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Rapid urbanization necessitates innovative traffic monitoring solutions.
Traditional methods (fixed sensors/CCTV) face limitations in coverage,
adaptability, and real-time processing. This review examines advancements
(2015-2024) in vision-based unmanned aerial vehicle (UAV) traffic
monitoring systems, evaluating their effectiveness in vehicle detection,
traffic analysis, and congestion management. A systematic preferred
reporting items for systematic reviews and meta-analyses (PRISMA)-guided
analysis of 2,895 articles from IEEE Xplore, Scopus, Web of Science, and
ACM Digital Library identified 49 eligible studies. Quantitative
performance metrics (detection accuracy and latency) were standardized for
cross-study comparison. Modern systems achieve >94% detection accuracy
and <40 ms latency through edge computing and deep learning (e.g., you
look only once (YOLO) and Faster region-based convolutional neural
network (Faster R-CNN)). Multi-sensor fusion improves robustness by 35%
in challenging conditions. However, battery life (reduced by 40% under
processing load) and regulatory barriers remain critical constraints. Artificial
intelligence (Al)-driven UAV systems enable real-time, high-accuracy
traffic monitoring but require solutions for power efficiency and scalability.
Future integration of 5G/6G and swarm intelligence holds promise for next-
generation smart traffic management.
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1. INTRODUCTION

Rapid urban population growth has created an urgent need for innovative traffic monitoring
solutions. By 2050, about 68% of the global population will live in urban areas, increasing the pressure on
existing transportation infrastructure. Traditional traffic monitoring methods, relying on fixed sensors and
closed-circuit television (CCTV) cameras, have significant limitations in adapting to dynamic traffic
conditions [1]. These conventional approaches face limitations in coverage area, response time, and real-time
data-processing abilities. The emergence of unmanned aerial vehicles (UAVS) in traffic monitoring signifies
a paradigm shift in monitoring methodology. Traditional remote sensing relies on satellites and fixed
airborne platforms, but incorporating UAVs offers greater flexibility and cost-effectiveness in data
acquisition [2]. These systems showcase superior capabilities in delivering real-time traffic data, facilitating
more responsive and adaptive traffic management strategies. UAV technology has advanced significantly in
urban areas, allowing it to operate at various altitudes and navigate confined spaces for exceptional
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monitoring capabilities [3]. UAV-based systems offer several distinct advantages over traditional methods.
Their mobility facilitates rapid deployment to areas of interest, while their aerial perspective provides
comprehensive coverage of traffic networks. High-resolution imaging capabilities and advanced sensor
technologies enable detailed traffic analysis that was previously unattainable with fixed monitoring systems [4].
UAVs operate in environments where traditional infrastructure is impractical or costly, making them valuable
for temporary or emergency monitoring [5]. UAV technology has advanced significantly in hardware and
software, with systems equipped with sensors like high-resolution cameras, thermal imaging, and LiDAR for
monitoring diverse environmental conditions [6]. Fixed cameras/LiDAR/satellites: limited coverage, high
costs, and inflexibility. UAVs offer mobility, rapid deployment, and cost-effectiveness. Recent advancements
in computer vision and deep learning have improved UAV capabilities, as convolutional neural networks
excel in vehicle detection and classification [7]. This review systematically analyzes recent developments in
UAV-based traffic monitoring systems from 2015 to 2024, evaluates the effectiveness of various approaches
in vehicle detection, traffic flow analysis, accident response, and congestion management systems, and
identifies critical challenges and potential solutions for implementation, including regulatory frameworks,
system integration requirements, and operational constraints.

This review systematically examines advancements in UAV-based traffic monitoring systems from
2015 to 2024, focusing on their effectiveness in vehicle detection, traffic analysis, and congestion
management. By employing a preferred reporting items for systematic reviews and meta-analyses
(PRISMA)-guided methodology, we analyze 49 rigorously selected studies to provide a standardized
comparison of performance metrics such as detection accuracy and latency. Our work contributes to the field
by: i) synthesizing state-of-the-art technologies, including deep learning and edge computing, which achieve
>94% detection accuracy and <40 ms latency; ii) highlighting critical challenges like battery life and
regulatory barriers; and iii) proposing future directions, such as 5G/6G integration and swarm intelligence, to
address scalability and power efficiency. This comprehensive analysis aims to guide researchers and
practitioners in developing next-generation UAV systems for smarter urban traffic management.

2.  REVIEW METHOD

This comprehensive review systematically analyzes recent developments in UAV-based traffic
monitoring systems from 2015 to 2024. The literature search was initially conducted across two major
scientific databases: IEEE Xplore and Scopus. Additional databases, including Web of Science, Science
Direct, and ACM Digital Library, were also consulted to ensure comprehensive coverage of the research
domain.

Our search strategy utilized specific keywords, including "UAV traffic monitoring", "drone traffic
surveillance”, "aerial vehicle detection"”, "computer vision UAV", and "deep learning traffic analysis." The
initial search yielded 2,895 articles, which were then processed through Rayyan Al for systematic screening
and categorization. A PRISMA-guided systematic review, see Figure 1, was conducted using IEEE Xplore,
Scopus, Web of Science, and ACM Digital Library. Still, the time frame covers the evolution of UAV
technologies (e.g., deep learning and edge computing) from early adoption to maturity.

The screening process involved two stages: automated filtering with Rayyan Al, then manual
verification by two independent researchers to minimize bias. Specific inclusion criteria included: i) papers
from 2015 to 2024, ii) peer-reviewed journals and conference proceedings, iii) UAV-based traffic
monitoring, and iv) studies with quantitative performance metrics. Furthermore, we prioritized studies that
reported statistically significant findings and included real-world implementation data.

The exclusion criteria included: i) non-English publications, ii) review papers, iii) papers lacking
experimental validation, and iv) studies concentrating solely on theoretical frameworks. We also excluded
studies that lacked sufficient methodological descriptions or did not provide clear performance metrics for
comparison. The Rayyan artificial intelligence (Al) screening effectively identified duplicates, assessed
relevance, and evaluated quality, resulting in 49 eligible papers for analysis, as shown in Figure 1.

This reflects a selection rate of about 1.7% from the initial corpus, ensuring that only the most
relevant and rigorous studies are included. The selected papers were analyzed systematically across multiple
dimensions, including hardware architectures, software implementations, detection algorithms, and system
performance metrics. We created a structured data extraction form to ensure consistent information retrieval
across all studies.

It includes fields for algorithm type, dataset characteristics, performance metrics, validation
methods, and implementation constraints. Attention is focused on quantitative results, prioritizing
performance metrics like detection accuracy, processing speed, and system reliability. We implemented a
standardized performance evaluation framework to enable fair comparisons between studies with different
evaluation methodologies.
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This framework normalized metrics to common baselines and included confidence intervals when
statistical data was available. Performance benchmarks were standardized across studies for meaningful
comparisons, normalizing metrics like detection accuracy, processing latency, and system reliability [6], [7].
The normalization process considered variations in testing environments, dataset characteristics, and
evaluation methodologies. Statistical analysis, including mean performance, standard deviation, and trend
analysis, identified significant advancements in the field during the reviewed period.
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Figure 1. PRISMA flow diagram for the systematic review process

3. UNMANNED AERIAL VEHICLE SYSTEM ARCHITECTURE AND DESIGN COMPONENTS
FOR TRAFFIC MONITORING

The hardware architecture of UAV-based traffic monitoring systems includes specialized platforms,
sensors, and processing units designed for efficient and accurate traffic surveillance [8]. Modern traffic
monitoring primarily utilizes rotary-wing UAVSs, particularly quadcopters, which are favored for their
stability and maneuverability. Recent advancements in platform design have resulted in significant
enhancements in flight endurance and payload capacity.

Field studies show medium-sized platforms (5-25 kg) optimally balance stability and flexibility,
achieving flight times over 45 minutes under typical conditions [9]. The hardware constraints include battery
life: 25-35 minutes (reduced by 40% under processing load) and payload: medium UAVs (5-25 kg) that
balance stability and flight time. Rotary-wing UAVs dominate in terms of maneuverability.

The evolution of visual sensor technology has led to advanced monitoring, with high-resolution
cameras integrating sensing modalities like the visible spectrum, thermal imaging, and multispectral
capabilities. Modern systems typically employ either monocular or stereo camera configurations, with the
choice depending on specific monitoring requirements and computational resources [10]. While monocular
systems offer advantages in terms of weight and power consumption, they require sophisticated algorithms
for depth estimation.

However, recent implementations using deep learning approaches have achieved depth estimation
accuracies within 5% of those of stereo systems [11]. The processing architecture in modern UAV systems
employs a distributed computing approach that balances onboard and ground-based processing capabilities.
Onboard processing units typically integrate specialized hardware accelerators for real-time image processing
while maintaining power efficiency.

Recent developments in edge computing have led to significant improvements in real-time
processing capabilities. Field implementations show hybrid processing architectures can achieve latencies
under 100 ms for complex detection tasks while maintaining power consumption within limits [12]. The
software framework employs a multilayered approach to data processing and analysis, with the image-
processing pipeline serving as the foundation through sophisticated algorithms for image enhancement and
stabilization.
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This encompasses real-time corrections for motion artifacts and environmental factors, resulting in an
accuracy improvement of up to 35% in subsequent analyses compared to unprocessed feeds [7]. Advanced
preprocessing techniques, such as adaptive contrast enhancement and noise reduction, preserve image quality
in varying lighting conditions. Computer vision algorithms form the core analytical capability of the system,
utilizing state-of-the-art deep learning methods for vehicle detection and tracking. Recent implementations
show success with hybrid architectures combining YOLO v4 for detection and custom CNNs for
classification, achieving accuracy rates over 94% under typical conditions [6]. Data management systems
efficiently handle the significant information flow from monitoring operations using advanced compression
and storage strategies, achieving 10:1 compression ratio while preserving critical visual information [13]-[15].

4. ADVANCED METHODS AND TECHNOLOGY INTEGRATION IN UNMANNED AERIAL
VEHICLE TRAFFIC MONITORING

Computer vision techniques form the foundation of modern traffic monitoring systems. Recent
advancements in object detection have revolutionized vehicle identification capabilities in aerial imagery.
Traditional approaches that utilize the histogram of oriented gradients (HOG) and scale-invariant feature
transform (SIFT) have largely been superseded by deep learning methods. However, these classical
techniques remain relevant in scenarios where computational resources are limited or real-time processing is
paramount [13], [16]. Vehicle tracking in aerial footage presents unique challenges due to varying scales,
occlusions, and complex urban environments. Modern tracking systems employ multistage approaches that
combine motion prediction and feature matching. Kalman filtering combined with appearance-based tracking
achieves over 90% accuracy in urban conditions [6], [17]. Modern traffic monitoring systems extensively use
specialized CNN architectures optimized for aerial imagery analysis. Recent implementations show success
with multiscale detection networks that manage varying vehicle sizes in aerial footage. Field studies indicate
that properly optimized CNN architectures can achieve detection rates exceeding 96%, while maintaining
processing speeds suitable for real-time applications [15], [18]-[21]. You look only once (YOLO) and Faster
region-based convolutional neural network (Faster R-CNN) are state-of-the-art in vehicle detection on aerial
platforms.

Recent YOLOv4 implementations excel in real-time, achieving 94% detection accuracy and
processing over 30 frames per second, as shown in Table 1 [12], [22]-[24]. Advanced fusion architectures
combine data from various sensor modalities, such as visual sensors, thermal cameras, LIDAR systems, and
radar units. Recent implementations show that multi-sensor fusion can enhance detection accuracy by up to
35% in challenging environmental conditions [25]-[27]. Integrating GPS data with visual information
enables precise vehicle localization and tracking, as modern systems use sophisticated fusion algorithms,
achieving position accuracy within 1 meter with real-time processing capabilities [14], [28]-[31]. The real-
time processing of fused sensor data demands advanced optimization strategies. Recent implementations use
edge computing architectures alongside adaptive processing algorithms, achieving end-to-end latencies under
100 ms [31]-[33]. A timeline of key technological advancements in UAV traffic monitoring includes: (2015—
2017) Early HOG/SIFT-based detection; (2018-2020) CNN adoption (YOLO and Faster R-CNN); and
(2021-2024) edge computing (<100 ms latency), multi-sensor fusion, and hybrid Al architectures. The
typical tracking pipeline and its key components are illustrated in Figure 2.

Table 1. Performance comparison of vehicle detection methods

Methods Accuracy (%)  Processing speed (fps)  Resource usage  Environmental robustness
Traditional HOG 85 45 Low Moderate
SIFT-based 88 35 Medium High
Deep learning 95 30 High Very high

Input Frame l | Preprocessing | | Detection T .| Feature Extraction ‘ J Multi-Object
| 4K Aerial Footage J Stablization | 1 YOLO/R-CNN » Deep Features J | Tracking

Performace Metrics

Processing Speed 30 - 45 FPS Latency 20 - 40 ms Track Fragmentation 0.15 - 0.25

Tracking Accuracy 92 - 96% Re-ID Success 88 - 94% ID Switch Rate 08-12%

Figure 2. Multi-stage vehicle tracking pipeline architecture for UAV-based traffic monitoring
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5. COMPREHENSIVE ANALYSIS OF UAV TRAFFIC MONITORING APPLICATIONS AND
PERFORMANCE METRICS

The practical implementation of UAV-based traffic monitoring systems spans multiple application
domains, including routine traffic flow analysis and emergency incident detection. UAV traffic flow analysis
offers significant benefits compared to traditional monitoring, particularly in coverage area and measurement
accuracy. Recent implementations utilize deep learning approaches that prove particularly effective in
complex urban environments [34]-[36], as illustrated in Figure 3. Modern implementations provide
comprehensive traffic analysis via integrated detection and measurement systems, as illustrated in Figure 4.

Advanced detection systems utilize multistage processing pipelines, achieving counting accuracies over 95%
under typical conditions [37]-[39].

Detection Accuracy: W >95% ™ 90-95% ™% 85-90% ™ 80-85% WM< 85%

100%

96.5%

94.2% 95-1%

75%

50%

Performance Metrics (%)

25%

0%

YOLO v4 Faster R-CNN SSD RetinaNet EfficientDet
Detection Methods

Processing Speed (FPS): YOLO v4 (45) = SSD (40) = RetinaNet (35) = R-CNN (30) = EfficientDet (25)
Memory Usage (GB): YOLO v4 (4) < SSD (5) < RetinaNet (6) < EfficientDet (7) < R-CNN (8)

Figure 3. Presents a detailed comparison of detection performance

Aerial Image Input Region Proposal Classification Count Analysis
4K Resolution Stream Interest Area Detection Multi-class Detection Real-time Statistics

System Performance Metrics

Detection Accuracy: Processing Speed: System Reliability:

« Cars: 96.5% « Real-time: 30 FPS « False Positive Rate: 0.8%

o Truck: 94.2% « Batch: 45 FPS « False Negative Rate: 1.2%
Motorcycles: 92.8% « Latency: < 40 ms « System Uptime: 99.9%

Figure 4. Vehicle detection and counting system architecture

Modern speed estimation systems achieve accuracy by integrating computer vision and deep learning,
with implementations showing mean absolute percentage errors (MAPE) below 3% across various vehicle
types [40], [41], as illustrated in Table 2. Traffic density analysis systems employ sophisticated algorithms for
real-time assessments of traffic conditions, as shown in Figure 5.

Table 2. Speed estimation performance across vehicle types
Vehicle type MAPE (%)  Standard deviation (km/h)  Processing time (ms)

Passenger cars 2.8 1.2 35
Heavy vehicles 3.2 15 38
Motorcycles 35 1.8 33

Advanced accident detection systems employ multistage analysis frameworks that achieve detection
accuracies exceeding 93% with mean response times of less than 30 seconds [42], [43]. Real-world
implementations have shown notable effectiveness in early accident detection with 94% accuracy, accident
severity classification at 89% accuracy, automatic emergency service notification, and real-time scene
assessment capabilities [44]-[46]. Modern congestion-monitoring systems use real-time analysis to identify
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and predict traffic congestion, achieving 96% detection accuracy for severe events and keeping false positive
rates below 2%, as shown in Table 3 [47]-[49].

Data Collection
* Aerial Imagery
* Vehicle Detection
* Spatial Mapping

Density Processing

* Occupancy Analysis
* Flow Calculation
* Pattern Recognition

Real-time Analysis
* Congestion Detection

* Trend Analysis

* Predictive Modeling

Density Analysis Performance

97

96

95

94

93

Accuracy (%)

92

91

90

e Light Traffic (=95%)
Heavy Traffic (=92%)

20

40 60
Traffic Density Level (%)

80

Figure 5. Traffic density analysis framework

Table 3. Detection performance metrics

Metric

Typical value

Acceptable range

Detection accuracy
False positive rate

False negative rate
Processing latency

95.3%
1.8%
2.1%
35 ms

>92%
<3%
<4%

<50 ms

100

The comparative analysis in Table 4 reveals several important trends in the evolution of UAV traffic
monitoring reviews. Early works (2020) primarily focused on application domains and proof-of-concept
implementations, with limited attention given to systematic evaluation. Mid-period reviews (2022) began
incorporating more structured methodologies but typically emphasized technological aspects or application
scenarios, rarely addressing both. The most recent reviews (2024) have started to adopt systematic
approaches but often lack comprehensive quantitative analyses of performance metrics.

Table 4. Comparative analysis of prior reviews in UAV traffic monitoring

Study

Focus area

Review methodology

Key findings

Limitations

Barmpounakis and

Large-scale urban traffic

Case study analysis of

Demonstrated feasibility

Limited to a single

Geroliminis (2020) [2]  data collection the pNEUMA  of massive-scale drone  metropolitan area;
experiment data collection for minimal algorithmic
traffic analysis comparison
Outay et al. (2020) [1]  Road safety applications  Narrative review of Identified safety and Lacked systematic
implementations infrastructure selection criteria;
management as primary  minimal  quantitative
application domains analysis
Butila and Boboc Urban traffic analysis Systematic literature  Cataloged monitoring  Limited analysis of
(2022) [39] review applications and system  architectures
detection methodologies  and processing
pipelines
Afrin et al. (2024) Framework Three-layered Proposed integration  Primarily  theoretical;
[42] development conceptual framework framework for UAV- limited empirical
ITS systems validation
Current study (2024) Comprehensive analysis ~ Systematic review with  Identified performance Limited to vision-
of methods, quantitative trends, implementation  based approaches
technologies, and performance analysis barriers, and research
implementation gaps
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5.1. Comparative analysis of detection methodologies and performance metrics

A systematic comparison of detection methodologies reveals significant performance differences
across technological approaches. Table 5 provides a comprehensive analysis of detection methods,
categorized by technological category and implementation timeframe.

Table 5. Comprehensive comparison of detection methodologies and performance metrics
Detection accuracy ~ Processing speed

Methodology Study (MAP) (%) (FPS) Limitations Environment robustness

HOG-based [34] 82-85 40-45 Low (CPU: 15%, Memory:  Low (sensitive to lighting
0.5 GB) changes)

SIFT-based [10] 85-88 30-35 Medium (CPU: 30%, Medium (moderate
Memory: 1 GB) invariance to

scale/rotation)

Base CNN [4] 88-90 20-25 Medium-high (GPU: 50%, Medium (improved
Memory: 2 GB) lighting invariance)

Region-based [19] 90-92 15-20 High (GPU: 70%, Memory:  Medium-high (good scale

CNN 3GB) invariance)

Faster R-CNN [24] 92-94 15-18 High (GPU: 80%, Memory:  High (robust to various
4 GB) conditions)

CNN-LSTM [38] 95-97 20-25 Very high (GPU: 85%, Very high (temporal
Memory: 5 GB) context integration)

6. CRITICAL CHALLENGES AND FUTURE DIRECTIONS IN UAV TRAFFIC MONITORING

Current UAV-based traffic monitoring systems face several critical challenges despite significant
advances. Processing power constraints are a critical issue, as platforms must balance computational
capabilities with size and weight; modern deep learning can consume up to 75% of available capacity.
Battery life limits system capabilities, as lithium-polymer technology provides flight times of 25 to
35 minutes, reduced by up to 40% during processing-intensive tasks [50]-[53]. Environmental factors
significantly impact performance; strong winds affect flight stability, and precipitation influences sensor
performance. Additionally, low-light conditions can reduce visual monitoring efficiency by up to 35%.
Regulatory frameworks impose strict operational limitations, increasing costs by 30-40% while decreasing
system adaptability. Privacy considerations require data protection measures, which may reduce system
effectiveness by 15-25%. Meanwhile, safety requirements add significant complexity, increasing system
challenges by up to 50%. Barriers to implementation include high initial costs, integration difficulties that
extend timelines by 40-60%, and scalability issues; operations exceeding ten units face exponential
complexity increases.

Emerging technologies present promising solutions to these challenges [54]-[56]. Advanced Al and
machine learning techniques show an improvement of up to 40% in detection accuracy, while edge
computing implementations lower latency by 65% and reduce energy consumption by 40%. Integrating
5G/6G communications facilitates ultra-reliable, low-latency communications under 1 ms. Future
developments in biomimetic methods, swarm intelligence, and smart city integration could cut urban traffic
congestion by 35% through real-time routing optimization. Conversely, integrated emergency response
systems could enhance response times by up to 50% [57].

7. CONCLUSION

This paper provides a comprehensive review of vision-based UAV traffic monitoring systems,
examining their methods, technologies, and implementation challenges. The analysis revealed that combining
computer vision techniques with deep learning approaches has significantly enhanced traffic monitoring
capabilities. Recent implementations have achieved detection accuracy rates of 94-96% while maintaining
real-time processing capabilities, marking a substantial improvement over traditional monitoring methods.
Our examination of system architectures demonstrates the critical role of integrated hardware-software
solutions. By implementing edge computing and advanced sensor fusion techniques, we have reduced
processing latencies to under 40 ms, enabling real-time traffic analysis even in complex urban environments.
However, significant challenges remain with battery life limitations, processing power constraints, and
environmental adaptability.

The comprehensive analysis reveals several important barriers to implementation that must be
addressed for widespread adoption. These include: i) regulatory frameworks that differ markedly across
jurisdictions and often lag behind technological advancements; ii) economic constraints, with initial system
deployment costs ranging from $15,000 to $50,000 depending on capability requirements; iii) technical
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integration challenges with existing traffic management infrastructure; and iv) privacy and data security
concerns that may hinder public acceptance.

Our research identified significant gaps in the current literature that warrant further investigation.
These include: i) the limited research on energy-efficient processing architectures specifically optimized for
UAV constraints; ii) inadequate attention to environmental resilience in diverse weather conditions; iii) the
necessity for standardized evaluation frameworks to facilitate systematic comparison of various approaches;
and iv) insufficient exploration of multi-UAV cooperative monitoring systems for large-scale urban
environments. Despite these challenges, the future of vision-based UAV traffic monitoring remains
promising. We proposed a strategic research roadmap that includes short-term priorities (1-2 years) focused
on optimizing existing architectures, medium-term goals (3-5 years) aimed at integrating multi-modal
sensing capabilities, and long-term objectives (5+ years) intended to create fully autonomous monitoring
systems with predictive capabilities.

The practical implications of this research extend beyond technical advancements. Transportation
authorities can leverage these systems for more responsive traffic management, potentially reducing
congestion by 15% to 25% in pilot implementations. Urban planners can utilize the extensive data generated
by aerial monitoring for evidence-based infrastructure development. Emergency services can benefit from
improved incident detection capabilities, with potential response time enhancements of 30% to 50%, as
demonstrated in limited field trials. The emergence of advanced Al architectures, along with improvements
in edge computing and 5G/6G communications, indicates the potential for further enhancements in system
capabilities. Future research should concentrate on addressing key limitations, especially in power efficiency
and environmental resilience, while developing standardized frameworks for system integration and
deployment. Finally, UAV-based traffic monitoring represents a transformative technology that lies at the
intersection of various disciplines, including computer vision, edge computing, telecommunications, and
transportation engineering. The ongoing advancement of this field promises to play a crucial role in
developing smart cities and intelligent transportation systems, contributing to more efficient, safe, and
sustainable urban environments.
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