A Comparative Study on Optical Characteristics of InGaAsP QW Heterostructures of Type-I and Type-II Band Alignments

Garima Bhardwaj, Sandhya K., Richa Dolia, M. Abu-Samak, Shalendra Kumar, P. A. Alvi


In this paper, we have configured InGaAsP QW (quantum well) heterostructures of type-I and type-II band alignments and simulated their optical characteristics by solving 6 x 6 Kohn-Luttinger Hamiltonian Matrix. According to the simulation results, the InGaAsP QW heterostructure of type-I band alignment has been found to show peak optical gain (TE mode) of the order of~3600/cm at the transition wavelength~1.40 µm; while of type-II band alignment has achieved the peak gain (TE mode) of the order of~7800/cm at the wavelength of~1.85 µm (eye safe region). Thus, both of the heterostructures can be utilized in designing of opto-or photonic devices for the emission of radiations in NIR (near infrared region) but form the high gain point of view, the InGaAsP of type-II band alignment can be more preferred.


Heterostructures; InGaAsP; Optical gain; Quantum well


Pyare Lal, Shobhna Dixit, F. Rahman, P. A. Alvi, "Gain Simulation of Lasing Nano-Heterostructure Al0.10Ga0.90As/GaAs", Physica E: Low-dimensional systems and Nanostructures, 46, pp. 224-231 (2012).

P. A. Alvi, Pyare Lal, S. Dalela, M. J. Siddiqui, "An Extensive Study on Simple and GRIN SCH based In0.71Ga0.21Al0.08As/InP Lasing heterostructure", Physica Scripta, 85, 035402 (2012).

Pyare Lal, Rashmi Yadav, Meha Sharma, F. Rahman, S. Dalela, P. A. Alvi, “Qualitative analysis of gain spectra of InGaAlAs/InP lasing nano-heterostructure” International Journal of Modern Physics B, Vol. 28, No. 29, pp. 1450206 (2014).

M. Bajdaa, W. Trzeciakowski and J.A. Majewski, “Wide Range Wavelength Tuning of InGaAsP/InP Laser Diodes”, Acta Physica Polonica A, No. 5, Vol. 120, 852-855 (2011).

Hongping Zhao and Nelson Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers”, J. of Appl. Phys. 107, 113110 (2010).

C. Berger, C. Möller, P. Hens, C. Fuchs, W. Stolz, S. W. Koch, A. Ruiz Perez, J. Hader, and J. V. Moloney, “Novel type-II material system for laser applications in the near-infrared regime”, AIP Advances, 047105 (2015).

H. K. Nirmal, Nisha Yadav, F. Rahman, P. A. Alvi, “Optimization of high optical gain in type –II In0.70Ga0.30As/GaAs0.40Sb0.60 lasing nano-heterostructure for SWIR applications”, Superlattices and Microstructures, Vol. 88, pp. 154-160 (2015).

H. K. Nirmal, Nisha Yadav, S. Dalela, Amit Rathi, M. J. Siddiqui, P. A. Alvi, “Tunability of optical gain (SWIR region) in type-II In0.70Ga0.30As/GaAs0.40Sb0.60 nano-heterostructure under high pressure”, Physica E: Low-dimensional systems and Nanostructures, 80, pp. 36-42 (2016).

Nisha Yadav, Garima Bhardwaj, S. G. Anjum, S. Dalela, M. J. Siddiqui, P. A. Alvi, “Investigation of high optical gain in complex type-II InGaAs/InAs/GaAsSb nano-scale heterostructure for MIR applications”, Applied Optics, Vol. 56, No. 15 (2017).

Garima Bhardwaj, Nisha Yadav, S. G. Anjum, M. J. Siddiqui, P. A. Alvi, “Uniaxial strain induced optical properties of complex type-II InGaAs/InAs/GaAsSb nano-scale heterostructure”, International Journal of light & electron optics: Optik, 146 8–16 (2017).

Baile Chen, W.Y. Jiang, A.L. Holmes Jr., “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes”, Opt. Quantum Electron. 44 (3-5), 103-109 (2012).

Cheng Liu, Yu Kee Ooi, and Jing Zhang, “Proposal and physics of AlInN-delta-GaN quantum well ultraviolet lasers”, Journal of Applied Physics 119, 083102 (2016).

Chee-Keong Tan, Wei Sun, Damir Borovac & Nelson Tansu, “Large Optical Gain AlInN-Delta-GaN Quantum Well for Deep Ultraviolet Emitters”, Sci. Rep. 6, 22983; doi: 10.1038/srep22983 (2016).

Taniyasu, Y. & Kasu, M. “Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices”, Appl. Phys. Lett. 99, 251112 (2011).

Tan, C. K. & Tansu, N. “Gain and spontaneous emission characteristics of AlInN quantum well for deep ultraviolet emitters” Proc. of the IEEE Photonics Conference, 577-578 (2015).

D. Rosales, T. Bretagnon, and B. Gil, A. Kahouli, J. Brault, B. Damilano, and J. Massies, M. V. Durnev, A. V. Kavokin, “Excitons in nitride heterostructures: From zero- to one-dimensional behavior”, Phy. Rev. B, 88, 125437 (2013).

Thi Huong Ngo, Bernard Gil, Benjamin Damilano, Kaddour Lekhal, Philippe De Mierry, “Internal quantum efficiency and Auger recombination in green, yellow and red InGaN-based light emitters grown along the polar direction”, Superlattices and Microstructures 103, 245-251 (2017).

P. A. Alvi, “Transformation of type-II InAs/AlSb nanoscale heterostructure into type-I structure and improving interband optical gain”, Phys. Status Solidi B 254, No. 5, 1600572 (2017).

Yoon-Suk Kim, Martijn Marsman, and Georg Kresse, “Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors”, Phys. Rev. B, 82, 205212 (2010).

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys”, J. Appl. Phys. 89, 5815 (2001).

Shun Lien Chuang, Physics of Photonic Devices, Willey & Sons, Inc., 2nd Edition (2009).

Full Text: PDF


  • There are currently no refbacks.

Bulletin of EEI Stats