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Phishing threats exploit social engineering and deceptive web infrastructure
to steal sensitive personal information, often by mimicking legitimate
websites. With the proliferation of online services and the increasing
prevalence of cybercrime, detecting phishing websites has become a critical
challenge. This study presents a comprehensive machine learning (ML)-based
approach for detecting phishing websites. A total of 48 discriminative features
were extracted from 10,000 web pages—comprising 5,000 phishing and 5,000
legitimate sites. Nine ML classifiers were initially evaluated, including
random forest (RF), support vector machine (SVM), and XGBoost. Ensemble
models based on soft voting and stacking were then constructed to improve

detection performance. Among the models, the soft voting classifier (VC)
achieved the best performance with an accuracy and F1-score of 98.82%. The
results indicate that ensemble learning offers a robust solution for the
automated detection of phishing websites.
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1. INTRODUCTION

The swift evolution of the internet, coupled with its expanding usage, complicates and furthers the
security issue [1], [2]. Recently, numerous threats have emerged that aim to obtain sensitive personal
information for financial gain or identity theft. One of these common threats is phishing.

Phishing is a criminal activity that uses technology and social engineering to steal sensitive personal
information from victims [3]. This information can include financial account details, login credentials,
usernames, passwords, personal contacts, and social relationships [4]. In phishing, attackers contact users by
phone, text, or email to solicit personal information while posing as well-known or respected businesses [4],
[5]. Phishing websites often pretend to have urgent issues, such as unpaid invoices, suspicious account activity,
or requests to log in to "verify" your password or account details. These phony websites can also request
confidential information, including bank account numbers or credit card details. If you enter this information,
cybercriminals can gain access to your accounts, steal your data, commit identity theft, and even infect your
device with malware [6]-[8].

According to Awasthi and Goel [9], about half of cybersecurity experts noticed these. Due to the
COVID-19 pandemic, they are subjected to attacks. In addition, there are around 1185 phishing attacks directed
at enterprises every month, too. In turn, security professionals might have to use 1-4 days to fend off a cyber
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attack. Furthermore, about 30% of people in cybersecurity reported that phishing has a high rate of success
now. Given the increase in phishing attacks, various methods to handle and mitigate them have been proposed.

To address this persistent challenge, the present study initiates the development and testing of an
effective machine learning (ML)-based system for identifying phishing sites through systematic page features.
Whereas earlier works were mainly centered on email content or user actions, our approach focuses on 48
manual features taken from both real and trick webpages. The main goals of this study are: i) to compare classic
and ensemble ML classifiers for phishing detection, ii) to pick the strongest and most accurate model for real-
time application, and iii) to prove the model's usability through analysis of inference time and model size. With
understandable features and flexible algorithms, this work offers a simple yet very accurate detection model
that can work in resource-limited settings. Furthermore, we demonstrate how ensemble techniques, such as
soft voting, enable high performance levels comparable to more complex architectures, while maintaining
efficiency and clarity.

Our research efforts have led to the examination of ML methods for detecting phishing websites, as
artificial intelligence plays a significant role in smart city contexts [10]. When we reviewed the study
challenge’s goals and looked at the training data, we determined that support vector machine (SVM), random
forest (RF), artificial neural network (ANN), k-nearest neighbors (KNN), logistic regression (LR), gradient
boosting, XGBoost, CatBoost, LightGBM, and two ensemble meta-learners: voting and stacking classifiers
were the best models to use. After that, we use each of the ML classifiers with the dataset to discover which
one has the best outcome.

You’ll find the sections are grouped as shown below. In section 2, the article describes the literature
review. Section 3 explains the way the proposed approach is implemented. In section 4, the researchers show
and evaluate the different results. Finally, the author sums up the report in the last section.

2. BACKGROUNDS AND LITERATURE REVIEW

As phishing websites pose a significant threat, numerous studies and reviews have been published.
These recent works on phishing website detection provide crucial knowledge for researchers to understand
various methods to detect phishing. Generally, phishing can be detected based on ML detection, blacklist
detection, heuristic detection, and visual similarity detection. In the next section, the study will explain how
phishing can be detected using ML.

2.1. Machine learning algorithms

Phishing websites are much easier to find with the help of ML [11]. ML a subset of Al, helps build
models by learning from given data and using them for predictions [12]. Examples of ML classifiers include
SVM, RF, and ANN.

2.1.1. Random forest

RF is an interesting ML model since it classifies data accurately and efficiently. RF is made up of
supervised learning algorithms that are used for performing both classification and regression [13]. To find the
best conclusion, it gathers and assesses the results from some decision trees (DT), as shown in Figure 1.
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Figure 1. RF architecture
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2.1.2. Support vector machines

The reason SVM is commonly used in text classification is that it operates at a high speed and is
highly effective [13]. It creates a hyperplane or collection of hyperplanes that can be used to divide data into
several classifications [14], as shown in Figure 2. SVM has been shown to perform better than several ML
techniques [15].
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Figure 2. SVM architecture

2.1.3. Artificial neural networks

A supervised ML approach called ANN is utilized for regression and classification prediction. As
shown in Figure 3, the ANN model consists of layers, and each layer of the model is specified by several nodes
(neurons) [12]. Nonlinear statistical models reveal a complex relationship between inputs and outputs, enabling
the discovery of novel patterns [13]. The ANN can learn from the data and produce replies in the form of
predictions or classifications, just like the neurons in the human nervous system can do so [12].

Artificial Neural Network (ANN)
Architecture

Output Layer

Output

Figure 3. ANN architecture

2.2. Related works

Omari conducted a comparative study to identify phishing websites using ML algorithms, testing
various models LR, SVM, KNN, Naive Bayes, DT, RF, and gradient boosting) on the UCI phishing dataset
[16]. The study highlights gradient boosting and RF as top performers, achieving accuracies of 97.2% and
97.1%, respectively. The paper underscores the importance of robust ML approaches to combat evolving
phishing threats. Jain and Gupta [17] proposed a ML approach to detect phishing attacks based on URLs. The
researchers used 14 characteristics of URLSs to tell whether a website could be trusted or not. Two kinds of
datasets were used in my research, one with 32,951 phishing URLs and another with valid URLs that came
from various sources. These ML techniques were used as classifiers. They stated that SVM performed better
than Naive Bayes in terms of accuracy.

The work in [18] presented the role of feature selection in ML to detect spam and phishing attacks.
Feature selection optimization was used to test the best classifiers among RF, KNN, ANN, SVM, LR, and
Naive Bayes. The authors utilized spam emails and UCI datasets (including 11,056 websites with 31 features)
in the proposed work and employed the Weka application for feature selection optimization.

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4626-4640



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4629

BestFirst+CfsSubsEval was used as the first feature selection, which reduces the features to 10.
Ranker+Principal was the second feature selection optimization, reducing the features to 30. The results reveal
that RF performed the best, achieving an accuracy of 94.77% with BestFirst+CfsSubsEvaluation and 97.33%
with Ranker+Principal component. Furthermore, the performance of Ranker+Principal was superior to that of
BestFirst+CfsSubsEval.

Lokesh and Gowda [19] proposed phishing website detection based on a practical ML approach. The
best ML techniques for phishing detection were applied to show the pros and cons of each method. An
automatic ranking system for feature detection was introduced to detect phishing with a certain level of
accuracy. PhishTank and MillerSmiles are the resources of the used dataset, comprising 30 features. RF, KNN,
DT, SVM, and support vector classifier (SVC) were utilized for testing. The result revealed that the RF
technique has outperformed the former in terms of accuracy, scoring 96.87%. In [15], the former work was
criticized for the data sources and feature extraction being insufficient.

Ramaiah et al. [20] proposed an ensemble stacking model for phishing website detection using DT-
recursive feature elimination with cross-validation (DT-RFECV) to select optimal features, including URL
syntax, SSL attributes, and DOM-based characteristics. Their framework achieved 97.7% accuracy on a
balanced dataset of 10,000 samples (50% phishing/legitimate) from Mendeley repositories, leveraging only 10
features. Similarly, Nova et al. [21] proposed an ensemble learning approach combining RF, XGBoost, and
CatBoost with RFECV-based feature selection to detect phishing websites. It extracts 35 features, including
NLP-based, address-based, and HTML-based attributes, achieving 88.90% accuracy.

Chawla [12] suggested analyzing specific characteristics of phishing sites to identify and capture
them. Moreover, the features of the UCI dataset and the ML methods were explained and illustrated in detail.
Following this, the UCI dataset is used to test the following ML classifiers (LR, KNN, SVM, DT, RF, ANN,
and max voting classifier (MVC)). The results show that MVC gains the best accuracy among all classifiers
(97.73%). As mentioned, the UCI dataset comprises 11,056 websites, featuring 30 attributes. Of these, 6,157
are classified as non-phishing, and 4,898 are identified as phishing. Samad et al. [22] criticized this and said
there is no balance between phishing and non-phishing websites. They also worked on testing them in a
balanced way (6,157 phishing and 6,157 non-phishing websites) and explained that there are differences
between them.

Alnemari and Alshammari [13] developed and evaluated four models (ANN, RF, DT, and SVM) to
increase the effectiveness of ML for phishing domain detection. They also used the MinMax normalization
technique to develop the four models. The MinMax normalization technique improved the four models by
compressing the data to a domain of (1, 0). Moreover, the authors used the UCI dataset, which was criticized
by Samad et al. [22]. The test results revealed that the RF technique performed best, achieving an accuracy of
97.3%.

After explaining and clarifying the previous research, the following observations were noted: most of
the proposed works used the UCI data set, which we mentioned earlier is an unbalanced dataset. It contains a
small number of features (30).

Lately, scientists in the phishing detection sector have looked into how various types of ML models,
including advanced and ensemble methods, work to detect phishing threats. DT, Naive Bayes, and LR are often
picked because they are easy to work with and their results can be explained. Still, their efficiency drops when
the data is complex or has many dimensions, according to what [23], [24] found in their review. To achieve
better results and make the model more reliable, RF, AdaBoost, and gradient-based techniques have been
mainly used as ensemble methods. In many cases, these strategies outperform single learners in detecting
phishing scams, as demonstrated by [25]-[27].

Simultaneously, deep learning has also been experiencing a wave in its acceptance, especially via
convolutional neural networks (CNNs), long short-term memory (LSTMs) networks, and CNN-based, LSTM
networks. These models have shown superior performance in capturing sequential patterns and extracting
contextual features from URLs or webpage contents [28]. Nevertheless, the computational cost, complexity,
and data requirements of deep learning limit their applicability in real-time or lightweight environments.
Hybrid frameworks that combine ML with feature selection, natural language processing (NLP), or URL
parsing have also proven effective. These systems integrate multiple feature domains, improving phishing
resilience while maintaining scalability [29]-[31].

In contrast to these complex approaches, ANN, SVM, and RF were chosen in this research to ensure
there would be no serious issues when these models are put into practical use. These models are well-suited
for real-time detection systems where interpretability, speed, and low-resource requirements are critical.
Table 1 shows the summary of the proposed methods.
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Table 1. The summary of proposed methods

Authors Dataset Technique Objective
Alnemari and UCI dataset 11,055 with 30 features ANN, SVM, DT, To develop and evaluate four models to
Alshammari and RF increase the effectiveness of ML for phishing
[13] domain detection
Chawla [12] UCI dataset 11,056 websites with 30 features LR, KNN, SVM,  Analyzing some characteristics of phishing
DT, RF, ANN, sites to capture these sites using these
and MVC characteristics.
Ramaiahetal. Two datasets (DS-1, DS2) from Mendeley, DT, RF, bagging Develop an accurate phishing detection
[20] each with distinct characteristics. classifier (BC), model using ensemble learning, DT-RFECV
and proposed  feature selection, and SMOTE to combat
ensemble evolving cyber threats.
stacking model
Lokesh and Datasets from the Phish Tank and Miller RF, KNN, DT, To identify the best ML techniques for
Gowda [19] Smiles archives, with 30 features. SVM, and SVC phishing detection and the pros and cons of
each technique.
Salihovic et  UCI Dataset, 11,056 websites with 31 features, RF, KNN, ANN, Test the most successful algorithms using
al. [18] using feature selection optimization, BestFirst SVM, LR, and feature selection optimization.
+ CfsSubsEvaluation feature 10, Naive Bayes
Ranker + Principal Component feature 30.
Jain and  PhishTank has 14 features. SVM and Naive Anti-phishing URLSs using ML method
Gupta [17] The first dataset consists of 15000 URLs (1000  Bayes
non-phishing URLs and 14000 phishing
URLs). The second dataset contains 25000
URLs (2000 non-phishing URLs and 23000
phishing URLS).
Omari [16] UCI Dataset 11,055 with 30 features. SVM, Naive  To assess the efficiency of seven ML models
Bayes, RF, LR, indetecting phishing domains.
KNN, DT, and
Gradient
Boosting
Almujahid et The data consisted of 48 features extracted LR, KNN, DT, Conduct a study to evaluate the efficiency of
al. [27] from a collection of 10,000 web pages. 5,000 RF, SVM, the eight ML and DL algorithms in detecting
out of the 10,000 suspected sites were labeled XGBoost, and phishing.
as phishing, while the remainder were CNNmodel
confirmed as trustworthy websites.
Alshingiti et The dataset, comprising 20,000 records with  LSTM, CNN, develop something that can determine if a
al. [28] 80 features, was very detailed; therefore, the and n LSTM-  website is phishing.
30 “best” features were identified and selected =~ CNN-based
using the SelectKBest method. approach
This study — The names of four datasets are like this: D1, MLSELM An ensemble model made up of multiple
stacking D2, D3, and D4. D1 is taken up in the UCI layers to find phishing sites.
repository, and D2 consists of 48 features.
Also, the two datasets D3 and D4 are taken; D3
consists of 111 features with a total of 58,645
observations, and D4 consists of 111 features
with 88,647 records. There are two classes in
every dataset: phishing and legitimate.
This study — Three intermediate-sized websites' phishing XGBoost, Evaluates the promise of ML on phishing
voting  soft, data (1000-31000 variables in each dataset). CatBoost, and domain identification
2023 LightGBM

3. PROPOSED APPROACH AND METHODOLOGY
Phishing website detection can significantly benefit from the application of ML. Figure 4 outlines a
comprehensive methodology for leveraging ML to identify phishing websites. It is composed of the following

phases:

— Data collection: compile a labelled dataset comprising legitimate and phishing websites. Labels indicate
the authenticity of each website, distinguishing between genuine, and phishing attempts.

— Feature extraction: isolate relevant attributes of the data maintained on the websites, which may include
information on send addresses, web headers, email subject, textual data, embedded links, attachments, and
metadata. The attributes are the inputs of the ML model.

— Preprocessing: clean and preprocess the website data, involving tasks like removing stop words, text
tokenization, case normalization, and addressing special characters or formatting issues.

— [Feature engineering: convert the extracted features into a suitable format for ML algorithms. Techniques
may include one-hot encoding, term frequency-inverse document frequency (TF-IDF) representation, or
word embeddings to capture semantic meaning.

— Model training: the experiments were carried out with the use of RF, SVM, and ANN ML algorithms. The
data was split into training and testing parts.
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— Model evaluation: the testing dataset was used to determine how well the model was performing. To find
out the accuracy of binary classification models, most researchers employ accuracy, precision, recall,
F1-score, and receiver operating characteristic (ROC).

— Model optimization: several hyperparameters were adjusted to control how a learning algorithm learns from
data. Grid search was employed to find optimal parameter settings that yield the best results.

— Performance evaluation; the model was tested on real-time phishing detections. The performance was
periodically monitored using the learned datasets.

Training data is essential to ML-based phishing detection algorithms. In addition, the choice of
features, the selection of appropriate algorithms, and ongoing monitoring and tuning to be up to date are crucial
to improving accuracy against emerging phishing threats.
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Figure 4. Methodology of the proposed approach

3.1. Model configuration and validation

Various types of ML techniques were tested in this study for detecting phishing, among them were
SVM, RF, ANN, KNN, LR, gradient boosting, XGBoost, CatBoost, LightGBM, and two ensemble meta-
learners: voting and stacking classifiers. We used scikit-learn version 1.6.1, in conjunction with Python 3.10,
to carry out all the models.

Special hyperparameters for each model were found using grid search, and the results were checked
with 10-fold stratified cross-validation so that the data was equally divided among all classes. Metrics
considered in this experiment were accuracy, precision, recall, F1-score, and ROC-AUC. Table 1 summarise
how each model is configured.

Ensemble models, such as stacking and voting classifiers (VC), integrate multiple base learners, with
a LR meta-model used in the final estimator for stacking. To ensure comparability, all models were evaluated
under the same folds and training pipeline. The use of standard scaling was applied where appropriate (e.g.,
SVM, ANN, KNN, and LR) using pipelines. Table 2 shows the ML model configuration.

Table 2. ML model configuration

ML model Hyperparameter configuration

SVM C =1, 10]; gamma = 'scale’; kernel = 'rbf'; probability = True; random_state = 42

RF n_estimators = 100; max_depth = [10, 20]; criterion = 'gini'; bootstrap = True; random_state = 42

ANN hidden_layer_sizes = [(5, 2), (100,), (100, 50)]; activation = 'relu’; solver = ‘adam’; alpha = 0.0001;
learning_rate = "adaptive'; max_iter = 500

KNN n_neighbors = 5; weights = 'uniform'

LR C =1, solver = 'liblinear'; max_iter = 500; random_state = 42

Gradient boosting n_estimators = 100; learning_rate = 0.1; max_depth = 3; random_state = 42

XGBoost n_estimators = 100; learning_rate = 0.1; max_depth = [3, 5]; eval_metric = 'logloss'; random_state = 42

CatBoost iterations = 100; depth = [4, 6]; learning_rate = 0.1; verbose = 0; random_state = 42

LightGBM n_estimators = 100; learning_rate = 0.1; max_depth = [3, 5]; objective = 'binary'; random_state = 42; verbose
=-1

VC (Soft) Base estimators: XGBoost, CatBoost, LightGBM; voting = 'soft’; random_state = 42

Stacking cassifier

Base estimators: SVM, RF, XGBoost; Final estimator: LogisticRegression(); n_jobs = -1; random_state =
42

A powerful machine learning method for detecting phishing threats (Mahmoud Baklizi)
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4. RESULTS AND DISCUSSION
4.1. dataset description and preprocessing

The data utilized in this research is from a freely available Kaggle repository named “Phishing Dataset
for ML Chiew et al. [29]. The data includes 10,000 records that have been labelled, balanced between 5,000
phishing and 5,000 legitimate web entries. Each instance consists of 48 features derived from URL
characteristics, HTML content patterns, and client-side behavioural signals.

The features include syntactic indicators such as the number of dots, dashes, and special characters
(e.g.,'@', ‘%, ‘&’), as well as structural and contextual markers like URL length, path complexity, and domain
irregularities. It also captures web behaviour signals such as the use of insecure forms, JavaScript anomalies,
pop-up triggers, and iframe usage. These features have been widely adopted in phishing research due to their
effectiveness in distinguishing malicious behaviour, as shown in Figure 5.
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Figure 5. Heatmap correlation between features

Before training, the dataset was preprocessed by removing duplicates and verifying label consistency.
Binary labels were encoded as 1 (phishing) and 0 (legitimate). All numerical features were scaled using Min-
Max normalisation to the [0, 1] range to ensure consistency in learning. No categorical variables required
encoding, and no rows contained null values. All 48 features were retained without dimensionality reduction
to preserve the interpretive value of each attribute, given their domain relevance and collective contribution to
phishing detection. Table 3 shows the dataset specifications.

Table 3. The dataset specifications
Number of features  Number of phishing web pages  Number of phishing web pages
48 5000 5000

4.2. Evaluation criteria

The evaluation criteria to evaluate the ML models on the tested dataset are introduced. This framework
gauges the significance of the ML models in terms of threat detection. Accuracy, precision, recall, and
F1-score are exposed as crucial benchmarks for assessing the effectiveness of the ML models [32]. By
meticulously analyzing these metrics, the study ensures a comprehensive understanding of the models'
proficiency in accurately discerning and categorizing threats.
— Accuracy is used to correctly measure the classified instances in a dataset, providing an overall view of the

model's correctness as shown in (1):

Accuracy = (True Positives + True Negatives)/Total Predictions 1)

where: true positives is the successful identification of phishing websites and true negatives is the successful
identification of legitimate websites.
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— Precision is the extent to which true positive (TP) predictions are measured against all predictions.

Precision = (True Positive)/(True Positives + False Positives) 2
— Recall: hitting on all positive cases.

Recall = (True Positive)/(True Positives + False Negatives) 3)
— F1-score: relates precision and recall, delivering a stable performance measure.

F1 — score = (2 X Precision X Recall)/( Precision + Recall) 4)

As indicated in [33], the robust evaluation of the tested ML models can be assessed using these metrics in
threat detection.

4.3. Results of selected models

All the classifiers showed excellent performance, and the accuracy percentages ranged from 0.9443
to 0.9882 while using ML algorithms. Between the VCs, the soft VC did the best on every measurement,
improving accuracy (0.9882), precision (0.987425), recall (0.989), Fl-score (0.988207), and ROC-AUC
(0.9882). Performances were mainly top-notch because of ensemble approaches such as XGBoost (0.9878),
stacking classifier (0.9875), CatBoost (0.9874), and LightGBM (0.987). While they did not match the high
scores of the deep learning methods, the traditional ML algorithms still worked steadily. Specifically, the low
score was achieved by LR (0.9443), and KNN had moderate results (0.9519). Since the difference in accuracy
between the top and bottom classifiers is small, it reveals that the features of the dataset fit with various
algorithms. Nevertheless, ensemble methods usually result in small but functional gains.

Different algorithm families display appropriate hyperparameter configurations that match the
established guidelines of ML. Most of the time, tree-based ensemble methods choose simple, moderate-depth
options and varied learning rates, opting for a balanced level of complexity and ability to generalize. The used
neural network was the multilayer perceptron, with ReLU for activation, adaptive learning rate, and Adam
optimizer—a regular configuration for working with tables. Traditional algorithms required minimal tuning,
as SVM maintained C=10 and RBF scale gamma, while KNN used k=5 neighbors with uniform weights. Both
the VC and stacking classifier performed optimally without further tuning, as no additional hyperparameter
adjustments were required for them or their constituent models, thereby simplifying model selection while
maintaining the best results. Tables 4 and 5 show the results.

Table 4. Results for various classifiers

Accuracy  Precision  Recall fl AUC
Stacking classifier 0.9875 0.9862  0.9888 0.9875 0.9875
Voting cassifier (soft) 0.9882 0.9874  0.9890 0.9882 0.9882
ANN (MLP) 0.9767 0.9727 0.9810 0.9768 0.9767
RF 0.9841 0.9834  0.9848 0.9841 0.9841
SVM (RBF) 0.9659 0.9642  0.9678 0.9660 0.9659
KNN 0.9519 0.9479  0.9564 0.9521 0.9519
LR 0.9443 0.9375  0.9522 0.9447 0.9443
Gradient boosting 0.9776 0.9755  0.9798 0.9776 0.9776
XGBoost 0.9878 0.9866  0.9890 0.9878 0.9878
CatBoost 0.9874 0.9855  0.9894 0.9874 0.9874
LightGBM 0.9870 0.9858  0.9882 0.9870 0.9870

Table 5. The classifier results
Stacking classifier best_params
VC (soft) {3
ANN (MLP)
RF

{'cIf__activation: ‘relu’, 'clf__alpha: 0.0001, ‘clf__hidden_layer sizes: (100,), 'clf _learning_rate":
‘adaptive’, 'clf__solver': 'adam'}

SVM (RBF) {'cIf__criterion": 'gini’, 'clf_max_depth": 20, 'cIf__n_estimators": 100}
KNN {clf__C" 10, 'cIf__gamma": 'scale’}

LR {'cIf_n_neighbors": 5, 'clf__weights": 'uniform'}

Gradient boosting {'cIf__C" 1, clf__solver" 'liblinear}

XGBoost {'cIf__learning_rate" 0.1, 'clf__max_depth": 3, 'clf__n_estimators': 100}
CatBoost {'cIf__learning_rate": 0.1, 'clf _max_depth": 5, ‘clf__n_estimators': 100}
LightGBM {'cIf__depth": 6, ‘clf__iterations": 100, ‘clf__learning_rate" 0.1}
Stacking classifier {'cIf _learning rate": 0.1, 'clf _max depth': 5, 'clf _n_estimators'; 100}

A powerful machine learning method for detecting phishing threats (Mahmoud Baklizi)
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The VC operates well across all classes, but especially ensures that websites, whether phishing
(class 1) or legitimate (class 0), get the same level of accuracy during detection. The precision of class 0 was
0.9900, the recall was 0.9853, and the F1-score was 0.9876; meanwhile, class 1 had a precision of 0.9854, a
recall of 0.9900, and an F1-score of 0.9877. The importance of avoiding class bias is underscored in
cybersecurity, where both types of errors can be hazardous. Table 6 illustrates the voting ensemble classifier.

Table 6. Phishing detection per class for the voting ensemble classifier
Precision  Recall Fl-score  Support
0 09900 0.9853  0.9876 1500
1 09854  0.9900  0.9877 1500

Statistically, these results confirm that while all models performed competitively, the VC achieved
the most consistent and statistically reliable accuracy. Using the friedman test (x2(4)=14.2041, p=0.0067)
followed by the Nemenyi post hoc test, we found that voting significantly outperformed RF (p=0.0227) and
XGBoost (p=0.0409). No significant difference was observed between voting and stacking (p=0.9751) or
LightGBM (p=0.4973). These statistical findings, combined with the model’s ensemble architecture, reinforce
its suitability for high-stakes phishing detection applications where both reliability and interpretability are
crucial.

4.4. Comparative analysis of existing work

Our method not only achieves state-of-the-art accuracy, but does so using interpretable, lightweight
models. Furthermore, the inclusion of 48 well-engineered features and the use of 10-fold cross-validation
ensure both generalizability and deployment readiness. The proposed phishing detection method using a voting
ensemble outperformed all the compared models in Table 7. However, the deep learning model of
Alshingiti et al. [28] outperformed the voting ensemble, possibly due to its consideration of different datasets
that may contain features not extracted by the current model. For instance, Karim et al. [30] achieved 98.12%
accuracy using a hybrid ensemble model, while Almujahid et al. [27] reported 98.00% accuracy for both RF
and XGBoost. Kalabarige et al. [31] presented an ensemble stacked model with 98.43% accuracy but lacked
SHAP-based interpretability. Alshingiti et al. [28] reported 95.3% accuracy using a deep learning CNN-LSTM
ensemble, though at a significantly higher computational cost.

Table 7. The accuracy and F1-scores for the existing module

Study/model Model type Accuracy (%)  Fl-score
This study-RF Classical ensemble 98.40 0.9840
This study—XGBoost Gradient boosting 98.78 0.9878
Kalabarige et al. 2022 [31]  Stacked ensemble 98.43 0.9844
Karim et al. 2023 [30] Hybrid ML with URL features 98.12 0.9589
Almujahid et al. 2024 [27]  RF and XGBoost 98.00 0.9800
Alshingiti et al. 2023 [28]  Deep learning (CNN+LSTM) 99.20 99.200
This study-stacking Ensemble (SVM+RF+XGB) 98.73 0.9874
This study—voting (soft) Ensemble (XGB+CatBoost+LGBM) 98.82 0.9882

4.4.1. Feature importance analysis

We checked why the RF model performed better by testing the importance of each feature using both
the permutation method and the shapley additive explanations (SHAP) tool. They enable the assessment of the
impact of each feature on the prediction. Permutation importance increases the prediction error if you randomly
mix the values of a specific feature. Still, SHAP values show how each variable influences the outcome of each
prediction with the help of game theory.

Figure 6 shows the top 15 most significant characteristics based on mean SHAP values. Notably,
features related to URL structure and suspicious content indicators—such as RandomString,
NumSensitiveWords, PctExtHyperlinks, EmbeddedBrandName, and IpAddress—emerged as dominant
predictors of phishing behavior. These results are consistent with findings in recent literature [29], [30], which
confirm that lexical, contextual, and structural attributes of web pages are strong phishing signals.

The RF model’s strength lies in its ensemble of DT that can naturally model non-linear relationships
and interactions among features. In contrast, SVM and ANN showed comparatively lower sensitivity to
nuanced patterns, potentially due to parameter limitations and sensitivity to feature scaling.

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4626-4640



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4635

Top 15 SHAP Feature Importances - VotingClassifier

PctExtHyperlinks
PctExtNullSelfRedirectHyperlinksRT
PctNullSelfRedirectHyperlinks
InsecureForms
FrequentDomainMameMismatch
PctExtResourceUrls

NumDash

NumMNumericChars

PathLevel

SubmitinfoToEmail

NumDots

NumSensitiveWords
QueryLength

ExtFavicon

frameOrFrame

T
0.00 0.02 0.04 0.06 0.08
Mean(|SHAP|)

Figure 6. Top 15 features using SHAP importance for voting

4.4.2. Feature attribution and shapley additive explanations-based analysis

To explain the predictive behaviour of the models, SHAP was used to rank the top 15 most influential
features for both the RF and VC models. Figure 7 presents the SHAP summary plots, and Table 8 lists the top-
ranked features with interpretive descriptions.
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SHAP value (impact on model output)

Figure 7. Voting SHAP summary

For the RF model, the top three contributors were:
— PctExtHyperlinks (percentage of external hyperlinks in the webpage HTML source code),
— PctExtNullSelfRedirectHyperlinksRT (rate of hyperiinks that use “#”, self-redirect, or abnormal values),
— FrequentDomainNameMismatch (whether the most frequent domain in the HTML does not match the page
URL).
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Table 8. Features based on mean SHAP values

Feature name Description
PctExtHyperlinks Percentage of external hyperlinks in the webpage HTML source code.
PctExtNullSelfRedirectHyperlinksRT  Rate of links with empty, “#”, self-redirect, or abnormal values in thresholded format.
FrequentDomainNameMismatch If the domain that often appears in the HTML is not the same as the website’s domain.
PctExtResourceUrls Percentage of external resource URLs in HTML (e.g., scripts, CSS).
NumbDash Number of “-” symbols in the URL.
PctNullSelfRedirectHyperlinks Share of hyperlinks using self-reference, “file://”, or “#”.
InsecureForms Whether the form action attribute uses an insecure protocol (e.g., HTTP).
RelativeFormAction Whether the form action uses a relative URL instead of an absolute one.
DomainIinSubdomains Whether the domain includes top-level domain patterns in its subdomain section.
RandomString Presence of randomly generated-looking strings in the URL.
IframeOrFrame Whether the HTML source includes iframe or frame tags.
FakeLinklInStatusBar Use of JavaScript to modify the status bar link preview.
PopUpWindow Use of JavaScript to open pop-up windows.
RightClickDisabled JavaScript disabling the right-click menu.
EmbeddedBrandName Presence of a brand name embedded in the URL structure.

Similarly, the VC, which combines XGBoost, CatBoost, and LightGBM, highlighted overlapping

signals but also placed higher importance on:

— InsecureForms (forms submitted over HTTP or without a secure protocol),

— PctNullSelfRedirectHyperlinks (proportion of empty/self-pointing hyperlinks),

— RelativeFormAction (presence of relative rather than absolute URLs in form actions).

These findings validate the model’s reliance on known phishing indicators—particularly structural
deception, insecure interaction points, and abnormal link behaviour. The interpretability gains from SHAP
reinforce the RF strength in handling high-dimensional, rule-based feature interactions in phishing detection
tasks.

We conducted an additional evaluation by applying principal component analysis (PCA) and re-
training the best-performing VC on datasets reduced to 5, 10, 15, and 20 principal components. The results
demonstrated a consistent decline in classification accuracy compared to the full-feature model (original
accuracy: 0.9882), with PCA-based accuracies ranging from 0.8429 (5 components) to 0.9510 (20
components). While PCA successfully preserved variance (with six components capturing over 95%), it failed
to retain the discriminative structure necessary for optimal classification. Consequently, we conclude that PCA-
based dimensionality reduction is not appropriate in this context, and we keep all 48 original features to
preserve both performance and interpretability.

4.5. Confusion matrix and misclassification analysis

Figures 8 and 9 show the confusion matrices for the RF and VC (soft) models, respectively. Both
models achieved high classification performance; however, differences in their error distribution provide
insight into their behaviour.

Voting Classifier (Soft) Confusion Matrix Random Forest Confusion Matrix

1400 1400

1200 1200

1000 1000

800

True label
True label

600

400

200

Predicted label Predicted label

Figure 8. Confusion matrix for VC Figure 9. Confusion matrix for RF classifier
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The RF model misclassified 23 legitimate websites as phishing (false positives) and failed to detect
20 phishing websites (false negatives). In contrast, the VC slightly improved these results, reducing false
positives to 22 and false negatives to 15. Table 9 shows the RF and VC positive and negative results.

Table 9. RF and VC results
Model  True positives  True negatives  False positives  False negatives
RF 1480 1477 23 20
VC 1485 1478 22 15

Upon examining SHAP-based feature rankings, false positives were often associated with high values
of PctExtHyperlinks, PctExtResourceUrls, and InsecureForms—features that are typically strong phishing
indicators but occasionally present in legitimate sites with external content or embedded resources (e.g.,
advertising links, and analytics scripts).

Conversely, false negatives (missed phishing instances) were typically characterised by relatively
benign patterns—URLs lacking suspicious characters (NumDash and RandomString) or showing fewer
indicators in fields like RightClickDisabled or IframeOrFrame. These phishing sites may use obfuscation or
mimic legitimate designs to evade detection, underscoring the evolving sophistication of phishing tactics.

Overall, the confusion matrix confirms that ensemble models like the VVC reduce both types of errors.
When paired with interpretable SHAP-based explanations, this provides a practical and reliable basis for real-
world phishing mitigation systems.

This study demonstrates the efficacy of classical and ensemble ML models for phishing detection,
achieving high accuracy and interpretability. The proposed models, particularly the VC, are suitable for
deployment in resource-constrained environments where transparency and efficiency are essential. To further
substantiate the practicality of deploying the VC in real-time phishing detection systems, we evaluated its
inference performance. Benchmark tests conducted on standard hardware (Intel Core i7 CPU and 16GB RAM)
showed an average prediction latency of approximately 2 milliseconds per sample, with a minimal serialized
model size of less than 5 MB. These results underscore the classifier’s efficiency, making it highly suitable for
integration into real-time threat detection frameworks, such as browser security extensions or mobile
applications, where computational resources and response times are critical factors.

However, challenges remain—particularly in handling adversarially crafted phishing attempts and
maintaining detection quality across evolving attack vectors. Future work will explore adversarial defense
mechanisms, domain adaptation, and real-time classification using streaming web data. Incorporating
contextual and behavioural features from multilingual phishing websites may also enhance the results.

5. CONCLUSION

This study presents a comprehensive evaluation of classical and ensemble ML models for detecting
phishing websites, utilizing a dataset of 10,000 labeled web pages and 48 extracted features. The experimental
results demonstrate that ensemble methods, particularly the soft VVC, deliver state-of-the-art performance with
an accuracy and F1-score of 98.82%, surpassing the performance of most individual classifiers. Our findings
affirm the effectiveness of ensemble learning in improving both accuracy and robustness for phishing detection
tasks. Moreover, the proposed model exhibits strong suitability for real-time deployment, with an average
inference time of approximately 2 milliseconds per sample and a compact model size under 5 MB, ensuring
compatibility with resource-constrained environments. This work contributes to the field by demonstrating that
lightweight, interpretable models can match or exceed the performance of more complex alternatives, while
maintaining efficiency and scalability. Future research will explore the integration of behavioral and temporal
features, as well as NLP techniques, to further enhance model generalizability and resilience against evolving
phishing strategies.
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