Deep Stair Walking Detection Using Wearable Inertial Sensor via Long Short-Term Memory Network

Wei Nie Gan, Nurul Fathiah Ghazali, Norazman Shahar, Muhammad Amir As'ari

Abstract


This paper proposes a stair walking detection via Long-short Term Memory (LSTM) network to prevent stair fall event happen by alerting caregiver for assistance as soon as possible. The tri-axial accelerometer and gyroscope data of five activities of daily living (ADLs) including stair walking is collected from 20 subjects with wearable inertial sensors on the left heel, right heel, chest, left wrist and right wrist. Several parameters which are window size, sensor deployment, number of hidden cell unit and LSTM architecture were varied in finding an optimized LSTM model for stair walking detection. As the result, the best model in detecting stair walking event that achieve 95.6% testing accuracy is double layered LSTM with 250 hidden cell units that is fed with data from all sensor locations with window size of 2 seconds. The result also shows that with similar detection model but fed with single sensor data, the model can achieve very good performance which is above 83.2%. It should be possible, therefore, to integrate the proposed detection model for fall prevention especially among patients or elderly in helping to alert the caregiver when stair walking event occur.

Keywords


stair walking; wearable inertial sensor; deep learning; LSTM network; confusion matrix


Refbacks

  • There are currently no refbacks.


Bulletin of EEI Stats