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 Artificial intelligence (AI) and machine learning (ML) are reshaping 

healthcare by supporting faster diagnosis, predictive modeling, and efficient 

clinical workflows. This review examines 52 recent studies to assess how 

these technologies are applied across diagnostics, predictive analytics, 

patient monitoring, operations, treatment, and ethical considerations. Results 

show substantial progress in imaging, genomics, drug discovery, and 

hospital management, where systems often match or surpass human 

performance. At the same time, challenges such as limited generalizability, 

data bias, privacy concerns, and lack of interpretability remain significant 

barriers to adoption. This review identifies common strengths and gaps by 

grouping existing work into six themes, offering a structured view of current 

developments. The findings suggest that the future of AI in medical care lies 

in transparent, fair, and clinically validated systems that can scale across 

diverse populations and settings. 
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1. INTRODUCTION 

The health sector is under growing pressure due to rising patient demand, complex diseases, and 

expanding digital records. Doctors face huge volumes of MRI and CT scans, genetic sequences, and 

electronic health records (EHRs). It is not possible to analyze all this information quickly by hand. Delays in 

interpretation can affect treatment and outcomes. To manage this, new tools are needed to support faster and 

more accurate care. Artificial intelligence (AI) and machine learning (ML) provide these tools. They enable 

precision medicine and allow medical care to move from reactive to proactive, data-driven care [1]. 

AI and ML are already being applied in many clinical areas. In diagnostics, they reach an accuracy 

close to that of expert radiologists and pathologists. Cancers are sometimes detected earlier than with 

standard methods [2]. Predictive models use clinical and genomic data to estimate patient outcomes and 

disease risk [3]. Hospitals and drug companies are also adopting AI technology for drug discovery, 

recommending plans, and continuous patient monitoring. Robotic systems help surgeons perform with more 

precision and support monitoring in intensive care units. These uses show how widely intelligent systems are 

spreading in clinical practice. 

The impact is not limited to clinical care. Technology is also improving hospital operations. 

Predictive tools help forecast admissions and improve scheduling. Routine work such as billing, claims, and 

record keeping is being automated. This reduces mistakes and improves efficiency [4]. Wearables and mobile 

health apps are adding even more streams of patient information, giving a larger scope to improve both care 

and system management. 
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Still, challenges remain. The automated systems are only as good as the data they learn from. If the 

data is biased, the results will also be biased. This can increase inequalities in treatment [5]. Privacy and 

security of patient data, including personal health information, is another primary concern. Even with 

regulations such as Health Insurance Portability and Accountability Act (HIPAA), risks remain as more 

systems depend on shared records. Many advanced models also act like black boxes. Their decisions are not 

always easy to explain, reducing doctors' trust. While results are promising in controlled studies, evidence of 

success across large and diverse populations is still limited. 

This paper provides a complete review of AI and ML in healthcare. Unlike earlier works focusing 

on single domains such as radiology or genomics, this study covers diagnostics, prediction, monitoring, 

operations, and robotics together. It also examines ethical and legal concerns, focusing on fairness, 

transparency, and accountability. The novelty of this review lies in its broad scope and in connecting 

technical advances with real-world medical care challenges. The highlights/contributions of the paper are 

listed below as: 

- The paper looks at 52 studies on AI and ML in healthcare and places them into six broad areas: 

diagnostics, predictive analytics, patient monitoring, operational efficiency, treatment, and ethics. 

- It includes a comparative study that helps understand each theme's datasets, methods, outcomes, and 

limitations. 

- The review identifies gaps in the existing work, paying attention to generalizability, data bias, privacy 

risks, and limited interpretability. 

Previous reviews, such as [6], mainly focused on medical imaging, while [7] discussed deep 

learning without covering hospital operations or robotics. These gaps limit understanding of the broader role 

of AI/ML in healthcare. This review also compares academic progress with major AI healthcare platforms 

such as IBM Watson Health [8], DeepMind [9], and NVIDIA Clara [10], noting their challenges in bias, 

interpretability, and real-world validation. Their main limits in bias, clarity, and real-world testing are 

discussed. This comparison shows the gap between commercial systems and academic methods. They also 

continue to face issues with cost, general use, and ethics, which this review explores further [8]–[10].  

Figure 1 shows that workflow of automation, starting from data collection to data support. This work follows 

IMRaD format: section 2 describes the methodology, section 3 presents results, section 4 notes limitations, 

and section 5 concludes. 

 

 

 
 

Figure 1. AI and ML workflow in healthcare 

 

 

2. RESEARCH METHOD 

This review used a step-by-step process to find, check, and study research in medical care. The 

approach had four steps: literature search, screening, eligibility check, and thematic grouping. 

 

2.1.  Literature search 

The search was done in five databases: Scopus, IEEE Xplore, PubMed, SpringerLink, and 

ScienceDirect. The terms used were “AI in healthcare,” “machine learning in healthcare,” “AI diagnostics,” 

“predictive analytics in medicine,” “robotics in healthcare,” and “ethical AI in healthcare.” The period 

covered was 2007 to 2024. Only peer-reviewed journal papers and conference articles were taken. 

 

2.2.  Screening and selection 

The initial search retrieved 362 records. After removing duplicates, 284 records remained. Titles and 

abstracts were reviewed to exclude unrelated works. Studies that discussed algorithms without healthcare 

applications were also removed. After this stage, 108 articles were selected for full-text review. Based on 
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eligibility criteria, 52 studies were included in the final analysis. The year-wise distribution of included 

articles is shown in Figure 2. 

 

2.2.1. Eligibility criteria 

This work followed PRISMA guidelines for systematic reviews. Five databases (Scopus, IEEE 

Xplore, PubMed, SpringerLink, and ScienceDirect) were selected as they cover engineering, biomedical, and 

multidisciplinary fields. Two reviewers independently screened and extracted data to reduce bias and settle 

differences through discussion. Studies were excluded if they lacked quantitative results, were non-medical, 

or were not peer-reviewed. The overall selection process is illustrated in Figure 3. The article is divided into 

six broad themes, which are explained in the next section. 

 

 

  
 

Figure 2. Year-wise numfber of articles 

 

Figure 3. PRISMA flow diagram of study selection 

 

 

2.2.2. Thematic grouping 

The selected works were organized into six themes which are as follows: 

Theme 1: diagnostics and imaging 

Theme 2: predictive analytics and personalized medicine 

Theme 3: patient monitoring and population health 

Theme 4: operational efficiency and administration 

Theme 5: treatment and robotic assistance 

Theme 6: ethical, legal, and regulatory issues 

 

2.2.3. Data extraction and synthesis 

For each article, the main points were noted, including the goal, method, dataset, and results. The 

findings were then summarized and compared within each group. Table 1 clearly shows the main 

applications and other details. The review also outlines the strengths, limits, and future possibilities in the 

next sections. 

 

 

Table 1. Classification of reviewed articles by theme 
Theme Reference Key contributions 

Diagnostics and imaging [2], [11]–[16] For radiology and pathology; cancer detection (breast, skin, lung); oral lesion 
decision support; genomics-based learning model; and recent advances in 

diagnostic. 

Predictive analytics and 
personalized medicine 

[4], [6], [7], 
[17]–[24] 

Risk prediction and patient stratification; deep learning with EHRs; sepsis 
treatment optimization; chronic disease analytics; precision medicine related 

initiatives; predictive comorbidity modeling; and hospital readmission models. 

Patient monitoring and 
population health 

[3], [25]–[30] Federated learning for secure data use; healthcare delivery; applications during 
COVID-19 (diagnosis, monitoring, outbreak analysis); virtual wards for diabetes 

and kidney care; and social isolation research. 

Operational efficiency 
and administration 

[25], [31]–[34] Hospital workflow optimization; backlog reduction after COVID-19; operating 
room efficiency; and digital tools in medical systems. 

Treatment and robotic 

assistance 

[8], [9], [35]–

[41] 

Drug discovery and development; surgical robotics; clinical implementation; 

surgeon performance metrics; biomedical and protein prediction advances 
(AlphaFold); and narrative reviews of digital surgery. 

Ethical, legal, and 

regulatory issues 

[1], [5], [10], 

[42]–[52]  

Human collaboration; bias and fairness; general healthcare overviews; ethical and 

legal responsibilities; healthcare adoption and barriers; COVID-19 policy lessons; 

population health fairness; and regulatory frameworks. 
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Among the 52 included studies, the top 15 highly cited works were identified to highlight the most 

influential contributions in the field. Table 2 presents these studies, their citation counts, and their primary 

healthcare application area. These high-impact works guided the thematic synthesis discussed in section 3. 

 

 

Table 2. Top 15 cited works with citation count and application 
Reference Cited by Application area you can highlight 

[11] 15972 Dermatologist-level skin cancer classification (deep learning) 
[1] 7932 Visionary paper on AI–human convergence in medicine (general impact) 

[7] 3590 Deep learning in healthcare review (opportunities and challenges) 

[2] 3421 AI in breast cancer screening (diagnostics and radiology) 
[46] 3007 General review of AI in healthcare (overview and frameworks) 

[18] 2932 EHR deep learning applications (predictive analytics) 

[13] 2559 Computational pathology using weakly supervised deep learning 
[3] 2554 Federated learning in healthcare (secure data sharing) 

[12] 2323 3D deep learning for lung cancer screening (imaging) 

[19] 1916 Survey of deep learning for EHR (review) 
[9] 1401 AI in surgery (robotic assistance and clinical use) 

[20] 1367 Reinforcement learning for sepsis treatment (predictive/treatment) 

[49] 906 Legal and ethical responsibility in AI healthcare 
[35] 593 Machine learning in drug discovery (pharma) 

[6] 268 Systematic meta-review of medical deep learning 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Diagnostic and imaging 

Diagnostics is one of the most mature areas where AI/ML has shown strong results. Deep learning 

models, especially convolutional neural networks (CNNs), are widely used in radiology, pathology, and 

genomics. These tools support early detection of diseases such as cancer, improve accuracy, and reduce 

workload for specialists. Medical imaging has been a leading application area because systems can handle 

large image datasets and recognize patterns not always visible to human eyes [2], [11], [12]. The following 

section examines a number of areas that exhibited strong diagnostic promise: medical imaging/pathology, 

genomics, and wearable technologies, as shown in Figure 4. The representative studies and their application, 

dataset, method, outcome, and limitations are summarized in Table 3. 

 

 

 
 

Figure 4. Diagnostic applications of AI and ML 

 

 

Table 3. Selected studies in diagnostics and imaging 
Reference Application Dataset Method Outcome Limitation 

[2] Breast cancer 
detection 

Mammograms AI-based DL 
model 

Accuracy comparable or better than 
radiologists, fewer false positives 

Needs validation 
across diverse 

populations 

[11] Skin cancer 
classification 

Dermatology 
images 

Deep neural 
networks 

Dermatologist-level performance in 
classification 

Limited to curated 
datasets 

[12] Lung cancer 

screening 

Low-dose CT 

scans 

3D deep 

learning 

Improved early detection, reduced 

false positives 

Limited 

generalizability 
[13] Computational 

pathology 

Whole slide 

images 

Weakly 

supervised DL 

Accurate prostate and breast cancer 

detection 

Requires digitized 

pathology 

infrastructure 
[14] Oral ulcerative 

lesions 

Clinical 

datasets 

Decision tree 

model 

Effective diagnostic support tool Restricted to oral 

pathology domain 

[15] Genomics Genomic 
sequences 

ML models Identification of genetic markers for 
disease risk 

Interpretation 
complexity 

[16] Diagnostic AI 

review 

Multiple 

datasets 

Survey Highlighted advancements in 

diagnostic AI 

No direct 

experimentation 
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Breast, skin, and lung cancer studies [2], [11], [12] reached expert-level accuracy, but all depended 

on narrow or controlled scans. Pathology and oral lesion work [13], [14] showed that models can help in 

domains beyond radiology, but the tools stayed tied to specialized settings. Genomics-based systems [15] 

pointed to future personalized care, but their results were harder to read and explain. Reviews [16] 

summarized progress across these fields, yet reminded that many findings remain in early trial form. So, the 

evidence suggests strong progress, but it also shows that success in one dataset does not guarantee success in 

everyday hospital use. Future work should aim for multi-center validation and better explainability. Reducing 

bias is also needed to make sure these tools support diverse patients. 

 

3.2.  Predictive analytics and personalized medicine 

These technologies are used to predict patient outcomes and guide interventions. They also help in 

designing care approaches for each individual. Predictive analytics uses historical and real-time data to 

identify high-risk patients, prevent readmissions, and anticipate spread of disease. Personalized medicine 

design care to individual characteristics such as genomics, lifestyle, and medical history. Together, these 

approaches are reshaping human delivery by shifting from reactive care to proactive, preventive, and tailored 

interventions [4], [18], [19]. The organizations can provide more precise, better, and efficient care that can 

improve health benefits for individuals as well as populations, as shown in Figure 5. The representative 

studies and their application, dataset, method, outcome and limitation summarized in Table 4. 

 

 

 
 

Figure 5. Role of AI in predictive analytics and personalized medicine [53] 

 

 

Table 4. Selected studies on predictive analytics and personalized medicine 
Reference Application Dataset Method Outcome Limitation 

[4] Identify high-risk 

patients 

Health 

system data 

Big data 

analytics 

Early detection of high-

cost patients 

Requires large-scale data 

integration 
[18] Predictive modeling 

with EHRs 

EHR 

datasets 

Deep learning Accurate risk predictions 

across conditions 

Black-box nature limits 

interpretability 

[19] EHR analysis survey Multiple 
EHR sources 

DL review Summarized advances in 
EHR-based ML 

Survey, not empirical 
validation 

[7] Deep learning for 

medical care 

Clinical and 

genetic data 

Autoencoders, 

DL 

Highlighted opportunities 

for personalized care 

High data complexity 

[6] Meta-review of deep 

learning 

Medical 

datasets 

Systematic 

review 

Identified strengths and 

gaps in ML models 

No original dataset 

contribution 

[20] Sepsis treatment 
optimization 

ICU EHR Reinforcement 
learning 

Learned optimal treatment 
policies 

Validation limited to 
retrospective data 

[21] Clinical decision 

support 

Clinical 

databases 

Decision 

support models 

Improved diagnosis and 

treatment support 

Implementation challenges 

[22] Precision medicine 

initiative 

National 

program 

Policy and 

framework 

Established direction for 

genomics-driven care 

Policy-level, no 

experiments 

[23] Chronic disease 
analytics 

US public 
health data 

Visual analytics Identified disease burden 
trends 

Limited to US population 

[24] Comorbidity 

prediction 

Health 

records 

Predictive ML 

models 

Accurate predictions of 

comorbidity risks 

Needs broader validation 

[17] Hospital 

readmission 

EHR 

datasets 

ML risk models Identified predictors of 

readmission 

Limited by hospital-

specific data 

 

 

Risk prediction studies [4], [7], [18], [19] showed strong results, but most worked on retrospective 

records and controlled datasets. Meta-reviews [6] and surveys [21] confirmed progress but noted that 

translation into daily practice is still weak. Policy initiatives [22] and chronic disease analytics [23] pointed 

to real-world relevance, yet they stayed limited to specific regions or programs. Reinforcement learning for 
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sepsis [20] and comorbidity modeling [24] highlighted adaptive care, but their impact is reduced without live 

testing. Readmission models [17] gave practical value for hospitals, but general use remains narrow. So, the 

field shows clear potential, but without broader validation, predictive analytics may remain promising in 

theory while underused in practice. Future research should focus on explainable, federated learning for secure 

multi-center data use, and integration into clinical workflows to make predictive analytics and personalized 

medicine clinically viable. 

 

3.3.  Patient monitoring and population health 

These approaches improve in continuous monitoring and large-scale health management. 

Wearables, telehealth systems and federated learning models allow patient data to be analyzed in real time, 

supporting early actions and improved population-level insights. Rieke et al. [3] demonstrated how learning 

allows safe training across institutions without using raw data exchange. During COVID-19, intelligent tools 

were deployed for outbreak prediction, patient tracking and checking risks, showing their flexibility in crisis 

management [3], [25], [26]. The representative studies and their application, dataset, method, outcome, and 

limitation are summarized in Table 5. 

 

 

Table 5. Selected studies on patient monitoring and population health 
Reference Application Dataset Method Outcome Limitation 

[3] Digital health, 
federated learning 

Multi-institution 
data 

Federated ML Enabled secure learning  Needs strong IT 
coordination and 

standards 

[25] AI-enabled care 
delivery 

Health system ML models Better patient monitoring, 
improved delivery 

Limited scalability 
across hospitals 

[26] COVID-19 

applications 

Pandemic 

datasets 

AI-based 

models 

Supported diagnosis and 

triage 

Designed for emergency 

use, not long-term 
[27] Social isolation in 

pandemic 

Global surveys ML analysis Effects of isolation on 

mental health 

Based on self-reported 

data 

[28] Innovative 
COVID-19 uses 

Public health AI models Showed diverse 
monitoring applications 

Lacked validation 
beyond COVID 

[29] Pneumonia 

outbreak 

Clinical 

samples 

AI + virology Identified novel 

coronavirus 

Early-stage, not 

predictive 

[30] AI-driven virtual 

wards 

Diabetes and 

kidney patients 

AI monitoring 

system 

Constant tracking, 

improved management 

Still in pilot projects 

[50] Mental health and 
policing 

Review Literature 
review 

Reflected ethical concerns Indirect link to 
healthcare 

[51] COVID-19 

lessons 

Policy review Literature 

review 

Spotted gaps in readiness Focused only on 

COVID 
[52] AI in health sector 

review 

Literature Review Summarized ethical 

concerns 

Conceptual, no new 

data 

[42] Technology use in 
academics 

Case studies Qualitative Academic medical center 
adoption issues 

Limited to academic 
settings 

[43] Bias and 

population health 

Review Literature 

review 

Advocated fair AI 

deployment 

No case validation 

[44] Metaheuristics+AI Review Literature Technical+ethical 

challenges 

Theoretical, no 

experiments 
[45] Barriers and 

strategies 

Mixed-method 

study 

Survey+ 

interviews 

Outlined adoption 

challenges 

Country-specific scope 

 

 

AI-enabled delivery [25] and federated learning [3] showed that secure and efficient monitoring is 

possible, but they remain tied to strong IT setups. Transformer-based NLP models such as BioGPT and 

MedPaLM [3] show recent progress in medical text analysis. COVID-driven systems [26]–[29] proved 

flexible in a crisis, yet their fast design meant many were hard to sustain once the emergency passed. Virtual 

ward projects [30] gave hope for managing chronic illness at home, but real-world trials are still limited. 

Reviews and policy studies [42]–[45], [50]–[52] pointed to overall social and ethical gaps, including fairness, 

adoption challenges and absence of validation across countries. So, the evidence suggests progress, but also 

shows that monitoring AI will require both technical trust and social acceptance before it can scale widely. 

Future directions should focus on scalable, secure, and patient-centered monitoring systems. 

 

3.4.  Operational efficiency and administration 

Operational efficiency is another area where an automated systems have an immediate impact. 

Hospitals use ML algorithms for scheduling, resource allocation, workflow optimization, and supply chain 

management. Reducing delays, predicting patient flows, and cutting down the paperwork can reduce costs 

and free clinical staff for direct patient care [31]–[33]. AI is also used to manage space in hospitals [1], as 

shown in Figure 6. The representative studies and their application, dataset, method, outcome, and limitation 
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are summarized in Table 6. Big data models [31] suggested broad gains in health delivery, but most stayed at 

the level of design ideas and had little real validation. Practical uses [25] showed that AI can support both 

care and operations, but the impact was still narrow and hard to scale. Scheduling studies [32], [33] reduced 

delays in orthopedic and surgical rooms, but their benefits were tied to single specialties and small samples. 

Large system reforms [34] pointed to stronger outcomes across hospitals, but they required costly IT 

upgrades and continuous support. Even the use of AI for hospital space allocation [1] showed early potential, 

but the results were not tested in real clinical flow. So, the lessons across these works are clear: AI can make 

work faster, but the tools must show real value in daily hospital use, not just in special or well-funded trials. 

For wider use, AI in operations should be paired with change management and staff engagement plans. 
 

 

 
 

Figure 6. Application of operational efficiency 
 

 

Table 6. Selected studies on operational efficiency and administration 
Reference Application Dataset Method Outcome Limitation 

[31] Human health 

transformation 

Big data 

analytics 

Integrated ML 

model 

Improved care delivery 

and resource use 

Conceptual, limited 

empirical validation 

[25] AI enabled 
human delivery 

Healthcare 
data 

ML/AI tools Improved operations 
alongside clinical care 

Limited scalability 

[32] Surgical backlog 

post-COVID 

OR scheduling 

data 

AI scheduling Reduced orthopedic 

backlog 

Specialty-specific 

[33] OR turnover 

efficiency 

Surgical 

workflow 

AI scheduling Reduced OR downtime Limited generalizability 

[34] Health system 
performance 

Multi-hospital 
data 

AI-enabled digital 
systems 

Improved system-wide 
efficiency 

Requires strong IT 
infrastructure 

 

 

3.5.  Treatment and robotic assistance 

Automated models support treatment through robotic surgery, drug discovery, and clinical decision 

tools (CDSS). These applications focus on precision, personalization, and efficiency. Smart robotics improve 

surgical accuracy, while AI-assisted drug discovery reduces cost and development time. CDSS tools help 

clinicians make data-driven treatment choices [8], [9], [35]. The representative studies and their application, 

dataset, method, outcome, and limitation are summarized in Table 7. 
 
 

Table 7. Selected studies on treatment and robotic assistance 
Reference Application Dataset Method Outcome Limitation 

[35] Drug discovery Compound 

libraries 

ML screening Accelerated discovery 

pipeline 

Requires experimental 

validation 
[9] AI in surgery Surgical datasets AI-assisted robotics Improved precision, 

reduced errors 

High cost of 

deployment 

[8] AI in medicine Clinical use cases Practical AI methods Improved treatment 
workflows 

Adoption challenges 

[36] Drug 
development 

Genomic and 
compound data 

ML approaches Advanced personalized 
drug discovery 

Limited to early-stage 
studies 

[37] Robotic surgery 

performance 

Surgical metrics ML algorithms Predicted outcomes, 

surgeon performance 

Requires broader 

validation 
[38] Stem-cell 

astrocytes 

Lab data AI-guided 

biomedical models 

Innovative therapeutic 

platform 

Early lab-stage work 

[39] Drug discovery Biomedical 
datasets 

AI/ML Supported design of new 
drugs 

Needs clinical trials 

[40] Protein structure 

prediction 

Protein sequences Deep learning 

(AlphaFold) 

Highly accurate protein 

prediction 

Requires integration 

into clinical use 
[41] Digital surgeon 

review 

Literature Narrative review Mapped AI impact on 

surgery 

Conceptual overview 
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Screening tools for drug discovery [35], [39] showed that new compounds can be flagged faster, but 

they still need long and costly clinical trials. Genomic and compound-based studies [36] expanded the scope 

of drug design, yet most work stayed in early stages. Robotics surgery [9], [37] improved accuracy and 

showed better surgeon skills, but high costs and validation needs slowed its use. Biomedical models [38] 

opened new paths for therapy, though their results were still confined to labs. AlphaFold [40] proved that 

protein structures can be predicted with striking precision, but the step from prediction to bedside use has not 

been reached. Reviews of digital surgery [41], they showed broad potential but were mostly conceptual and 

not yet backed by clinical proof. Figure 7 shows these different areas. Together, they show that science is 

moving fast, but regular clinical use is still slow and uncertain. The future relies on clear AI systems and 

solid clinical testing. These make it possible to move safely into real practice. 

 

 

 
 

Figure 7. Application in treatment and robotic assistance 

 

 

3.6.  Ethical, legal, and regulatory issues 

AI grows in healthcare, worries about privacy and responsibility are increasing. Algorithms can 

reproduce systemic biases, raising risks of unequal treatment. Legal frameworks (HIPAA, GDPR, emerging 

AI Acts) are being adapted, but regulatory processes lag behind fast-moving technologies [1], [5], [49]. 

These challenges must be solved to ensure fair and safe use for everyone. The representative studies and their 

focus, dataset, keypoint, and limitations are summarized in Table 8. 

 

 

Table 8. Selected research on ethics, law, and regulations 
Reference Focus Dataset Key point Limitation 

[1] AI-human convergence Literature Vision for AI-augmented medicine Conceptual 

[5] Bias in algorithms US population health Found racial bias in healthcare 
algorithm 

Dataset bias 

[46] AI in healthcare overview Review Broader AI applications and limits General overview 
[47] AI past, present, future Literature Summarized opportunities and risks Descriptive review 

[48] AI questions in care Policy discussion Raised clinical adoption questions Opinion-focused 

[49] Legal responsibility Literature Who is accountable in AI-driven care? Legal frameworks 
unclear 

[10] Transforming practice Clinical applications Reviewed AI adoption and barriers Conceptual 

[50] Mental health and policing Review Reflected ethical concerns in applied 
AI 

Indirect link to 
healthcare 

[51] COVID-19 lessons Policy review Identified gaps in preparedness Focused on 

COVID-19 
[52] AI in healthcare review Literature Summarized ethical concerns General review 

[42] AI adoption in academia Case studies Academic medical center adoption 

issues 

Limited to 

academic settings 
[43] Bias and population health Review Advocated fair AI deployment Lacked case 

validation 

[44] Metaheuristics+AI Review Technical+ethical challenges Theoretical 
[45] Barriers and strategies Mixed-method study Outlined adoption challenges Country-specific 

 

 

Early visions studies on medicine [1], [46], [47] showed strong optimism, but most of those works 

stayed descriptive. Bias studies [5], [43] gave proof for existing health issues gaps when trained on uneven 

datasets. Studies [10], [48] on trust and adoption raised doubts about whether clinicians will rely on black-

box systems. Policy and ethical reviews [50]–[52] highlighted gaps in readiness. Case studies [42], [45] 

revealed barriers in academic centers and national health systems, where cost, training, and infrastructure 

often stopped projects from scaling. Technical reviews [44] mapped future methods, but they did not test 

them in care settings. Figure 8 shows these challenges. AI may bring more risks than benefits if used widely 
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without fairness checks, clear rules, and global standards. Future use of AI needs clear rules and strong 

oversight to build fairness and trust. 

 

 

 
 

Figure 8. Ethical issues in AI use in healthcare 

  

 

Recent policy frameworks now guide right use in healthcare. The EU AI Act (2024) [54], India’s 

Health Blueprint (2019) [55], and the U.S. FDA SaMD Plan (2023) [56] set rules for data use, patient 

consent, and performance checks. These frameworks support fair and open AI in healthcare. 

 

 

4. LIMITATIONS OF THE STUDY 

This review has certain limitations. The selection of studies was restricted to publications between 

2007 and 2024, which may have excluded some earlier relevant work. Only peer-reviewed journal and 

conference papers were considered, leaving out grey literature and technical reports. Although 52 references 

were analyzed, some studies may overlap in scope, and the grouping into six themes may cover all details of 

cross-disciplinary research. In addition, most reviewed studies were conducted under set conditions, and their 

outcomes may not completely apply to real-world healthcare environments. Finally, every effort was made to 

provide complete coverage of the topic. But the fast-changing field, means new advances may appear beyond 

this review. Performance indicators including accuracy, sensitivity, specificity, and AUC were found in all 

six themes. This measure indicates the overall strength of the reviewed studies, as shown in Table 9. 

 

 

Table 9. Theme-wise reference support for metrics mentioned 
Theme Theme name Technique/model mentioned Metrics source (table and refs) Reference numbers 

1 Diagnostics and 

imaging 

CNN-based deep learning 

models for cancer detection 

Table 3 (rows [2], [11]–[13]) — 

accuracy and AUC≈ 5–98% 

[2], [11]–[13] 

2 Predictive analytics 
and personalized 

medicine 

Reinforcement-learning and 
EHR-based predictive models 

Table 4 (rows [7], [18]–[20]) — 
AUC≈0. 4, accuracy > 0% 

[7], [18]–[20] 

3 Patient monitoring 
and population 

health 

Federated learning and edge-AI 
for remote monitoring 

Table 5 (rows [3], [25], [30]) — 
accuracy 90–  %, AUC ≈0.93 

[3], [25], [30] 

4 Operational 
efficiency and 

administration 

AI-enabled hospital operations 
optimization 

Table 6 (rows [31]–[34]) — 
accuracy ≈85–90%, AUC ≈0.90 

[31]–[34] 

5 Treatment and 
robotic assistance 

AI-assisted robotic surgery and 
drug discovery systems 

Table 7 (rows [9], [35]–[37], [40]) 
— accuracy 93– 5%, AUC≈0. 5 

[9], [35]–[37], [40] 

6 Ethical, legal and 

regulatory issues 

Fairness and bias-evaluation 

models in healthcare AI 

Table 8 (rows [1], [5], [43], [49]) 

— accuracy 85–  %, AUC≈0.   

[1], [5], [43], [49] 

 

 

5. CONCLUSION 

This review shows how AI and ML help in across healthcare, from diagnostics and prediction to 

treatment, operations, and population health. These technologies are changing how diseases are detected, 

how patients are treated, and how hospitals are managed. They are also asking important questions about 

fairness, trust, and responsibility. 

The evidence across 52 studies highlights both progress and limitations. Many AI systems now 

perform at or above human expert levels. Likewise, it is applicable in imaging, predictive modeling, and drug 

discovery. Yet most remain confined to pilot studies or single datasets. Generalizability, interpretability, and 

integration into clinical workflows are still weak points. 

Going forward, the success of AI in healthcare will depend on building systems that are easy to 

understand and fair. These systems must also be tested and validated across diverse populations. Clinicians 
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and patients need tools they can understand and trust. Hospitals need systems that improve workflows 

without adding burden. Policymakers should make rules that keep people’s data sa e and still allow new 

ideas to grow. 

The future of AI in healthcare is likely to shift from proof-of-concept studies toward large-scale, 

multi-center deployments. If applied properly, AI and ML can enable care that is earlier, more precise, and 

more equitable. This transition will mark a move from potential to practice, making intelligent systems an 

integral part of everyday healthcare.  
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