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 Rapid urbanization necessitates innovative traffic monitoring solutions. 

Traditional methods (fixed sensors/CCTV) face limitations in coverage, 

adaptability, and real-time processing. This review examines advancements 

(2015–2024) in vision-based unmanned aerial vehicle (UAV) traffic 

monitoring systems, evaluating their effectiveness in vehicle detection, 

traffic analysis, and congestion management. A systematic preferred 

reporting items for systematic reviews and meta-analyses (PRISMA)-guided 

analysis of 2,895 articles from IEEE Xplore, Scopus, Web of Science, and 

ACM Digital Library identified 49 eligible studies. Quantitative 

performance metrics (detection accuracy and latency) were standardized for 

cross-study comparison. Modern systems achieve >94% detection accuracy 

and <40 ms latency through edge computing and deep learning (e.g., you 

look only once (YOLO) and Faster region-based convolutional neural 

network (Faster R-CNN)). Multi-sensor fusion improves robustness by 35% 

in challenging conditions. However, battery life (reduced by 40% under 

processing load) and regulatory barriers remain critical constraints. Artificial 

intelligence (AI)-driven UAV systems enable real-time, high-accuracy 

traffic monitoring but require solutions for power efficiency and scalability. 

Future integration of 5G/6G and swarm intelligence holds promise for next-

generation smart traffic management. 
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1. INTRODUCTION 

Rapid urban population growth has created an urgent need for innovative traffic monitoring 

solutions. By 2050, about 68% of the global population will live in urban areas, increasing the pressure on 

existing transportation infrastructure. Traditional traffic monitoring methods, relying on fixed sensors and 

closed-circuit television (CCTV) cameras, have significant limitations in adapting to dynamic traffic 

conditions [1]. These conventional approaches face limitations in coverage area, response time, and real-time 

data-processing abilities. The emergence of unmanned aerial vehicles (UAVs) in traffic monitoring signifies 

a paradigm shift in monitoring methodology. Traditional remote sensing relies on satellites and fixed 

airborne platforms, but incorporating UAVs offers greater flexibility and cost-effectiveness in data 

acquisition [2]. These systems showcase superior capabilities in delivering real-time traffic data, facilitating 

more responsive and adaptive traffic management strategies. UAV technology has advanced significantly in 

urban areas, allowing it to operate at various altitudes and navigate confined spaces for exceptional 
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monitoring capabilities [3]. UAV-based systems offer several distinct advantages over traditional methods. 

Their mobility facilitates rapid deployment to areas of interest, while their aerial perspective provides 

comprehensive coverage of traffic networks. High-resolution imaging capabilities and advanced sensor 

technologies enable detailed traffic analysis that was previously unattainable with fixed monitoring systems [4]. 

UAVs operate in environments where traditional infrastructure is impractical or costly, making them valuable 

for temporary or emergency monitoring [5]. UAV technology has advanced significantly in hardware and 

software, with systems equipped with sensors like high-resolution cameras, thermal imaging, and LiDAR for 

monitoring diverse environmental conditions [6]. Fixed cameras/LiDAR/satellites: limited coverage, high 

costs, and inflexibility. UAVs offer mobility, rapid deployment, and cost-effectiveness. Recent advancements 

in computer vision and deep learning have improved UAV capabilities, as convolutional neural networks 

excel in vehicle detection and classification [7]. This review systematically analyzes recent developments in 

UAV-based traffic monitoring systems from 2015 to 2024, evaluates the effectiveness of various approaches 

in vehicle detection, traffic flow analysis, accident response, and congestion management systems, and 

identifies critical challenges and potential solutions for implementation, including regulatory frameworks, 

system integration requirements, and operational constraints. 

This review systematically examines advancements in UAV-based traffic monitoring systems from 

2015 to 2024, focusing on their effectiveness in vehicle detection, traffic analysis, and congestion 

management. By employing a preferred reporting items for systematic reviews and meta-analyses 

(PRISMA)-guided methodology, we analyze 49 rigorously selected studies to provide a standardized 

comparison of performance metrics such as detection accuracy and latency. Our work contributes to the field 

by: i) synthesizing state-of-the-art technologies, including deep learning and edge computing, which achieve 

>94% detection accuracy and <40 ms latency; ii) highlighting critical challenges like battery life and 

regulatory barriers; and iii) proposing future directions, such as 5G/6G integration and swarm intelligence, to 

address scalability and power efficiency. This comprehensive analysis aims to guide researchers and 

practitioners in developing next-generation UAV systems for smarter urban traffic management. 

 

 

2. REVIEW METHOD 

This comprehensive review systematically analyzes recent developments in UAV-based traffic 

monitoring systems from 2015 to 2024. The literature search was initially conducted across two major 

scientific databases: IEEE Xplore and Scopus. Additional databases, including Web of Science, Science 

Direct, and ACM Digital Library, were also consulted to ensure comprehensive coverage of the research 

domain. 

Our search strategy utilized specific keywords, including "UAV traffic monitoring", "drone traffic 

surveillance", "aerial vehicle detection", "computer vision UAV", and "deep learning traffic analysis." The 

initial search yielded 2,895 articles, which were then processed through Rayyan AI for systematic screening 

and categorization. A PRISMA-guided systematic review, see Figure 1, was conducted using IEEE Xplore, 

Scopus, Web of Science, and ACM Digital Library. Still, the time frame covers the evolution of UAV 

technologies (e.g., deep learning and edge computing) from early adoption to maturity. 

The screening process involved two stages: automated filtering with Rayyan AI, then manual 

verification by two independent researchers to minimize bias. Specific inclusion criteria included: i) papers 

from 2015 to 2024, ii) peer-reviewed journals and conference proceedings, iii) UAV-based traffic 

monitoring, and iv) studies with quantitative performance metrics. Furthermore, we prioritized studies that 

reported statistically significant findings and included real-world implementation data. 

The exclusion criteria included: i) non-English publications, ii) review papers, iii) papers lacking 

experimental validation, and iv) studies concentrating solely on theoretical frameworks. We also excluded 

studies that lacked sufficient methodological descriptions or did not provide clear performance metrics for 

comparison. The Rayyan artificial intelligence (AI) screening effectively identified duplicates, assessed 

relevance, and evaluated quality, resulting in 49 eligible papers for analysis, as shown in Figure 1. 

This reflects a selection rate of about 1.7% from the initial corpus, ensuring that only the most 

relevant and rigorous studies are included. The selected papers were analyzed systematically across multiple 

dimensions, including hardware architectures, software implementations, detection algorithms, and system 

performance metrics. We created a structured data extraction form to ensure consistent information retrieval 

across all studies.  

It includes fields for algorithm type, dataset characteristics, performance metrics, validation 

methods, and implementation constraints. Attention is focused on quantitative results, prioritizing 

performance metrics like detection accuracy, processing speed, and system reliability. We implemented a 

standardized performance evaluation framework to enable fair comparisons between studies with different 

evaluation methodologies.  
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This framework normalized metrics to common baselines and included confidence intervals when 

statistical data was available. Performance benchmarks were standardized across studies for meaningful 

comparisons, normalizing metrics like detection accuracy, processing latency, and system reliability [6], [7]. 

The normalization process considered variations in testing environments, dataset characteristics, and 

evaluation methodologies. Statistical analysis, including mean performance, standard deviation, and trend 

analysis, identified significant advancements in the field during the reviewed period. 
 

 

 
 

Figure 1. PRISMA flow diagram for the systematic review process 

 

 

3. UNMANNED AERIAL VEHICLE SYSTEM ARCHITECTURE AND DESIGN COMPONENTS 

FOR TRAFFIC MONITORING 

The hardware architecture of UAV-based traffic monitoring systems includes specialized platforms, 

sensors, and processing units designed for efficient and accurate traffic surveillance [8]. Modern traffic 

monitoring primarily utilizes rotary-wing UAVs, particularly quadcopters, which are favored for their 

stability and maneuverability. Recent advancements in platform design have resulted in significant 

enhancements in flight endurance and payload capacity. 

Field studies show medium-sized platforms (5–25 kg) optimally balance stability and flexibility, 

achieving flight times over 45 minutes under typical conditions [9]. The hardware constraints include battery 

life: 25–35 minutes (reduced by 40% under processing load) and payload: medium UAVs (5–25 kg) that 

balance stability and flight time. Rotary-wing UAVs dominate in terms of maneuverability. 

The evolution of visual sensor technology has led to advanced monitoring, with high-resolution 

cameras integrating sensing modalities like the visible spectrum, thermal imaging, and multispectral 

capabilities. Modern systems typically employ either monocular or stereo camera configurations, with the 

choice depending on specific monitoring requirements and computational resources [10]. While monocular 

systems offer advantages in terms of weight and power consumption, they require sophisticated algorithms 

for depth estimation.  

However, recent implementations using deep learning approaches have achieved depth estimation 

accuracies within 5% of those of stereo systems [11]. The processing architecture in modern UAV systems 

employs a distributed computing approach that balances onboard and ground-based processing capabilities. 

Onboard processing units typically integrate specialized hardware accelerators for real-time image processing 

while maintaining power efficiency.  

Recent developments in edge computing have led to significant improvements in real-time 

processing capabilities. Field implementations show hybrid processing architectures can achieve latencies 

under 100 ms for complex detection tasks while maintaining power consumption within limits [12]. The 

software framework employs a multilayered approach to data processing and analysis, with the image-

processing pipeline serving as the foundation through sophisticated algorithms for image enhancement and 

stabilization.  
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This encompasses real-time corrections for motion artifacts and environmental factors, resulting in an 

accuracy improvement of up to 35% in subsequent analyses compared to unprocessed feeds [7]. Advanced 

preprocessing techniques, such as adaptive contrast enhancement and noise reduction, preserve image quality 

in varying lighting conditions. Computer vision algorithms form the core analytical capability of the system, 

utilizing state-of-the-art deep learning methods for vehicle detection and tracking. Recent implementations 

show success with hybrid architectures combining YOLO v4 for detection and custom CNNs for 

classification, achieving accuracy rates over 94% under typical conditions [6]. Data management systems 

efficiently handle the significant information flow from monitoring operations using advanced compression 

and storage strategies, achieving 10:1 compression ratio while preserving critical visual information [13]–[15]. 

 

 

4. ADVANCED METHODS AND TECHNOLOGY INTEGRATION IN UNMANNED AERIAL 

VEHICLE TRAFFIC MONITORING 

Computer vision techniques form the foundation of modern traffic monitoring systems. Recent 

advancements in object detection have revolutionized vehicle identification capabilities in aerial imagery. 

Traditional approaches that utilize the histogram of oriented gradients (HOG) and scale-invariant feature 

transform (SIFT) have largely been superseded by deep learning methods. However, these classical 

techniques remain relevant in scenarios where computational resources are limited or real-time processing is 

paramount [13], [16]. Vehicle tracking in aerial footage presents unique challenges due to varying scales, 

occlusions, and complex urban environments. Modern tracking systems employ multistage approaches that 

combine motion prediction and feature matching. Kalman filtering combined with appearance-based tracking 

achieves over 90% accuracy in urban conditions [6], [17]. Modern traffic monitoring systems extensively use 

specialized CNN architectures optimized for aerial imagery analysis. Recent implementations show success 

with multiscale detection networks that manage varying vehicle sizes in aerial footage. Field studies indicate 

that properly optimized CNN architectures can achieve detection rates exceeding 96%, while maintaining 

processing speeds suitable for real-time applications [15], [18]–[21]. You look only once (YOLO) and Faster 

region-based convolutional neural network (Faster R-CNN) are state-of-the-art in vehicle detection on aerial 

platforms.  

Recent YOLOv4 implementations excel in real-time, achieving 94% detection accuracy and 

processing over 30 frames per second, as shown in Table 1 [12], [22]–[24]. Advanced fusion architectures 

combine data from various sensor modalities, such as visual sensors, thermal cameras, LiDAR systems, and 

radar units. Recent implementations show that multi-sensor fusion can enhance detection accuracy by up to 

35% in challenging environmental conditions [25]–[27]. Integrating GPS data with visual information 

enables precise vehicle localization and tracking, as modern systems use sophisticated fusion algorithms, 

achieving position accuracy within 1 meter with real-time processing capabilities [14], [28]–[31]. The real-

time processing of fused sensor data demands advanced optimization strategies. Recent implementations use 

edge computing architectures alongside adaptive processing algorithms, achieving end-to-end latencies under 

100 ms [31]–[33]. A timeline of key technological advancements in UAV traffic monitoring includes: (2015–

2017) Early HOG/SIFT-based detection; (2018–2020) CNN adoption (YOLO and Faster R-CNN); and 

(2021–2024) edge computing (<100 ms latency), multi-sensor fusion, and hybrid AI architectures. The 

typical tracking pipeline and its key components are illustrated in Figure 2. 
 
 

Table 1. Performance comparison of vehicle detection methods 
Methods Accuracy (%) Processing speed (fps) Resource usage Environmental robustness 

Traditional HOG 85 45 Low Moderate 
SIFT-based 88 35 Medium High 
Deep learning 95 30 High Very high 

 

 
 

 
 

Figure 2. Multi-stage vehicle tracking pipeline architecture for UAV-based traffic monitoring 
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5. COMPREHENSIVE ANALYSIS OF UAV TRAFFIC MONITORING APPLICATIONS AND 

PERFORMANCE METRICS 

The practical implementation of UAV-based traffic monitoring systems spans multiple application 

domains, including routine traffic flow analysis and emergency incident detection. UAV traffic flow analysis 

offers significant benefits compared to traditional monitoring, particularly in coverage area and measurement 

accuracy. Recent implementations utilize deep learning approaches that prove particularly effective in 

complex urban environments [34]–[36], as illustrated in Figure 3. Modern implementations provide 

comprehensive traffic analysis via integrated detection and measurement systems, as illustrated in Figure 4. 

Advanced detection systems utilize multistage processing pipelines, achieving counting accuracies over 95% 

under typical conditions [37]–[39]. 

 

 

 
 

Figure 3. Presents a detailed comparison of detection performance 
 

 

 
 

Figure 4. Vehicle detection and counting system architecture 
 

 

Modern speed estimation systems achieve accuracy by integrating computer vision and deep learning, 

with implementations showing mean absolute percentage errors (MAPE) below 3% across various vehicle 

types [40], [41], as illustrated in Table 2. Traffic density analysis systems employ sophisticated algorithms for 

real-time assessments of traffic conditions, as shown in Figure 5.  

 

 

Table 2. Speed estimation performance across vehicle types 
Vehicle type MAPE (%) Standard deviation (km/h) Processing time (ms) 

Passenger cars 2.8 1.2 35 
Heavy vehicles 3.2 1.5 38 
Motorcycles 3.5 1.8 33 

 

 

Advanced accident detection systems employ multistage analysis frameworks that achieve detection 

accuracies exceeding 93% with mean response times of less than 30 seconds [42], [43]. Real-world 

implementations have shown notable effectiveness in early accident detection with 94% accuracy, accident 

severity classification at 89% accuracy, automatic emergency service notification, and real-time scene 

assessment capabilities [44]-[46]. Modern congestion-monitoring systems use real-time analysis to identify 
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and predict traffic congestion, achieving 96% detection accuracy for severe events and keeping false positive 

rates below 2%, as shown in Table 3 [47]–[49]. 

 

 

 
 

Figure 5. Traffic density analysis framework 

 

 

Table 3. Detection performance metrics 
Metric Typical value Acceptable range 

Detection accuracy 95.3% >92% 
False positive rate 1.8% <3% 
False negative rate 2.1% <4% 
Processing latency 35 ms <50 ms 

 

 

The comparative analysis in Table 4 reveals several important trends in the evolution of UAV traffic 

monitoring reviews. Early works (2020) primarily focused on application domains and proof-of-concept 

implementations, with limited attention given to systematic evaluation. Mid-period reviews (2022) began 

incorporating more structured methodologies but typically emphasized technological aspects or application 

scenarios, rarely addressing both. The most recent reviews (2024) have started to adopt systematic 

approaches but often lack comprehensive quantitative analyses of performance metrics. 

 

 

Table 4. Comparative analysis of prior reviews in UAV traffic monitoring 
Study Focus area Review methodology Key findings Limitations 

Barmpounakis and 

Geroliminis (2020) [2] 
Large-scale urban traffic 

data collection 
Case study analysis of 

the pNEUMA 

experiment 

Demonstrated feasibility 

of massive-scale drone 

data collection for 
traffic analysis 

Limited to a single 

metropolitan area; 

minimal algorithmic 
comparison 

Outay et al. (2020) [1] Road safety applications Narrative review of 

implementations 
Identified safety and 

infrastructure 
management as primary 

application domains 

Lacked systematic 

selection criteria; 
minimal quantitative 

analysis 
Butilă and Boboc 
(2022) [39] 

Urban traffic analysis Systematic literature 
review 

Cataloged monitoring 
applications and 

detection methodologies 

Limited analysis of 
system architectures 

and processing 

pipelines 
Afrin et al. (2024) 

[42] 
Framework 

development 
Three-layered 

conceptual framework 
Proposed integration 

framework for UAV-

ITS systems 

Primarily theoretical; 

limited empirical 

validation 
Current study (2024) Comprehensive analysis 

of methods, 

technologies, and 
implementation 

Systematic review with 

quantitative 

performance analysis 

Identified performance 

trends, implementation 

barriers, and research 
gaps 

Limited to vision-

based approaches 
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5.1.  Comparative analysis of detection methodologies and performance metrics 

A systematic comparison of detection methodologies reveals significant performance differences 

across technological approaches. Table 5 provides a comprehensive analysis of detection methods, 

categorized by technological category and implementation timeframe. 

 

 

Table 5. Comprehensive comparison of detection methodologies and performance metrics 

 

 

6. CRITICAL CHALLENGES AND FUTURE DIRECTIONS IN UAV TRAFFIC MONITORING 

Current UAV-based traffic monitoring systems face several critical challenges despite significant 

advances. Processing power constraints are a critical issue, as platforms must balance computational 

capabilities with size and weight; modern deep learning can consume up to 75% of available capacity. 

Battery life limits system capabilities, as lithium-polymer technology provides flight times of 25 to  

35 minutes, reduced by up to 40% during processing-intensive tasks [50]–[53]. Environmental factors 

significantly impact performance; strong winds affect flight stability, and precipitation influences sensor 

performance. Additionally, low-light conditions can reduce visual monitoring efficiency by up to 35%. 

Regulatory frameworks impose strict operational limitations, increasing costs by 30-40% while decreasing 

system adaptability. Privacy considerations require data protection measures, which may reduce system 

effectiveness by 15-25%. Meanwhile, safety requirements add significant complexity, increasing system 

challenges by up to 50%. Barriers to implementation include high initial costs, integration difficulties that 

extend timelines by 40-60%, and scalability issues; operations exceeding ten units face exponential 

complexity increases.  

Emerging technologies present promising solutions to these challenges [54]–[56]. Advanced AI and 

machine learning techniques show an improvement of up to 40% in detection accuracy, while edge 

computing implementations lower latency by 65% and reduce energy consumption by 40%. Integrating 

5G/6G communications facilitates ultra-reliable, low-latency communications under 1 ms. Future 

developments in biomimetic methods, swarm intelligence, and smart city integration could cut urban traffic 

congestion by 35% through real-time routing optimization. Conversely, integrated emergency response 

systems could enhance response times by up to 50% [57]. 

 

 

7. CONCLUSION 

This paper provides a comprehensive review of vision-based UAV traffic monitoring systems, 

examining their methods, technologies, and implementation challenges. The analysis revealed that combining 

computer vision techniques with deep learning approaches has significantly enhanced traffic monitoring 

capabilities. Recent implementations have achieved detection accuracy rates of 94-96% while maintaining 

real-time processing capabilities, marking a substantial improvement over traditional monitoring methods. 

Our examination of system architectures demonstrates the critical role of integrated hardware-software 

solutions. By implementing edge computing and advanced sensor fusion techniques, we have reduced 

processing latencies to under 40 ms, enabling real-time traffic analysis even in complex urban environments. 

However, significant challenges remain with battery life limitations, processing power constraints, and 

environmental adaptability.  

The comprehensive analysis reveals several important barriers to implementation that must be 

addressed for widespread adoption. These include: i) regulatory frameworks that differ markedly across 

jurisdictions and often lag behind technological advancements; ii) economic constraints, with initial system 

deployment costs ranging from $15,000 to $50,000 depending on capability requirements; iii) technical 

Environment robustness Limitations 
Processing speed 

(FPS) 

Detection accuracy 

(MAP) (%) 
Study Methodology 

Low (sensitive to lighting 

changes) 

Low (CPU: 15%, Memory: 

0.5 GB) 

40-45 82-85 [34] HOG-based 

Medium (moderate 
invariance to 

scale/rotation) 

Medium (CPU: 30%, 
Memory: 1 GB) 

30-35 85-88 [10] SIFT-based 

Medium (improved 
lighting invariance) 

Medium-high (GPU: 50%, 
Memory: 2 GB) 

20-25 88-90 [4] Base CNN 

Medium-high (good scale 

invariance) 

High (GPU: 70%, Memory: 

3 GB) 

15-20 90-92 [19] Region-based 

CNN 
High (robust to various 

conditions) 

High (GPU: 80%, Memory: 

4 GB) 

15-18 92-94 [24] Faster R-CNN 

Very high (temporal 
context integration) 

Very high (GPU: 85%, 
Memory: 5 GB) 

20-25 95-97 [38] CNN-LSTM 
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integration challenges with existing traffic management infrastructure; and iv) privacy and data security 

concerns that may hinder public acceptance.  

Our research identified significant gaps in the current literature that warrant further investigation. 

These include: i) the limited research on energy-efficient processing architectures specifically optimized for 

UAV constraints; ii) inadequate attention to environmental resilience in diverse weather conditions; iii) the 

necessity for standardized evaluation frameworks to facilitate systematic comparison of various approaches; 

and iv) insufficient exploration of multi-UAV cooperative monitoring systems for large-scale urban 

environments. Despite these challenges, the future of vision-based UAV traffic monitoring remains 

promising. We proposed a strategic research roadmap that includes short-term priorities (1-2 years) focused 

on optimizing existing architectures, medium-term goals (3-5 years) aimed at integrating multi-modal 

sensing capabilities, and long-term objectives (5+ years) intended to create fully autonomous monitoring 

systems with predictive capabilities.  

The practical implications of this research extend beyond technical advancements. Transportation 

authorities can leverage these systems for more responsive traffic management, potentially reducing 

congestion by 15% to 25% in pilot implementations. Urban planners can utilize the extensive data generated 

by aerial monitoring for evidence-based infrastructure development. Emergency services can benefit from 

improved incident detection capabilities, with potential response time enhancements of 30% to 50%, as 

demonstrated in limited field trials. The emergence of advanced AI architectures, along with improvements 

in edge computing and 5G/6G communications, indicates the potential for further enhancements in system 

capabilities. Future research should concentrate on addressing key limitations, especially in power efficiency 

and environmental resilience, while developing standardized frameworks for system integration and 

deployment. Finally, UAV-based traffic monitoring represents a transformative technology that lies at the 

intersection of various disciplines, including computer vision, edge computing, telecommunications, and 

transportation engineering. The ongoing advancement of this field promises to play a crucial role in 

developing smart cities and intelligent transportation systems, contributing to more efficient, safe, and 

sustainable urban environments. 
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