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 The complexity of modern software has increased security risks, 

emphasizing the need for automated detection and correction. DCodeBERT, 

a CodeBERT-based vulnerability detection and remediation framework, is 

introduced in this study. DCodeBERT uses a multi-task learning framework 

with shared-private layers, gradient normalization, and uncertainty 

weighting to stand out. This architecture lets the model capture general 

representations while preserving task-specific details. From open-source 

repositories and vetted vulnerability databases, 85,000 code snippets—

vulnerable, clean, and repaired—were collected. C, C++, Java, and Python 

programming languages (PLs) make this dataset highly usable. DCodeBERT 

surpasses CodeGPT, VulDeePecker, CodeT5 Small, GraphCodeBERT, and 

Devign in accuracy, precision, recall, and F1-score. Statistics show that the 

improvements are significant, and qualitative inspection shows that the 

resulting patches fix buffer overflows and injection problems within 

semantic validity. This novel approach combines multi-task optimization 

with natural and PL semantic integration for high cross-language 

performance. The findings show that DCodeBERT improves vulnerability 

management in software development settings. 
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1. INTRODUCTION 

The rapid escalation in software complexity, fueled by the deeper integration of digital systems into 

essential sectors like finance, healthcare, energy, and defense, has notably broadened the potential for 

malicious exploitation. As contemporary software systems progress to integrate new functionalities, 

interoperability demands, and varied programming paradigms, they unavoidably create vulnerabilities that 

adversaries can exploit to undermine confidentiality, integrity, and availability. This situation has heightened 

the necessity for sophisticated, automated methods to detect and address vulnerabilities prior to their 

exploitation in practical contexts. Large language models (LLMs) have surfaced as a groundbreaking 

technology in natural language processing (NLP) and code analysis, facilitating advancements in tasks like 

text generation, translation, summarization, sentiment analysis, and, more recently, program comprehension. 

Models like OpenAI’s GPT series, Google’s BERT, and Meta’s LLaMA have shown impressive abilities in 

https://creativecommons.org/licenses/by-sa/4.0/
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grasping contextual semantics and producing coherent outputs [1]–[4]. Nonetheless, the integration of these 

technologies in software security brings forth additional risks, such as vulnerability to adversarial attacks [5]–

[11], the potential for bias propagation [12]–[14], and issues related to privacy [15]–[17]. The implications of 

these risks become particularly significant when LLMs are utilized for vulnerability detection and 

remediation, as erroneous predictions or insecure solutions may worsen security challenges instead of 

alleviating them. The security challenges associated with LLMs in code-related tasks have been thoroughly 

examined. Adversarial attacks can intricately alter model inputs to provoke erroneous classifications or 

corrections [5]–[7]. Moreover, the presence of biased or sensitive training data can result in the reinforcement 

of harmful stereotypes or the unintended exposure of confidential information [12]–[17]. As emphasized by 

Blodgett et al. [18] and Mangal and Jain [19], the improper use of LLMs—whether deliberate or accidental—

can lead to the spread of misinformation, the generation of harmful content, or even automated cyber-attacks. 

These concerns highlight the importance of having strong, transparent, and secure frameworks for managing 

vulnerabilities driven by artificial intelligence (AI). In response, various defense mechanisms have been 

suggested, such as adversarial training, robust optimization, differential privacy, and data sanitization [20]. 

Although these methods provide some level of mitigation, they frequently involve compromises among 

security, accuracy, and computational efficiency. This constraint propels the exploration of innovative 

architectures and training methodologies capable of attaining effective vulnerability detection and repair 

outcomes while maintaining robustness. 

Recent studies have investigated the use of LLMs in addressing software vulnerability tasks.  

Pearce et al. [21] explored the concept of zero-shot vulnerability repair, showcasing encouraging outcomes 

while also highlighting some limitations in terms of generalization. Tamberg and Bahsi [22] conducted an in-

depth analysis of LLM capabilities in vulnerability detection, revealing performance variability across 

different programming languages (PLs) and categories of vulnerabilities. Yao et al. [23] conducted a 

comprehensive survey of the security and privacy challenges associated with LLMs, categorizing them into 

beneficial, harmful, and critical groups. Zhou et al. [24] examined new trends and potential future avenues 

for vulnerability detection using LLMs, highlighting the importance of developing systems that are both 

context-aware and interpretable. Yang et al. [25] presented LLMAO, a framework for fault localization that 

can identify faulty lines without the need for test coverage, whereas Shi et al. [26] put forward Avatar, a 

variant of LLMs designed for energy efficiency in local developer applications. McIntosh et al. [27] 

emphasized the semantic vulnerabilities present in LLMs, especially in relation to ideological manipulation, 

and advocated for a collaborative approach to developing ethical AI frameworks. 

Many current approaches underutilize multi-task learning for vulnerability identification and 

mitigation, missing out on synergies. There is poor semantic integration between natural languages (NL) and 

PLs. Successful vulnerability repair often requires multidisciplinary reasoning that existing models lack. Poor 

dataset structure and preprocessing documentation clarity in dataset preparation is critical for reproducibility, 

yet it is often overlooked. Lack of statistical validation and analysis of industrial applicability damages 

performance claims' credibility and reduces the possibility of practical adoption. This study proposes 

DCodeBERT, an improved CodeBERT that fills gaps with multi-task learning, shared-private 

representations, gradient normalization, and uncertainty weighting. DCodeBERT optimizes vulnerability 

detection and repair using shared semantics while keeping task-specific information. The model is trained 

and evaluated using a multilingual dataset of susceptible and corrected code snippets from open-source 

repositories and vulnerability databases. Preprocessing using tokenization, normalization, annotation 

consistency checks, and vulnerable-repaired snippet pairing ensures high-quality model training inputs. 

DCodeBERT, a proactive software security framework that expands CodeBERT with a multi-task 

learning architecture, shared-private layers, gradient normalization, and uncertainty weighting, is innovative. 

In contrast to transformer-based techniques like GraphCodeBERT, CodeT5, and Devign, the suggested 

model detects vulnerabilities and automates repairs using a curated multilingual dataset of 85,000 code 

samples. DCodeBERT significantly improves accuracy, precision, and F1-scores across languages and 

vulnerability categories by semantically integrating natural and PL elements and optimizing robustly. 

DCodeBERT's combined focus on detection and repair, and improved cross-language generalization make it 

an innovative and useful vulnerability management tool. 

 

 

2. METHOD 

The recommended method for using comprehensive language models to find and fix software 

vulnerabilities includes dataset preparation, preprocessing, model architecture design, training, and 

evaluation. The methodology ensures repeatability, transparency, and technical rigor, allowing academics 

and industry experts to duplicate and build on the findings. This study collected data from open-source 

repositories, curated vulnerability databases, and benchmark datasets used in vulnerability detection 
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investigations. The sources contained susceptible and fixed code snippets in C, C++, Java, and Python, as 

well as buffer overflows, injection issues, and poor input validation. Out of 85,000 code snippets, 50,000 

were susceptible, and 35,000 were not. Vulnerability correction required 40,000 matched samples of 

vulnerable and fixed code. This variation ensures the model confronts varied coding styles, semantic patterns, 

and vulnerability scenarios. A detailed dataset structure overview by PL, vulnerability kind, and sample 

count was generated to improve replication. Data preparation ensured model input consistency and quality. 

Initial tokenization used a code-aware tokenizer to maintain brackets, operators, and keywords and normalize 

identifiers and literals. This kept the code structurally sound while lowering vocabulary. Second, indentation, 

whitespace, and comment formats were normalized to ensure code pattern consistency. Third, annotation 

consistency checks ensured that labels appropriately described the sample vulnerability. In the repair dataset, 

unique IDs paired vulnerable and corrected code fragments to preserve their semantic link. This pipeline used 

multi-language code processing best practices [21]–[24] to assure reproducibility. 

The suggested method relies on DCodeBERT, a vulnerability detection and repair-optimized version 

of the pre-trained CodeBERT model. The architecture uses a multi-task learning framework with shared-

private layers to learn general-purpose representations while keeping task-specific information. DCodeBERT 

integrates 10 joint embeddings, which mix NL semantics like comments and documentation with PL syntax. 

The embeddings combine token-level representations with structural insights from code dependency 

networks to improve the model's cross-domain understanding. The common encoder is followed by detection 

and repair layers, allowing the model to make goal-specific predictions. 

Figure 1 shows the DCodeBERT model's architecture, which builds on the refined CodeBERT 

framework for vulnerability identification and remediation. NL and PL tokens are strongly semantically 

embedded in CodeBERT, the base model. In addition, DCodeBERT uses a transformer-based design with 

shared layers to capture contextual dependencies and semantic linkages between code and comments via self-

attention and feed-forward networks. After these levels, a shared embedding module blends natural and PL 

elements to let the model use comments and code syntax for descriptive and structural information. The 

network splits into two task-specific layers: vulnerability detection and automated repair. The detection layer 

finds weaknesses in code snippets, while the repair layer offers secure changes or generates corrected 

patches. In a multi-task learning technique, loss computation balances detection and repair tasks to optimize 

both outputs. The architecture uses the Adam optimizer with gradient normalization to stabilize training and 

improve convergence, ensuring that neither task dominates learning. DCodeBERT's integrated design enables 

robust vulnerability detection and practical automatic repair. 

 

 

 
 

Figure 1. The architecture of the DCodeBERT model 
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To improve stability and performance, various sophisticated training techniques were implemented. 

Gradient normalization was utilized to ensure an equitable learning process across tasks, thereby preventing 

any individual task from overshadowing the shared parameters [25]. The application of uncertainty weighting 

allowed for a dynamic adjustment of task loss contributions in relation to predicted confidence levels, 

effectively optimizing the balance between detection and repair accuracy. The training process utilized the 

PyTorch framework, employing the AdamW optimizer, with an initial learning rate set at 3e-5 and a batch 

size of 32. The model underwent training for 50 epochs, employing early stopping guided by validation loss 

to address the issue of overfitting. To enhance generalization, dropout regularization and weight decay were 

implemented. The hardware setup included an NVIDIA Tesla V100 GPU featuring 32 GB of memory, 

facilitating effective training on extensive datasets. 

For detection and repair, accuracy, precision, recall, and F1-score were assessed. To rule out random 

variation, paired t-tests were performed to verify the performance improvements above baseline models. 

Comparison baseline models CodeGPT, VulDeePecker, CodeT5 Small, GraphCodeBERT, and Devign 

demonstrate leading vulnerability detection and code analysis advances. To accurately assess model 

capabilities, metric values were provided for each PL and vulnerability type. This methodology was designed 

to meet academic standards for scientific rigor and industry application. DCodeBERT's multi-task learning, 

extensive preprocessing, and explicit architectural changes make it a solid automated vulnerability 

management tool for software development. We list the detection and repair metrics for a complete review. 

This allows a complete evaluation of the model's vulnerability detection and management capabilities. The 

model uses shared representations in the multi-task learning framework to improve performance on both 

tasks. We use task-specific layers, shared-private models, gradient normalization, and uncertainty weighting 

to make reliable vulnerability detection and repair predictions. The dataset includes a variety of code snippets 

tagged as vulnerable or not. The repair task also includes vulnerable and fixed code snippets. The dataset was 

assembled from open-source repositories, vulnerability databases, and carefully selected instances. 

Annotations classify vulnerabilities in each code piece. 

 

 

3. RESULTS AND DISCUSSION 

The evaluation of DCodeBERT's performance involved conducting a series of experiments that 

compared it against leading baselines, including CodeGPT, VulDeePecker, CodeT5 Small, 

GraphCodeBERT, and Devign. All models underwent training and testing on the carefully selected multi-

language dataset outlined in section 2, employing an 80–10–10 division for training, validation, and testing 

purposes. The assessment metrics comprised accuracy, precision, recall, and F1-score, applied to both the 

tasks of vulnerability detection and repair. To confirm the reliability of the results, paired t-tests were 

performed to assess statistical significance. 

Figure 2 illustrates the accuracy learning curves across various PLs throughout the fine-tuning 

phase. DCodeBERT demonstrated superior performance across all languages, attaining an impressive 

average detection accuracy of 98.7%, significantly surpassing the next-best model, GraphCodeBERT, which 

recorded an average of 96.1%. The observed enhancement of 2.6% in F1-score was statistically significant 

(p<0.01), indicating that the improvements were not attributable to random variation. The consistent and 

swift convergence in the curves further demonstrates the effectiveness of the multi-task architecture and its 

ability to generalize across syntactically varied languages. 
 
 

 
 

Figure 2. The learning curve associated with various pre-trained models during the fine-tuning phase 
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Figure 3 presents the performance across various vulnerability categories, indicating that 

DCodeBERT achieved the highest accuracy in each category, with notable results in injection flaws (99.2%) 

and buffer overflows (98.9%), both of which are typically challenging to identify. Even in low-frequency 

categories like improper access control, the model achieved a notable accuracy of 97.8%. The integration of 

natural and PL semantics enabled the model to utilize contextual cues, enhancing detection accuracy across 

categories with differing sample sizes. 

 

 

 
 

Figure 3. The learning curve associated with various pre-trained models during the fine-tuning phase 

 

 

Figure 4 illustrates the trends in training, validation, and test accuracy and loss for the task of 

vulnerability detection. The model achieved an accuracy of about 99% by epoch 50, with the loss decreasing 

to approximately 0.02, indicating successful learning and limited overfitting. The strong correlation between 

the training, validation, and test curves validates the model's ability to generalize effectively. In comparison 

to the baselines, DCodeBERT demonstrated superior peak accuracy and a more gradual convergence, 

highlighting the advantages of gradient normalization and uncertainty weighting. 

 

 

  
 

Figure 4. Task for detecting vulnerabilities 

 

 

Figure 5 illustrates similar patterns for the vulnerability repair task, with accuracy achieving around 

99% and loss diminishing to roughly 0.06 by epoch 50. The uniformity observed in the training, validation, 

and test curves underscores the reliability of the repair process, which was additionally confirmed through 

qualitative analysis. Examination of the revised code samples showed that DCodeBERT generated 

functionally accurate and secure patches, including boundary checks in buffer management and appropriate 

input sanitization in SQL queries, while avoiding the introduction of new logical errors. 
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Figure 5. Repair task 

 

 

In all evaluated baselines, DCodeBERT achieved the most impressive metrics for both detection and 

repair tasks. The model demonstrated a precision of 98.4%, a recall of 98.9%, and an F1-score of 98.6% in 

detection, while in repair, it achieved an F1-score of 98.1%. The enhancements compared to the nearest 

competitor varied between 2% and 3.3% across different metrics, and these differences were statistically 

significant (p<0.01). The observed improvements can be linked to the combined embedding of code and NL 

characteristics, the design of a multi-task learning framework, and a meticulously crafted preprocessing 

pipeline. The analysis of performance across various PLs validated the versatility of DCodeBERT. The 

accuracy for vulnerabilities in Java was recorded at 99.1%, while C/C++ vulnerabilities stood at 98.5%, and 

Python vulnerabilities at 98.9%. This indicates a minimal performance drop across the different PLs. This 

stands in contrast to previous studies like those conducted by Pearce et al. [21] and Tamberg and Bahsi [22], 

in which the decline in cross-language performance was notably more significant. The integration of shared-

private layers in DCodeBERT effectively maintained language-independent patterns alongside task-specific 

features, facilitating strong generalization capabilities. 

While the results clearly establish the superiority of DCodeBERT, certain limitations remain. The 

model’s fine-tuning process requires significant computational resources, which may limit applicability in 

resource-constrained environments. Moreover, although the dataset covered multiple mainstream languages, 

domain-specific languages (e.g., solidity and rust) were underrepresented, potentially impacting 

generalizability. Additionally, robustness against adversarially obfuscated vulnerabilities was not fully 

explored and warrants future investigation. From an industrial perspective, DCodeBERT’s high precision 

minimizes false positives, reducing developer workload in large-scale codebases. Its automated repair 

capabilities can be integrated into CI/CD pipelines to accelerate vulnerability mitigation. Furthermore, the 

architecture’s modularity enables incremental retraining to adapt to evolving vulnerability patterns, 

supporting sustainable deployment in dynamic security environments. 

DCodeBERT modules were selectively removed for an ablation study to assess each design 

component. Without gradient normalization, detection F1-score declined from 98.6% to 96.9%. Leaving 

uncertainty weighting out dropped accuracy to 95.7%, while eliminating shared-private layers dropped it to 

94.8%. These results show that each module is crucial to great performance, with the combination producing 

the best results. We used paired t-tests to compare DCodeBERT, GraphCodeBERT, and CodeT5 across 

accuracy, precision, recall, and F1-score to rule out random variation. The performance gains (2-3.3%) were 

substantial (p<0.01), indicating the reliability of our findings. The model showed significant cross-language 

generalization, with small variance (<1%) across various PLs (C, C++, Java, and Python). 

 

 

4. CONCLUSION 

This paper presents DCodeBERT, a transformer-based framework designed for proactive 

vulnerability detection and automated repair. The integration of multi-task learning with shared-private 

layers, gradient normalization, and uncertainty weighting led to consistent enhancements in accuracy, 

precision, recall, and F1-scores when compared to leading baselines like GraphCodeBERT, Devign, and 

CodeT5. The experimental results obtained from various PLs and vulnerability categories validated the 

model's robustness. Additionally, the analysis of the confusion matrix and the ablation studies underscored 

the essential contributions of its core modules. In light of these compelling findings, it is important to 

acknowledge that several limitations persist. The fine-tuning process necessitates significant computational 
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resources, potentially limiting its implementation in environments with restricted resources. Secondly, while 

the dataset included prominent PLs, it lacked sufficient representation of domain-specific or emerging 

languages (such as solidity and rust), which may restrict the generalizability of the findings. Third, the 

exploration of adversarially obfuscated vulnerabilities and the evolution of attack strategies was limited. 

Ultimately, although the repair suggestions have been confirmed for their semantic accuracy, the 

interpretability for developers continues to be constrained. To tackle these gaps, upcoming efforts will 

concentrate on: i) implementing adversarial training and model hardening to boost robustness, ii) broadening 

the dataset to encompass a wider range of languages and vulnerabilities, iii) incorporating explainable AI 

components (such as attention visualization) to enhance developer trust, and iv) investigating lightweight or 

distilled versions of DCodeBERT for smooth integration into CI/CD pipelines and edge environments. The 

proposed framework establishes a solid basis for enhancing automated software security, while also opening 

up promising pathways for additional exploration and practical implementation in the industry. 
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