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Accurate genomic classification is vital for precision health and population
studies, yet high-dimensional single-nucleotide polymorphism (SNP) data
(p>n) amplify noise, redundancy, and overfitting. This study evaluates a
simple, model-independent Pearson-based selection that ranks SNPs by
feature—label correlation, and assesses k-nearest neighbors (k-NN), linear
support vector machine (SVM), and random forest (RF) under leakage-free
stratified Monte Carlo cross-validation (MCCV). Performance increases
monotonically with | r |: the strongest tiers reach *99-100% accuracy; SVM
leads in mid tiers (RF second), while k-NN is competitive mainly at the
extremes. A matched-dimensionality PCA-120 baseline (TRAIN-only) attains
parity for SVM/RF and trails slightly for k-NN at the 10% test size. With 120-
SNP panels, prediction medians are ~0.30 ms (SVM), 1.81-1.83 ms (k-NN),
and 34-35 ms (RF), supporting CPU-only deployment. A consensus panel
combining correlation evidence with principal component analysis (PCA)
selection frequency yields interpretable Top-20/Top-120 subsets and | r |-
based operating thresholds. Overall, Pearson-based selection provides a
transparent, reproducible baseline for small-sample SNP classification,
offering accuracy competitive with PCA at lower computational complexity
and straightforward extensions to broader cohorts and multi-omics
integration.
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1. INTRODUCTION

Approximately 99.9% of the human genome is identical across individuals, and the remaining =0.1%
consists largely of single-nucleotide polymorphisms (SNPs) occurring about once every =1,000 bases [1].
These variants contribute to evolution, pharmacogenomic response, and risk for complex diseases (e.g.,
obesity, diabetes, hypertension, and cancer) [2]-[6]. They are widely used in biomedical and population
studies, forensic inference, and phenotype prediction [7]-[10].

Machine learning classifiers are commonly applied to SNP data. k-nearest neighbors (k-NN) assigns
labels by local majority vote [11], [12]; support vector machine (SVM) constructs maximum-margin
hyperplanes [13]; and random forest (RF) aggregates decision trees for improved stability [14]. These methods
have shown effectiveness across diverse application areas, including disease prediction, cybercrime detection,
GPS data analytics, exam classification, and genetic studies [15]-[22].

Genomic datasets frequently exhibit a high-dimensional p>n regime—far more features (p) than
samples (n)—which elevates overfitting risk and motivates feature selection to reduce dimensionality and
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preserve interpretability [23]. Principal component analysis (PCA) is a popular baseline for dimensionality
reduction and population-structure control [24]-[27]. Recent evaluations also highlight caveats: adjusting for
principal components can induce collider bias in GWAS models [24], and population structure inferred by
PCA can diverge from admixture-model estimates [25]. However, components may not align with predictive
relevance and are difficult to interpret at the locus level [28]-[31]. In contrast, Pearson-based selection—
ranking SNPs by the Pearson/point-biserial correlation with the label—offers a simple, fast, and transparent
filter [23], [32] that preserves the original SNP representation, making the feature—label relationship explicit
and scaling well to high-dimensional genomic data [33], [34]. Prior studies indicate that Pearson-based SNP
selection can improve classification in small-sample settings [35].

The present study evaluates Pearson-based filtering for SNP classification on HapMap Phase 11 (9,305
SNPs; CEU vs YRI) under stratified, leakage-free Monte Carlo cross-validation (MCCV) using k-NN, linear
SVM, and RF; MCCV is employed to obtain robust performance estimates via repeated randomization of test
partitions [36]. The contribution is fourfold: i) Ir|-tiering as a difficulty index, ii) leakage-free MCCV with p=n
block sizing (<120 features) to curb overfitting, iii) a matched-dimensionality PCA-120 baseline constructed
from TRAIN-only PCA, scoring SNPs by loading magnitudes weighted by each component’s explained
variance ratio (EVR), and iv) a consensus panel (Top-20 in the main text and Top-120/240 available). Together,
these elements yield an interpretable, reproducible template for small-sample SNP classification while
retaining locus-level interpretability.

From an informatics and signal-processing perspective, SNP classification is a supervised pattern-
recognition problem in high-dimensional noise. Pearson-based selection serves as a lightweight, linear pre-
processing step that improves the signal-to-noise ratio and preserves locus-level interpretability, with
computation that scales linearly with the number of features. At matched dimensionality (120 features),
inference on standard CPUs operates at millisecond to sub-second scale for k-NN, linear SVM, and RF,
enabling deployment on edge or clinical workstations (see subsection 4.5). This framing highlights an
accuracy—efficiency balance suitable for real-time or resource-constrained settings.

2. RELATED WORK

Filter, wrapper, and embedded approaches are widely used for SNP selection. Single-marker filters
such as Pearson, point-biserial, chi-square (x?), and mutual information are fast and model-independent, but
ignore LD and interactions [37], [38]. Recursive feature elimination (RFE) iteratively removes low-
contribution variables relative to a target classifier (e.g.,, SYM-RFE or RF-RFE), improving accuracy but
requiring repeated model fitting [39], [40]. Embedded methods (L1-regularized logistic/linear SVM) select
features via sparsity but are model-dependent [41], [42]. GWAS-style per-SNP tests with multiple-testing
control (e.g., Bonferroni, false discovery rate (FDR)) offer interpretable thresholds yet are not always optimal
for classification [22]. Projection methods (PCA/PLS) aid structure control but reduce interpretability; variance
captured does not guarantee predictive relevance [24]-[31].

In this context, the evaluation centers on a leakage-free Pearson filter contrasted with a PCA-120
baseline to isolate the value of label-aware selection versus unsupervised projection. LD-aware redundancy
control and nested resampling are acknowledged as extensions beyond the present scope.

3. METHOD
3.1. Research workflow

The end-to-end workflow is summarized in Figures 1 and 2. Figure 1 summarizes QC (MAF>0.05;
HWE; missingness <10%), dosage encoding (0/1/2), Pearson-based selection with TRAIN-fold minor-allele
mapping, and TRAIN-only median imputation. Figure 2 summarizes leakage-free MCCV (R=1000; test sizes
10/25/40), the evaluated models (k-NN, linear SVM, RF100/125), key metrics (incl. ROC-AUC), and
statistical validation. The procedure comprises: i) data quality control (QC) and genotype encoding; ii) Pearson
correlation calculation for each SNP against the binary label; iii) ranking SNPs by correlation and separating
them into positive and negative groups; iv) partitioning each group into sub-datasets of 120 SNPs (correlation
blocks); v) classification with k-NN, linear SVM, RF100, and RF125 under MCCV (R=1000) at test sizes 10%,
25%, and 40% [43]; vi) evaluation using accuracy, precision, recall, F1, receiver operating characteristic
(ROC), area under the curve (AUC) and normalized confusion matrices (CM); vii) statistical validation:
Shapiro-Wilk; if assumptions held, one-way ANOVA with Tukey HSD; otherwise Kruskal-Wallis with
Bonferroni-adjusted pairwise Mann—Whitney U [44]; and viii) identification of SNP loci associated with peak
performance within specific correlation ranges.
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Figure 1. Workflow for SNP selection using feature—target correlation (Part 1 of 2)
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Figure 2. Workflow for model training, evaluation, and statistical validation (Part 2 of 2)

To focus the analysis, a model-independent filter is adopted that ranks SNPs by Pearson feature—target
correlation; redundancy-aware filters (e.g., mMRMR) are not considered. A PCA baseline with 120 components
is included to compare projection-based reduction against correlation-ranked subsets.

3.2. Research data

The dataset was obtained from HapMap Phase Il (2007), comprising 120 individuals—60 CEU (Utah
residents of European ancestry) and 60 YRI (Yoruba in Ibadan, Nigeria)—and 9,305 SNPs [45]. Data handling
and association analyses were performed in R with SNPassoc [46]. Genotypes are encoded from the four
nucleotides adenine (A), cytosine (C), guanine (G), and thymine (T). Some loci contain missing genotype calls
due to weak genotyping signals, platform limitations, DNA quality issues, allelic dropout, or calling errors
[47]. Missingness can be informative, and genotype imputation may introduce bias when mechanisms are non-
random or coverage is limited [48], [49]. A small subset of the data is shown in Table 1. Row headers are
dbSNP rsIDs (“rs” = Reference SNP cluster ID, NCBI dbSNP) [50]; column headers are individual sample 1Ds
(e.g., NA06985), each uniquely identifying a CEU or YRI subject.

Table 1. Subset of SNP genotypes data from CEU and YRI populations in the HapMap Phase Il dataset
Samples  NA06985 NA06993  NA06994 NA19116 NA19119 NA19127

Groups CEU CEU CEU YRI YRI YRI
rs11260616 AA AT AA AA AT AA
rs6659552 GG CG CG GG GG GG
rs6688969 CcC CT CT CT CT cC
rs10753357 AC AA AA AC CcC AC
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3.3. Data quality control and genotype encoding
3.3.1. Data quality control

The raw SNP dataset was subjected to QC filtering to ensure data reliability. Variants with minor
allele frequency (MAF)<0.05, Hardy—Weinberg Equilibrium (HWE) p < 1 X 107°, or missingness >10%
were excluded. These thresholds mitigate known risks—low MAF shrinks genotype variance
(Var[G]=2p(1—p)) yielding unstable correlations and fragile decision boundaries [51]; HWE deviations may
indicate genotyping error or substructure that biases correlation ranks and PCA loadings. Recent reassessments
also show that HWE filtering can alter inferred population structure [52], [53]; and high missingness reduces
effective sample size, suggests non-random loss, forces heavier imputation, and inflates uncertainty [54], [55].
When missingness is non-random or coverage is limited, genotype imputation can introduce systematic bias in
downstream association and classification [48], [49]. Applying QC prior to Pearson correlation ranking and
PCA follows common GWAS practice, helping ensure downstream results reflect biological signal rather than
data-quality artifacts. After QC, 5,647 SNPs remained from the initial set; variants failing criteria—along with
zero-correlation loci—were removed so that only high-quality markers proceeded to feature selection and
classification.

3.3.2. Imputation after quality control

With per-SNP missingness <10%, missing values in dosage-coded genotypes (0/1/2) were filled with
the per-SNP median as a simple single-imputation step to avoid heavy model-based imputation and information
leakage across MCCV folds (imputation parameters are computed on training folds and applied to the held-out
test data)—an accepted practice that also stabilizes PCA inputs [56]; notably, PLINK 2 mean-imputing by
design for PCA [57]. LD/haplotype-based imputation was not used because the goal was to fill sparse missing
calls rather than infer untyped variants [58].

3.3.3. Encoding and correlation

Each SNP was encoded into allele dosages (0/1/2) relative to the minor allele; e.g., if “A” is minor,
then CC=0, AC=1, and AA=2. Missing genotypes were set to NaN, imputed with the training-set median per
SNP, and the same mapping was applied to the test split to avoid information leakage. The encoding and
imputation step is summarized in Figure 3.

Encode dosage relative to m:
0 =0 copy (e.g., CC)
1=1 copy (e.g., CT)

2 =2 copy (e.g., TT)

Input genotype per SNP
(all samples : TRAIN + TEST) -
AA/AC/CC/ ... /NA

Y Y

TRAIN - only allele counting (per
SNP) -> estimate allele frequencies in
TRAIN

Missing/ambiguous genotype ->NaN
(non-biallelic after QC — drop SNP)

Y Y

Imputation (after encoding):
fill NaN with TRAIN median dosage (per SNP)
apply same mapping/imputer to TEST

Pick minor allele m (in TRAIN)
(e.g., ifm=T)

Figure 1. Encoding genotypes as allele dosages (0/1/2) with median imputation fitted on the training set

To quantify linear association with the population (CEU=0, YRI=1), Pearson’s correlation was
calculated per SNP: for SNP j, let x;; denote the encoded dosage of sample i, X, its mean, y; the binary label,
and y its mean; the coefficient 7; is given in (1):

= Tie (X% Vi=¥) 0
JE?=1(xi—f)2-2?=1(yi—y)2

3.3.4. Ordering and subset construction

SNPs were ranked by descending Pearson correlation (from strongest positive to strongest negative)
to define Pearson-based subsets. SNPs with » = 0 were excluded—only 12 of 5,647 (=0.21%), so the impact
was negligible. The ordered list appears in Table 2.
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Table 2. SNPs sorted in descending Pearson correlation (r) with the population label (positive to negative)

Features X X, - X3000 Xs6a6 Xs6a7
Pearson correlation (r) 0.9039 0.9038 0 -0.904 -0.929
Reference number 59909962 52370893 rs12928849 rs6670842 rs10868791

3.4. Research stages

Based on Table 2, data were split into DatasetA (r > 0; X;-X,497, range (0.000-0.904]) and DatasetB
(r < 0; X3010-X5647, range [-0.929-0.000)). SNPs with r = 0 (X,995-X3009) Were excluded, since they provide
no linear association with the label. Correlation ranges are left-inclusive and right-exclusive, except for the last
interval which is closed on both ends.

To balance experiments, each group was partitioned into <120-SNP sub-datasets so that p =~ n=120,
reducing overfitting risk and enabling fair comparison across correlation ranges. This produced 25 sub-datasets
for DatasetA (Table 3) and 22 for DatasetB (Table 4). Correlation intervals are left-inclusive, right-exclusive
(the last interval is closed). Sub-datasets are referenced by block I1Ds (e.g., A1, B1) that encode fixed correlation
ranges (positive for A-blocks, negative for B-blocks); strong, moderate, and weak denote upper-, mid-, and
lower-correlation tiers.

Table 3. Splitting DatasetA (positive correlations) into sub-datasets of up to 120 features

Blocks Correlation Blocks Correlation Blocks Correlation Blocks Correlation Blocks Correlation
range range range range range
Al [0.673-0.904] A6 [0.488-0.522) All [0.360-0.377) Al6 [0.255-0.281) A21 [0.114-0.141)
A2 [0.601-0.673) A7 [0.463-0.488) Al2 [0.342-0.360) Al7 [0.224-0.255) A22 [0.088-0.113)
A3 [0.558-0.601) A8 [0.437-0.463) Al3 [0.324-0.342) Al8 [0.199-0.224) A23 [0.058-0.088)
A4 [0.522-0.557) A9 [0.418-0.437) Al4 [0.306-0.324) Al19 [0.171-0.198) A24 [0.029-0.058)
A5 [0.488-0.522) Al10 [0.397-0.418) Al5 [0.282-0.306) A20 [0.141-0.171) A25 (0.000-0.029)

Table 4. Splitting DatasetB (negative correlations) into sub-datasets of up to 120 features

Blocks Correlation Blocks Correlation Blocks Correlation Blocks Correlation Blocks Correlation
range range range range range
Bl  [-0.029-0.000) B6  [-0.168--0.140) B11 [-0.318--0.286) B16 [-0.444--0420) B21 [-0.678--0.603)
B2 [-0.058--0.029) B7 [-0.196--0.168) B12 [-0.344--0.318) B17 [-0.472--0.444) B22 [-0.929--0.678)
B3 [-0.083--0.058) B8 [-0.223--0.196) B13  [-0.367--0.345) B18 [-0.507--0.473)
B4  [-0.111--0.083) B9  [-0.254--0.223) B14 [-0.392--0.367) B19  [-0.549--0.507)
B5 [-0.140--0.112) B10  [-0.285--0.254) B15 [-0.420--0.393) B20  [-0.603--0.549)

3.5. Feature selection (Pearson, principal component analysis) and consensus panel

Pearson correlation was computed between each SNP (dosage 0/1/2) and the binary label; SNPs were
ranked by descending |r| and grouped into positive (DatasetA) and negative (DatasetB) blocks of <120 SNPs.
As an unsupervised baseline, PCA was applied to the post-QC genotype matrix. Within each MCCV repetition,
genotype matrices were standardized and PCA was fitted on the training folds only to prevent information
leakage. The PCA baseline derives an unsupervised SNP ranking via EVR-weighted loading magnitudes and
retains the top-120 loci (PCA-120)—rather than using components as features. An EVR-weighted SNP score
is computed as s; = .. EVR,. -| loading; . | using TRAIN-only PCA.

A consensus SNP panel was then defined using a block-agnostic rule: variants received a combined
score equal to the average of; i) the percentile of |r| and ii) the percentile of PCA selection frequency across
MCCYV resamples. Presentation and availability of the Top-20/50/120/240 panels and the full ranked table are
described in section 4.6.

3.6. Computational complexity (filter vs principal component analysis vs wrappers)

Let n denote the number of samples and p the number of SNPs; k = 120 for the PCA baseline.
Pearson-based selection computes the point-biserial correlation for all p SNPs in O(n - p) time and ranks them
in O(p log p), with memory scaling linearly in p. The transform is fitted on TRAIN within each MCCV
resample and then applied unchanged to TEST to avoid leakage. PCA (train-only) to k components via
truncated/randomized  SVD  scales  approximately as O(n-p-k+p-k?) (exact SVD:
O(min {n - p?%,p - n?})); projection of TEST uses the TRAIN-fitted components and requires O(p - k)
memory. Wrapper methods (e.g., recursive/forward selection) incur repeated model fitting with cost
~ O(R X CV X Cy,in), Where R is the number of elimination/forward rounds, CV the inner folds/repeats, and
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Ciain the base-learner training cost (for reference, linear SVM ~ O (n - p) per pass; RF ~ O(T - nlog n) for T
trees). In the p > n regime typical of SNP data, Pearson-based selection is markedly lighter than wrappers and
generally lighter than PCA at k = 120, while preserving locus-level interpretability; empirical runtimes
(reported in subsection 4.5) are consistent with these order-of-growth expectations.

3.7. Classification and evaluation
3.7.1. Classification

Four classifiers were applied—RF100, RF125, linear SVM, and k-NN (Euclidean). Classification
used stratified MCCV with test sizes of 10%, 25%, and 40%, repeated R=1,000 times per block and test size.
In each repetition, data were split into training and test sets; encoding and per-SNP median imputation were fit
on the training split and applied to the test split to prevent leakage. For k-NN, k was chosen by inner stratified
5-fold CV on the training set to maximize accuracy, whereas SVM and RF used fixed hyperparameters. The
evaluation loop, including the inner-CV scheme for k-NN, is summarized in Algorithm 1.

Algorithm 1. Stratified MCCV evaluation (SVM/RF fixed; k-NN via inner-CV)

Inputs:

Blocks S in {Al..A25, Bl..B22}

Test sizes T = {0.10, 0.25, 0.40}

Repeats R = 1000

Classifiers C fixed = {linear SVM, RF100, RF125}

Label y in {0,1}

for each block S:

for each t in T:

repeat r = 1..R:

Stratified split with test size t:

S -> (X train, y train), (X test, y test)

Fit encoding & per-SNP median imputation on (X train); apply to (X test)

# Fixed-parameter models

for ¢ in C fixed:

Train ¢ on (X train, y_ train); predict on X test; record metrics

# k-NN with inner CV on the training set

Choose k* = argmax k Accuracy via stratified V-fold CV (V = 5) on (X train)
Train k-NN(k*) on full (X train, y train); predict on X test; record metrics
Aggregate: compute mean +/- SD and median [IQR] over R; retain per-model distributions for
statistical tests.

3.7.2. Metrics evaluation

The following metrics were recorded on the held-out test sets: accuracy, precision, recall, F1-score,
ROC-AUC, normalized CM, and execution time. Results were summarized as mean + SD across repetitions
and median [IQR]. Visualizations comprised correlation-tier metrics, cross-block accuracy summaries, ROC
curves, and normalized CM; AUC with confidence intervals accompanied the plots. Between-classifier
comparisons used the inferential procedures described in subsection 3.7.

3.8. Statistical validation

Statistical validation was conducted to examine the significance of performance differences among
classifiers. The analysis was applied separately for each sub-dataset and test size, using Accuracy as the primary
metric. Other metrics, including precision, recall, and F1-score, were also summarized descriptively to provide
a broader view of classifier performance.

Normality of the metric distributions was first assessed using the Shapiro—Wilk test at a significance
level of @=0.05. If all groups satisfied normality and variance homogeneity (Levene’s test, «=0.05), a one-way
ANOVA was performed, followed by Tukey’s HSD for post-hoc pairwise comparisons. When assumptions
were violated, a Kruskal-Wallis test was used as the non-parametric alternative. If significant, post-hoc
pairwise testing was conducted using Mann-Whitney U tests (Bonferroni-adjusted) for multiple comparisons.
Descriptive statistics (mean+SD, median [IQR]) accompanied the inferential results to aid interpretation.

4. RESULTS AND DISCUSSION
4.1. Performance on DatasetA (positively correlated SNPs)

This section reports DatasetA (positive-correlation) results by correlation tier and test size.
Representative results at 25% test size are presented in Table 5, which retains the full set of nine correlation
blocks (A1, A4, A7, A10, Al3, A16, A19, A22, and A25) spanning strong—weak correlations.
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Table 5. DatasetA: average accuracy (%) of RF, k-NN, and SVM with 25% test data
Pearson corr. range Al A4 A7 Al10 Al3 Al6 Al9 A22 A25

k-NN 100 98.78 8433 676 621 68.07 6405 5148 36.56
SVM 100 100 100 9996 9849 9732 8422 5691 17.38
RF100 100 100 100 9939 9758 9235 777 5195 24.64
RF125 100 100 100 9953 9775 9316 787 5204 23.33

4.1.1. Accuracy and metric trends

Accuracy increases monotonically with correlation strength: in the strongest tiers (A1-A7) all models
reach =99-100% accuracy; in mid tiers (A10-A16) linear SVM leads with RF100 and RF125 close behind;
and in the weakest tiers (A22—-A25) all models deteriorate, with k-NN keeping a small edge over RF while
SVM drops more sharply. Figure 4 shows that these patterns are stable across the three test sizes: Figure 4(a)
10%, Figure 4(b) 25%, and Figure 4(c) 40% test sizes; differences among the test sizes are minor relative to
the effect of correlation. Figure 4 summarizes the trajectories across tiers and test sizes. Full 10% and 40%
tables and metric panels are provided in the repository [59].
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Figure 4. Average accuracy across representative correlation blocks for three test sizes; (a) 10%, (b) 25%,
and (c) 40% (classifiers: k-NN, SVM, RF100, and RF125)
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4.1.2. Receiver operating characteristic—area under the curve and error profiles

The mid-correlation block A16 serves as the representative case in the body. Figure 5 reports ROC
curves on A16 for the 10%, 25%, and 40% test sizes (diagonal denotes chance), and Figure 6 reports the row-
normalized confusion matrix on A16 at the 25% test size. On A16, SVM attains the highest AUC (=1), RF100
and RF125 are marginally lower, and k-NN remains competitive but non-dominant; differences among test
sizes are minor relative to correlation strength. At higher-correlation tiers (e.g., A7), ROC traces lie near the
upper-left corner and CM show dominant diagonals; at the weakest tier (e.g., A25), ROC curves drift toward
the diagonal and the matrix collapses toward a single class. Full ROC and CM grids for other blocks and test
sizes are provided in the repository [59].

Overall, DatasetA shows a clear correlation-driven difficulty gradient with SVM most resilient, RF a
close second, and k-NN competitive only at the extremes, a pattern stable across MCCV resamples and test
sizes. Extended heatmaps and boxplots for DatasetA tiers are available in the repository [59].

Al — ROC (10% test) Al6 — ROC (25% test) Al6 — ROC (40% test)

— kNN (AUC=0.833)
SVM (AUC=1.000)

— kAN (AUC=0.867)
L SVM (AUC=1.000)

100 (AUC=0.984)
— RF125 (AUC=0.991)

0.0 02 0.4 0.6 0.8 10 0.0 02 04 06 08 10 0.0 0.2 04 06 08 10
False Positive Rate False Positive Rate False Positive Rate

Figure 5. ROC curves on A16 (moderate correlation) for 10%, 25%, and 40% test sizes; k-NN, linear SVM,
RF100, RF125 (legend/linestyle are consistent; color-blind-safe variants are provided in [59])

A16 — Confusion Matrices {normalized %, 25%, test)

RF100 RF125

100.0%

100.0%

a1

True
True

0
Predicted Predicted
SYM k-NN

of  100.0%

True
True

1F 73.3%

Predicted Predicted

Figure 6. CM on A16 (25% test size; normalized, values in %)

4.2. Performance on DatasetB (negatively correlated single-nucleotide polymorphisms)

This section reports DatasetB (negative-correlation) results by correlation tier and test size.
Representative results at 25% test size are presented in Table 6 for eight tiers (B1, B4, B7, B10, B13, B16,
B19, B22). Complete summaries for the 10% and 40% test sizes, full ROC and confusion-matrix (CM) panels,
AUC tables, and extended heatmaps/boxplots for DatasetB tiers are available in the repository [59].
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Table 6. DatasetB: average accuracy (%) of RF, k-NN, and SVM with 25% test data
Pearson corr. range Bl B4 B7 B10 B13 B16 B19 B22

k-NN 3439 4847 61.18 66.13 7148 9159 985 100
SVM 17.09 4758 84.18 985 100 100 100 100
RF100 2421 4821 7584 9341 994 9995 100 100
RF125 22.87 4845 7589 9354 99.42 99.99 100 100

4.2.1. Accuracy and metric trends

Accuracy increases with the magnitude of negative correlation: performance is low at B1, improves
rapidly through B4-B10, and approaches ceiling by B19-B22 (=<99-100% across models; at B16, SVM/RF are
~100% while k-NN ~92%)). Differences among classifiers are most visible in weakly correlated tiers; in mid—
strong tiers all methods converge around ~98-100% accuracy. The same pattern holds at 10%, /25%, and 40%
test sizes; full summaries are available in the repository [59].

4.2.2. Receiver operating characteristic-area under the curve and error profiles

Figure 7 reports ROC curves on B10 (—0.285 to —0.254) at the 25% test size: all models achieve high
discriminative ability (AUCs>0.97), with linear SVM=0.999, RF125=0.989, RF100=0.987, and k-NN=0.973.
Figure 8 presents row-normalized CM (25%) for Bl (low), B10 (mid), and B22 (high): frequent
misclassifications at B1, sharply reduced errors at B10, and perfect separation at B22. These visuals, together
with Table 6, indicate that correlation magnitude—not its sign—governs separability. Full panels and AUC
tables are provided in the repository cited above.

ROC Curves » DatasetB » Block B10 (test=25%)

0.8

o
o
.

True Positive Rate
o
b
1

0.2

—— k-NN {AUC=0.973)
SVM (AUC=0.939)

—— RF100 (AUC=0.987)
—— RF125 (AUC=0.989)

0.04

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Figure 7. ROC curves of k-NN, SVM, RF100, and RF125 on DatasetB (B10, —0.285 to —0.254; 25% test)
(legend/linestyle are consistent; color-blind-safe variants are provided in [59])

Confusion Matrices (normalized, %) — DatasetB — 25% test
B22 « RF100/125 avg

B1 « RF100/125 avg B10 * RF100/125 avg

100

24.4%

Pred 0 Pred 1 Pred 0 Pred 1 Pred 0 Pred 1

B1 « SYM/K-NN avg B10 + SVM/k-NN avg B22 + SVM/k-NN avg
F a0

True 0

% per true class (row-normalized)

True 1 26.4%

Pred 0 Pred 1 Pred 0 Pred 1 Pred 0 Pred 1

Figure 8. CM (normalized, %) for DatasetB (25% test) at low (B1), mid (B10), and high (B22) correlation
blocks
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4.3. Significance testing across classifiers

Shapiro-Wilk tests reject normality in most moderate—weak blocks (p<0.05) and show mixed
outcomes in strong blocks; accordingly, nonparametric inference is used. Kruskal-Wallis omnibus tests are
significant across all examined blocks and test sizes (p<0.05), indicating at least one classifier differs in every
condition. Selected summaries of Shapiro-Wilk normality checks and Kruskal-Wallis omnibus tests are
provided for representative weak, moderate, and strong blocks—A25/A16/A7 (DatasetA) and B1/B10/B19
(DatasetB)—at 10%, 25%, and 40% test sizes. These materials are available in the repository [59].

4.3.1. Normality checks (Shapiro-Wilk)

Shapiro—Wilk tests (¢=0.05) on the distributions of 1,000 MCCV accuracies largely reject normality
in moderate—weak blocks (A16, A25, B10, and B1) across 10%, 25%, and 40%, while strong blocks (A7, B19)
show mixed outcomes: SVM (and often RF125) tends not to reject normality, whereas k-NN (and sometimes
RF100) often remains non-normal. Accordingly, subsequent inference uses nonparametric procedures.

4.3.2. Omnibus differences (Kruskal-Wallis)

Kruskal-Wallis omnibus tests (a=0.05) across six representative blocks (A7, A16, A25,B1, B10, and
B19) and three test sizes (10%, 25%, and 40%) are significant in all conditions (p<0.05), indicating that at least
one classifier differs in every block—size combination.

4.3.3. Pairwise contrasts (Mann-Whitney with Bonferroni)

Bonferroni-adjusted Mann—Whitney tests confirm pairwise differences that mirror the accuracy/ROC
patterns. Across test sizes (Table 7), RF100 vs RF125 shows few differences (significant in 1/6 contrasts at
10%, 3/6 at 25% and 40%; median | § |= 0.09). SVM vs RF pairs are significant in 4/6 contrasts at all sizes
(median | 6 [=0.53-0.66). k-NN vs RF is significant in 6/6 contrasts with large effects
(median | § 1=0.75-0.90), and k-NN vs SVM is also significant in 6/6 contrasts with very large effects
(median | § 1~0.95-0.97); directions follow the tier-wise patterns: at strong correlation (e.g., A7, B19) ceiling
effects render SVM vs RF often not significant, at mid correlation (e.g., A16) SVM exceeds RF, and at weak
correlation (e.g., A25) k-NN can exceed RF and may exceed SVM. A compact cross—test-size summary
appears in Table 7; complete pairwise tables for A7, A16, A25 (DatasetA) and B1, B10, B19 (DatasetB)—
including confidence intervals and adjusted p-values—are available in [59].

Table 7. Summary of pairwise Mann—Whitney U results across test sizes (10%, 25%, and 40%)

Model pair ~ 10% test size ' - 25%test size . ~ 40% test size '
#significant/6  Median [3]  #significant/6  Median |3|  #significant/6  Median |3
RF100 vs RF125 1 0.091 3 0.094 3 0.108
SVM vs RF100 4 0.554 4 0.600 4 0.660
SVM vs RF125 4 0.532 4 0.526 4 0.588
k-NN vs RF100 6 0.751 6 0.868 6 0.870
k-NN vs RF125 6 0.781 6 0.889 6 0.900
k-NN vs SVM 6 0.950 6 0.972 6 0.963

4.3.4. Summary and implications

Classifier choice materially affects accuracy: SVM is consistently strongest from mid to high
correlation ranges; RF trails closely with minimal sensitivity to tree count (RF100 vs RF125 significant in 1/6,
3/6, 3/6 contrasts; median | § |=0.09; Table 7); k-NN is competitive at the strongest tiers and occasionally
superior in the weakest tiers, but generally dominated elsewhere. These patterns hold across DatasetA/B and
the 10%, 25%, 40% test sizes (omnibus Kruskal-Wallis p<0.05).

4.4, Pearson (correlation-ranked) vs PCA-120 baseline

This subsection benchmarks a correlation-ranked panel (“Pearson-120") against a label-free
projection baseline (“PCA-120") and assesses whether any differences persist across classifiers and the 10%,
25%, and 40% test sizes.

4.4.1. Feature-panel construction and evaluation protocol

This subsection contrasts Pearson-based selection with a label-free projection baseline (PCA-120). PCA
was fitted within each MCCV repetition on TRAIN folds only, after standardizing genotypes, to prevent
information leakage. From the post-QC HapMap Phase Il matrix (120x9305; dosage 0/1/2; TRAIN-fold minor-
allele mapping and median imputation), loci were ranked by EVR-weighted loading magnitudes, and the top 120
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were retained (PCA-120, DatasetA+DatasetB). For a matched-dimensionality comparator, Pearson-120 denotes
the 120 SNPs with the largest absolute Pearson correlation (Jr|) with the label from the strongest block (A1).

4.4.2. Results

Across R=1,000 MCCV resamples at 10%, 25%, and 40% test sizes, SVM and RF100/RF125 achieve
~99-100% for accuracy, recall, precision, and F1 under both Pearson-120 and-120 (DatasetA+DatasetB). The
only non-ceiling pattern appears for k-NN at 10% with PCA-120, where mean recall and F1 are 0.2 percentage
points below 100%; at 25% and 40%, k-NN returns to ~100%. Under Pearson-120, all four classifiers reach
100% for accuracy, recall, precision, and F1 at all test sizes. Table 8 summarizes PCA-120
(DatasetA+DatasetB) and Figure 9 juxtaposes PCA-120 (panel a) vs Pearson-120 (panel b).

Table 8. PCA-120 (DatasetA+DatasetB): mean accuracy, recall, precision, and F1 (%) across classifiers at
the 10%, 25%, and 40% test sizes (MCCV=1000)

Classifier RF100 RF125 k-NN SVM

Test size 10% 25% 40% 10%  25% 40% 10% 25%  40% 10% 25%  40%
Acc. (%) 9999 99.97 9995 100 99.98 99.98 99.79 99.79 99.75 100 100 100
Recall (%) 99.98 99.98 9992 100 99.98 99.96 99.58 99.58 99.51 100 100 100
Prec. (%) 100 99.97 99.99 100 99.98 100 100 100 100 100 100 100
F1 (%) 99.99 99.97 9995 100 99.98 99.98 99.77 99.78 99.75 100 100 100

Figure 9(a) shows the PCA-120 results (DatasetA+DatasetB, no labels used in selection), whereas
Figure 9(b) shows the Pearson-120 results; both panels report mean performance over 1,000 MCCV resamples

at the 10%, 25%, and 40% test sizes
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90.00%

30.00% -
20.00% -
10.00% -
0.00% -

10% | 25% | 40% | 10% | 25% | 40%
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Data Test Size and Classifiers
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Average metrics over 1000 MCCV iterations

M Accuracy M Recall Precision F1

SVM

Average metrics over 1000 MCCV iterations
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Figure 9. Performance with 120 features; (a) PCA-120 (DatasetA+DatasetB) and (b) Pearson-120; means
over 1,000 MCCV at 10%, 25%, and 40% test sizes

4.4.3. Summary and implications

Both strategies yield ~99-100% accuracy for SVM and RF, while Pearson-based selection retains a
small advantage for k-NN at the 10% test size. In this sense, the methods are complementary: Pearson-based
selection preserves neighborhood structure that benefits distance-based classifiers, whereas PCA provides a
label-independent baseline with comparable ceiling performance for margin-based and ensemble models.
Complete numerical tables for the Pearson-120 and PCA-120 comparisons—including per-iteration metrics,
per-test-size aggregates, selected SNP panels, and MCCV selection frequencies—are available in the
repository [59].

4.5. Runtime and computational footprint

Runtime profiles corroborate deployability: with 120-SNP panels, prediction latencies are
millisecond-scale for linear SVM and k-NN and sub-tenth-second for RF, with fit+predict totals summarized
in Table 9. Per-iteration timings (median [IQR], ms) across test sizes show that, at the 25% test size, median
fit costs follow k-NN (0.74-1.00 ms) < SVM (=2.00 ms) « RF100 (231-233 ms) < RF125 (269-272 ms);
median prediction costs are SVM (=0.30 ms), k-NN (1.81-1.83 ms), and RF (34-35 ms). Consequently, median
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total time per iteration is SVM (2.21-2.36 ms) < k-NN (2.49-2.53 ms) « RF100 (267-273 ms) < RF125
(312-313 ms), with narrow IQRs indicating stable runtimes over R=1,000 MCCV resamples. Overall, runtimes
are modest, demonstrating that both the Pearson-based selection pipeline and the PCA baseline are
computationally practical.

Table 9. Per-iteration runtime (milliseconds), reported as median and IQR, for each classifier at 10%, 25%,
and 40% test sizes (timing includes model fit() and predict() only)
Classifier  Testsize (%) Medianfit IQR fit Median prediction  IQR prediction Median total  1QR total

RF100 10 232.063 29.302 34,57 0.992 266.906 29.531
RF100 25 231.481 36.419 34.582 1.088 266.397 33.963
RF100 40 238.567 23.624 34.587 0.949 273.465 19.661
RF125 10 272.905 23.886 34.873 2.751 311.518 28.365
RF125 25 272.363 23.496 35.045 10.345 312.051 26.315
RF125 40 271.495 23.518 35.221 10.593 312.503 26.984
SVM 10 2.071 0.504 0.3 0.079 2.364 0.579
SVM 25 1.978 0.505 0.298 0.083 2.266 0.595
SVM 40 1.92 0.512 0.304 0.087 2.213 0.588
k-NN 10 0.752 0.163 1.766 0.358 2.493 0.512
k-NN 25 0.737 0.217 181 0.374 2.525 0.605
k-NN 40 0.717 0.218 1.829 0.4 2.522 0.617

4.5.1. Practical implication

Given the near-parity in accuracy at 120 features (§84.4), SVM offers the best accuracy—latency trade-
off; k-NN is close behind but incurs higher prediction cost; RF variants are ~100x (about two orders of
magnitude) slower for both training and inference, so runtime can guide model choice in resource-constrained
deployments. Complete per-iteration runtime traces supporting Table 9—covering fit, predict, and total times
for each model across the 10%, 25%, and 40% test sizes and all representative blocks—are available in the
repository [59].

4.6. Consensus panel

A consensus SNP panel was derived by combining two signals—the percentile of absolute point-
biserial correlation (|r|) with the label and the percentile of PCA selection frequency across MCCV resamples.
The combined score yields nested panels (Top-50, Top-120, Top-240); Top-120 balances parsimony and
stability and is used as the primary panel. The Top-50, Top-120, Top-240, and the full consensus panel are
available in the public repository [59].

4.6.1. Top-20 minimal panel

For operational use and cost-sensitive assays, a Top-20 subset of the consensus panel is reported as
an illustrative, low-complexity option (Table 10). This subset preserves coverage of the highest | r | percentiles
and, in mid-to-high correlation tiers, attains ~<98-100% accuracy for SVM/RF, with only small deltas relative
to Top-120; per-tier accuracy differences and confidence intervals are provided in [59].

Table 10. Top-20 consensus SNPs ranked by combined correlation and PCA-selection percentiles

Feature Ir Pearson_percentile  Select_rate overall PCA percentile  Combined score
rs10868791  0.925 100 0 92.667 96.334
rs6670842  0.900 99.982 0 92.667 96.325
rs9909962  0.900 99.965 0 92.667 96.316
rs2370893  0.900 99.947 0 92.667 96.307
rs6814827  0.897 99.929 0 92.667 96.298
rs311992 0.874 99.911 0 92.667 96.289
rs10504132  0.873 99.894 0 92.667 96.281
rs13420968  0.869 99.876 0 92.667 96.272
rs9534610  0.868 99.858 0 92.667 96.263
rs1485768  0.867 99.841 0 92.667 96.254
rs7752055  0.863 99.823 0 92.667 96.245
rs1209914  0.849 99.805 0 92.667 96.236
rs1373013  0.847 99.788 0 92.667 96.227
rs2034510  0.843 99.770 0 92.667 96.219
rs1568773  0.840 99.752 0 92.667 96.210
rs619228 0.835 99.734 0 92.667 96.201
rs2833795  0.834 99.717 0 92.667 96.192
rs7851392  0.834 99.699 0 92.667 96.183
rs6716734  0.828 99.681 0 92.667 96.174
1s2003154 0.828 99.664 0 92.667 96.165
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4.6.2. Correlation thresholds for target accuracies

Block-wise accuracy across DatasetA and DatasetB supports interpretable, label-aware thresholds for
marker prioritization (R=1,000 MCCV resamples; 10%, 25%, and 40% test sizes). Using k-NN as the
conservative yardstick, |r] >0.50 attains >90%, |r| >0.52 achieve >95%, and |r| >0.60 reaches ~99%; classifier-
specific minima are summarized in Table 11. These thresholds complement the consensus panel when rank
ties or assay constraints must be resolved.

Table 11. Minimum absolute correlation (Jrjmin) required to reach >90%, >95%, and ~99% accuracy across
datasets (A and B) and classifiers (global thresholds are conservatively determined by k-NN)

Classifier >90% (rjmin)  >95% (Jrjmin) = 99% (|rjmin)
k-NN 0.5 0.52 0.6
SVM 0.44 0.44 0.44
RF100 0.44 0.44 0.44
RF125 0.44 0.44 0.44
Global (all models) 0.5 0.52 0.6

4.6.3. Summary and practical guidance

For discovery and flexible downstream analysis, Top-120 offers a stable, interpretable panel with
~99-100% performance in mid-high correlation tiers; for rapid deployments or budget-limited wet-lab follow-
up, Top-20 is an attractive default with ~98—100% in those tiers and small deltas relative to Top-120 (per-tier
summaries in [59]). When assay slots are scarce, the | r |, thresholds in Table 11 (0.50/0.52/0.60 for
>90%/>95%/~99%) provide a simple rule to finalize inclusions or substitutions while maintaining target
accuracy.

4.7. Overall discussion and practical implications

Results across DatasetA and DatasetB and all test sizes show consistent trends: classifier performance
scales with the strength of feature—label correlation, SVM and RF reach near-ceiling accuracy (<98-100%;
e.g., A1-A7 and B16-B22) in moderate-to-strong blocks, and k-NN degrades more steeply as correlation
weakens. Statistical validation indicates that these differences are statistically significant and consistent across
blocks, reinforcing that feature—label correlation is the key determinant of predictive accuracy.

In mid-correlation tiers, linear SVM’s advantage is consistent with margin-based generalization: once
[r| supplies moderately informative axes, a linear separator attains large, stable margins and low variance. RF
approaches ceiling as correlation strengthens but is slightly more variance-prone in the mid-range due to tree-
split instability on weaker signals. k-NN relies on local neighborhood purity; it benefits most at very high |r|
yet degrades faster as manifolds overlap or noise increases. These mechanisms mirror the observed accuracy
and pairwise-significance patterns across DatasetA/B blocks and test sizes.

Methodologically, a simple Pearson-based selection yields performance competitive with more
complex pipelines. Relative to the PCA baseline, Pearson-based selection achieves indistinguishable accuracy
for SVM and RF, and slightly outperforms PCA for k-NN at smaller test sizes—underscoring the practical
value of a transparent, interpretable selector while still recognizing PCA as a strong unsupervised reference.

Runtime analysis (Table 9) shows that RF carries the largest training cost (RF125 > RF100), SVM is
consistently fast, and k-NN is negligible at training but heavier at prediction. Median per-iteration runtimes
remain modest—hundreds of milliseconds for RF and only a few milliseconds for SVM and k-NN—
demonstrating that both the Pearson-based selection pipeline and the PCA baseline are computationally
practical.

4.7.1. CPU-only feasibility

All experiments ran on CPU. Under 120-SNP panels, linear SVM/k-NN operate in milliseconds per
query, while RF remains sub-second, and fit overheads follow SVM « RF100 < RF125 (Table 9). These
latencies, consistent across R=1000 MCCV resamples and all test sizes, indicate practicality for point-of-care
or edge deployment.

4.7.2. Several limitations merit note

LD-aware redundancy control (e.g., LD-clumping) was not systematically applied; only two HapMap
Phase Il populations (CEU vs YRI) were analyzed; and the sample size is relatively small. Future work will
incorporate LD-clumping or mRMR to reduce redundancy, expand to multi-ethnic and multi-class cohorts, and
evaluate deep representation learning and functional-annotation integration, while preserving leakage-free
training protocols and locus-level interpretability.
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Taken together—i) parity with PCA-120, ii) stable runtimes at fixed dimensionality, iii) a compact
Top-20 with near-ceiling performance, and iv) actionable |r| thresholds—these findings support Pearson-based
selection as a simple, transparent baseline for small-n/high-p SNP classification, with the consensus
construction adding robustness while remaining block-agnostic.

5. CONCLUSION

Pearson-based selection, complemented by a simple consensus rule, delivers interpretable panels that
match PCA-120 performance at the same dimensionality while simplifying deployment decisions. A 20-locus
practical panel provides a cost-effective option with minimal accuracy loss, and conservative |r| thresholds
translate results into clear operating points. These outcomes recommend Pearson-ranked, consensus-refined
subsets as a strong baseline for SNP-based classification under small-n/high-p constraints.

Under systematic QC and Pearson-based selection, supervised classification of human populations
shows robust, statistically significant differences among classifiers: RF and SVM reach ceiling performance
on moderate-to-strong correlation subsets, whereas k-NN is more sensitive as correlation weakens. Compared
with PCA, Pearson-based selection remains competitive—SVM and RF attain indistinguishable accuracy
under both, and k-NN retains a small edge with Pearson-guided features—while runtime demands are modest.

Beyond accuracy, two practical outputs are provided: i) a 120-SNP consensus panel that combines
correlation evidence with PCA selection frequency, and ii) operating thresholds (|r| >0.50 for >90%, |r| >0.52
for 295%, [r| >20.60 for ~99%) that offer reproducible criteria for marker prioritization.

Limitations include the absence of LD-clumping, restriction to two HapMap Phase 11 populations, and
limited sample size; future work should broaden cohorts, incorporate LD-aware pruning and functional
annotations, and assess stability at larger scales.

On commodity CPUs, inference with 120-SNP panels is millisecond-scale for linear SVM/k-NN and
sub-second for RF, enabling point-of-care or edge deployment. Future work will extend to multi-class cohorts
and deep representation baselines under the same leakage-free protocol, while maintaining locus-level
interpretability. These steps operationalize a reproducible, CPU-feasible pipeline for real-world screening
scenarios.
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