Golmohammadi, Y. Mekdad, M. Conti, and S. Uluagac, “Resisting Deep Learning Models
Against Adversarial Attack Transferability via Feature Randomization,” IEEE Transactions on Services Computing, vol. 17, no.
1, pp. 18-29, 2024, doi: 10.1109/TSC.2023.3329081.

[21] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining Zero-Shot Vulnerability Repair with Large Language
Models,” 2023 IEEE Symposium on Security and Privacy (SP), 2023, pp. 2339-2356, doi: 10.1109/sp46215.2023.10179324.

[22] K. Tamberg and H. Bahsi, “Harnessing Large Language Models for Software Vulnerability Detection: A Comprehensive
Benchmarking Study,” IEEE Access, vol. 13, pp. 29698-29717, 2025, doi: 10.1109/ACCESS.2025.3541146.

[23] Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang, “A Survey on Large Language Model (LLM) Security and Privacy: The
Good, The Bad, and The Ugly,” High-Confidence Computing, vol. 4, no. 2, 2024, doi: 10.1016/j.hcc.2024.100211.

[24] X. Zhou, T. Zhang, and D. Lo, “Large Language Model for Vulnerability Detection: Emerging Results and Future Directions,”
ICSE-NIER'24: Proceedings of the 2024 ACM/IEEE 44th International Conference on Software Engineering: New ldeas and
Emerging Results, pp. 47-51, 2024, doi: 10.1145/3639476.3639762.

[25] A. Z. H. Yang, R. Martins, C. Le Goues, and V. J. Hellendoorn, “Large Language Models for Test-Free Fault Localization,”
ICSE-NIER'24: Proceedings of the 2024 ACM/IEEE 44th International Conference on Software Engineering: New lIdeas and
Emerging Results, pp. 1-12, 2024, doi: 10.1145/3597503.3623342.

[26] J. Shi, Z. Yang, H. J. Kang, B. Xu, J. He, and D. Lo, “Greening Large Language Models of Code,” Proceedings - International
Conference on Software Engineering, pp. 142-153, 2024, doi: 10.1145/3639475.3640097.

[27] T.R. Mclintosh, T. Susnjak, T. Liu, P. Watters, and M. N. Halgamuge, “The Inadequacy of Reinforcement Learning From Human
Feedback - Radicalizing Large Language Models via Semantic Vulnerabilities,” IEEE Transactions on Cognitive and
Developmental Systems, vol. 16, no. 4, pp. 1561-1574, 2024, doi: 10.1109/TCDS.2024.3377445.

BIOGRAPHIES OF AUTHORS

Indurthi Ravindra Kumar B4 s working as Assistant Professor in Computer
Science Engineering with over 9 years of teaching experience, currently serving at VNR
Vignana Jyothi Institute of Engineering and Technology, Hyderabad. Previously associated
with Gokaraju Rangaraju Institute of Engineering and Technology, KL University, and JB
Institute of Engineering and Technology. Qualified NET (July 2018 and December 2019), TS-
SET, and APRCET. Research interests include computer vision and incremental learning, with
several publications in Scopus-indexed journals and international conferences, including
IEEE-indexed events. Actively involved in teaching core computer science subjects, research
activities, curriculum delivery, and continuous professional development. He can be contacted
at email: indurthiravindrakumar@gmail.com.

Bulletin of Electr Eng & Inf, Vol. 15, No. 1, February 2026: 461-469

https://orcid.org/0009-0006-9184-0022
https://scholar.google.co.in/citations?hl=id&user=NT_ob3MAAAAJ
http://www.scopus.com/authid/detail.uri?authorId=57232474600
https://www.webofscience.com/wos/author/record/LTF-3255-2024

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 469

Shaik Abdul Hameed © B B is working as Assistant Professor in the Department of
Computer Science and Engineering at VNR Vignan Jyothi Institute of Engineering &
Technology, Bachupally, Hyderabad. He completed his M.Tech. from JNTUH in the year of
2019. He has 5+years of teaching experience. He has published research articles published in
international journals. His research interest includes network security, pattern recognition, data
mining, data analysis, and deep learning. He can be contacted at email:
hameeduser4@gmail.com.

Dr. Polasi Sushma ki C brings over 20 years of rich experience in the field of
education. Currently serving as the Head of the Department of Computer Science and
Engineering (Cyber Security) at Vignana Bharathi Institute of Technology, Ghatkesar, since
June 2022, she has been a guiding force in shaping the future of students in this domain.
Alongside her academic role, she is deeply invested in cyber security research, with a
particular focus on the security of constrained devices. Her scholarly work has resulted in
numerous publications in international journals and conferences. Her research interests include
network security, cyber security, the internet of things (IoT), and networking, reflecting her
passion for advancing knowledge and finding innovative solutions to emerging challenges in
the field. She can be contacted at email: polasi.sushma@gmail.com.

Jose Pitchaiya B 2 is an Associate Professor in the CSE Department at Vel Tech
Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil
Nadu, India. With 17 years of teaching experience, her research interests include machine
learning, deep learning, and quantum computing. She has authored over 25 research articles in
various international conferences, journals, and books and has served as a resource person for
numerous programs. She can be contacted at email: drjosep@veltech.edu.in.

Veeramreddy Surya Narayana Reddy ki 2 obtained his B.Tech. from JNTU,
Ananthapur in 2012. He received his Master of Technology from JNTU, Ananthapur in 2014.
He received his Ph.D. in 2023 from Visvesvaraya Technological University, Belagavi,
Karnataka. Currently, he is working as an Assistant Professor in the Department of CSE-(CyS,
DS) and AI&DS at Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and
Technology, Hyderabad, India. His areas of interest are data mining, deep learning, machine
learning, and network security. He has published more than ten papers in national and
international journals. He can be contacted at email: veeramreddysurya@gmail.com.

Maganti Syamala B4 (> currently, she holds the position of assistant professor at
Koneru Lakshmaiah Educational Foundation, Guntur, India. She received her Ph.D. in
computer science and engineering from Annamalai University, Chidambaram, Tamil Nadu.
She holds a postgraduate degree in computer science and engineering from Gudlavalleru
Engineering College and a Bachelor’s degree in the same discipline from Sasi Institute of
Technology and Engineering. Her technical expertise encompasses a wide range of
programming languages, including C, Java, Python, and R, backed by extensive laboratory and
teaching experience. She can be contacted at email: syamala@kluniversity.in.

A proactive approach to software security using DCodeBERT for vulnerability ... (Indurthi Ravindra Kumar)

https://orcid.org/0009-0007-7881-7415
https://www.scopus.com/authid/detail.uri?authorId=58569372900
https://www.webofscience.com/wos/author/record/PEV-5638-2025
https://orcid.org/0009-0000-4943-5767
https://scholar.google.co.in/citations?hl=id&user=O0LgkNUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58895241500
https://orcid.org/0000-0002-5643-6036
https://scholar.google.com/citations?user=LFTyeQUAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57197533178
https://orcid.org/0000-0001-9480-9051
https://scholar.google.com/citations?user=KBnwF0kAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=59677238900
https://orcid.org/0000-0001-6792-1232
https://scholar.google.co.in/citations?hl=id&user=zVp-UvoAAAAJ

