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This study introduces a novel methodology aimed at minimising total
harmonic distortion (THD) in grid-connected photovoltaic (PV) systems
(GCPVs) through the implementation of a maximum power point tracking
(MPPT) approach based on artificial neural networks (ANN). High THD
levels in PV systems can lead to inefficiencies, power quality issues, and
potential damage to the grid infrastructure. Although traditional MPPT
methods effectively optimise the power output, they often fail to address
harmonics. The proposed ANN-based MPPT algorithm improves PV power
harvesting while actively minimising the harmonic distortions. The ANN
was trained using a comprehensive dataset that included various
environmental conditions, ensuring robust performance in diverse
operational scenarios. Simulation results demonstrate that the ANN-based
MPPT approach significantly reduces THD to below 1% across various
irradiance levels, in contrast to the 1.18% to 2.72% observed with
conventional methods such as perturb and observe (P&O), while
simultaneously preserving optimal power output. Reducing harmonic
distortion improves the power quality, system efficiency, and lifespan of
grid-connected components. This study highlights ANN-based control
strategies for addressing the challenge of maximising energy harvesting and
maintaining power quality in modern PV systems, offering a solution for the
sustainable integration of solar energy into the grid.
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1. INTRODUCTION

In order to fulfill the increasing global energy demand, the use of renewable energy sources has
grown; among these sources, photovoltaic systems (PVs) have emerged as a viable and promising alternative
to fossil fuels [1], [2]. PV systems based on PVs effect convert solar radiation directly into electrical power
[3]. Total harmonic distortion (THD) in solar systems is a major and permanent challenge that affects the
power quality and efficiency of the overall system [4]. THD levels can lead to the damage of electrical
components, overheating, and shorter operating times, which can defeat the environmental and economic

purposes of solar energy systems [5].

Despite significant advancements in PV technology, the issue of THD remains a critical concern,
particularly within grid-connected PV (GCPV) systems, where the seamless integration of sustainable energy
into existing power grids is imperative [6]. While conventional maximum power point tracking (MPPT)
techniques are effective in optimising PV system power output, they often exhibit limitations in their capacity
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to regulate THD values effectively [7]. This intrinsic inefficiency underscores the necessity for innovative
approaches that concurrently enhance energy extraction efficiency and reduce harmonic distortion.

Recently, expensive studies have investigated various approaches to reduce THD in PV systems. A
comprehensive review of the THD reduction technology [8] was carried out, emphasizing the importance of
inverter technology and control strategies for optimal performance. Researchers discovered that employing
advanced modulation techniques and filtering methods can greatly enhance the quality of power supplied to
the grid. Additionally, [9] has offered a three-phase inverter optimized control method that considerably
lowers THD while maintaining PVs system stability. Similarly, [10] has studied an optimization-based
technique for selective harmonic elimination in GCPVs, which has been shown to significantly improve
power quality by effectively reducing harmonic distortion. Their results highlighted the importance of using
evolved control approaches to increase the effectiveness of PV systems while ensuring compliance with grid
standards. Moreover, [11] has presented an active harmonic dampening filter that is controlled by an Imperial
competitive algorithm (ICA). This study presents a new method that improves the performance of GCPVs. It
effectively reduces harmonic distortion and increases the system's ability to adjust to different load
conditions. An enhanced multi-carrier pulse width modulation (PWM) technique was introduced by [12],
which was designed to mitigate harmonics in solar PVs systems based on cascaded H-bridge configurations.
This advancement represents a significant contribution to the continuous efforts aimed at enhancing the
reliability and renewable energy systems efficiency. These studies show the ongoing attempts to improve
GCPV's power quality of GCPV, focusing on the implementation of innovative control strategies and the
application of harmonic mitigation techniques.

This study presents an advanced methodology for addressing THD. While preceding sections
highlighted the critical need for solutions that improve power extraction efficiency and reduce harmonic
distortion, this research specifically proposes an artificial neural network (ANN)-based MPPT technique.
This novel approach is engineered to concurrently optimise power harvesting from PV systems and actively
minimise harmonic distortions, thereby enhancing overall system performance and reliability. A robust
training regimen for the ANN will involve the utilisation of a comprehensive dataset, integrating both
historical operational data and real-time measurements. This rigorous training regimen is intended to
facilitate the ANN effective adaptation to a range of variable environmental conditions and dynamic load
requirements, thereby confirming its efficacy across diverse operational scenarios.

The comprehensive ANN framework of this study, which successfully tackles two important
problems in PV systems increasing energy extraction and actively lowering THD encapsulates its innovative
element. Unlike conventional MPPT techniques, which often give priority to energy extraction without a
proper balance of content management, our proposed methodology offers a holistic solution. This integrated
approach enhances our understanding of renewable energy systems by improving scientific quality and
contributions. It also significantly influences the design and operation of more efficient PV systems, leading
to increased reliability and performance. Ultimately, this study aims to advance sustainable energy solutions,
facilitating their seamless integration with modern power grids and supporting the global shift towards
cleaner energy future by effectively mitigating harmonic distortion.

2. PROPOSED SYSTEM CONFIGURATION AND CONTROL METHODOLOGY

As illustrated in Figure 1, the proposed system configuration comprises several basic components
designed to enable efficient energy conversion and easy integration into the power grid. PVs panels convert
sunlight into direct current (DC) and are the central components of the system. This DC power is then
buffered by a DC link that maintains a stable voltage level before the energy is transferred to the inverter.
The inverter plays a crucial role in converting DC into alternating current (AC), an essential process for
feeding energy into the power grid. To enhance the output waveform quality and effectively mitigate
harmonic distortion, an LCL passive filter is strategically positioned between the inverter and the grid
interface. This comprehensive configuration is designed to enhance the performance of the PV system and
ensure both high operational reliability and high-power quality management in order to successfully integrate
the power grid.

2.1. Solar photovoltaic modelling

The PV cell is the fundamental component of PV systems. To generate the required power and
voltage, multiple PV cells are interconnected in either a series or parallel configuration, thereby forming a
complete PV array [13], [14]. A single diode model is typically employed to represent a PV cell, as visually
presented in Figure 2. This equivalent circuit provides a mathematical representation of the operational
behaviour of the solar cell. Within this model, a current source is arranged in parallel with a diode, along with
a series resistor (Rs) and a shunt resistor (Rsn). The photogenerated current (loh) is directly proportional to the
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intensity of incident sunlight, while the diode effectively depicts the characteristics of the cell's p-n junction.
Specifically, series resistance (R) is responsible for resistance losses in cell connections, while shunt
resistance (R,y,) is the leakage current present in the cell. In (1) illustrates the relationship between the current
(1) and the voltage (V) in the PV cell [15]-[17].

I = Iph —1Ip — I (1)

In this context, the photocurrent is denoted as I,,, while the diode current is denoted by I, and the
shunt current is indicated as Iy, . These parameters are defined as (2)-(6):
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Figure 1. The proposed model was implemented in MATLAB/Simulink
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Figure 2. Single diode model of PV cell

Where I, represents the short-circuit current of a PV cell measured in amperes (A), while G
denotes the solar irradiance expressed in watts per square meter (W/m2). The Boltzmann constant is indicated
by K, measured in joules per kelvin (J-K™"), and T, refers to the PV cell temperature in kelvins (K). The
reference temperature is represented by Tecn, also in kelvins (K). The PV cell series resistance Rs is measured
in ohms (Q), and the shunt resistance Ry, is also measured in ohms (Q2). In voltage (V) the Vocn sShows the PV
cell open circuit voltage. The band gap energy is denoted by Eg in joules (J), while K again refers to the
Boltzmann constant. The ideality factor is represented by A, and the charge of an electron is indicated by g.
The scenario characterized by standard testing conditions, wherein G, is equal to 1000 W/m2 and T, is
25 °C, is represented by the subscript "n."

Artificial neural network maximum power point tracking for mitigation photovoltaic ... (Adel Bouledroua)



4164 O ISSN: 2302-9285

Figure 3 shows how variations in solar irradiance and temperature impact the performance of PV
systems. In particular, Figure 3(a) shows the effect of different irradiation levels on the P-V curve at constant
temperature and Figure 3(b) shows the effect of the change in temperature at constant irradiation. These
visual relationships clearly indicate that optimal operating points that deliver maximum power output change
considerably with environmental changes. Therefore, accurate MPPT approaches must be implemented to
adapt to these changes continuously and ensure that PV systems provide maximum performance. This study
utilized the 1Soltech ISTH-215-P solar module and provided its electrical characteristics under standard
testing conditions (STC), which are set at a solar irradiation of 1000 W/m? and a temperature of 25 °C, as
detailed in Table 1.

x104

10

10- 1000 Wim? g
15°C

2 = 35°C
750 Wim 35

S

2
500 Wim 45°C

Power (W)
Power (W)

IS

250 Wim*

0 1 L L
0

1 I I | o 2
] 100 200 300 400 500 600 700 800 90¢ 1000 0 100 200 300 400 500 600 700 800‘ 900 1000

Voltage (V) Voltage (V)
@ (b)

Figure 3. P-V curve: (a) effect of irradiance (T=25 °C) and (b) effect of temperature G=1000 W/m?

Table 1. Specifications of 1Soltech ISTH-215-P PV module

Specification Value
Power at STC 215 W
Voltage at MPP Vmp 29V
Current at MPP Imp 735A
Open circuit voltage Voc 36.3V
Short circuit current Isc 784 A

Open circuit voltage temp coefficient . -0.361 %/°C
Short circuit current temp coefficiento  0.102 %/°C

2.2. Maximum power point tracking technique

MPPT techniques are indispensable in PV applications, as they actively optimise the energy
harvested from solar panels. This optimisation is essential given the inherent fluctuations in environmental
conditions. By continuously adjusting the operating point, MPPT ensures the PV system consistently delivers
its maximum power output, thereby adapting to variations in temperature and solar irradiation and
consequently improving the entire system's efficiency [18].

2.2.1. Perturb and observe technique
Figure 4 illustrates the flowchart of the perturb and observe (P&O) algorithm, a popular method for
MPPT commonly utilized in PV systems. Its widespread adoption is largely attributed to its inherent
simplicity and proven effectiveness across diverse environmental conditions. The basic operation of the P&O
method consists of iteratively adjusting the voltage of the PV array and carefully monitoring the
corresponding changes in the energy output. This adaptation mechanism enables the system to continuously
progress towards its maximum power point (MPP) [19], [20]. The operating cycle starts with the
measurement of the instantaneous voltage, V(k), and the instantaneous current, I(k), of the PV panel, from
which the current output, P(k), is calculated. The algorithm then calculates the change in power (AP) and
voltage (AV) in relation to the previous measurement (k-1). Based on these computed variations, the system
enacts specific control adjustments:
— If a zero change in power (AP is zero) is observed concurrently with a positive voltage perturbation (AV
is positive), the algorithm decreases the voltage to search for a potentially superior power point.
— Should power output show an increase (AP is positive), the voltage is typically augmented to advance
towards the MPP, irrespective of the prior voltage change direction.

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4161-4173



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4165

— Furthermore, if a positive voltage change (V is positive) is recorded, the voltage decreases, which
constitutes the standard exploration step of the algorithm's mechanism for navigation of the power-
voltage characteristic curve.

— After each adjustment, historical voltage and current data are updated with the latest values to prepare the
system for the next iteration. This continuous iterative process ensures that the system's operational point
is optimised continuously, thus maximising the energy recovery from PV panels.

Measure
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i

Calculate
P(k) = V(k)*I(k)
AP = P(K) - P(k-1)
AV = V(k) - V(k-1)
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Figure 4. Flowchart of P&O algorithm

2.2.2. Proposed artificial neural network based maximum power point tracking technique approach

ANN is a complex computational framework that is inspired by the complex structure and functions
of the human brain. ANN is comprised interconnected processing units called neurons, which cooperate to
receive, process, and transmit information. As shown in Figure 5, a typical ANN architecture has three main
layers: the input layer captures data, one or more hidden layers that handle complex calculations and
information processing, and the output layer generates final results. These networks have special abilities in
learning data and discovering complex nonlinear relationships without explicit mathematical models, making
them particularly valuable for the analysis of complex systems [21], [22].

Output

Input layer Hidden layer Output layer

Figure 5. Structure of an ANN
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ANNSs provide a practical solution for MPPT in PV systems [23]. Their particular suitability is due
to their inherent ability to model and identify complex non-linear relationships that are commonly
encountered in PV systems, mainly due to the dynamic and variable nature of the environment, such as solar
radiation and temperature [24]. The systematic design of an ANN for MPPT encompasses several critical
stages: problem definition, meticulous data collection and preprocessing, precise network architecture design,
robust model training and validation, and subsequent system implementation and iterative refinement. Each
of these phases is indispensable for ensuring the ANN's optimal performance in maximising power extraction
from PV systems [25], [26].

In this study, the development of ANN based MPPT started with the aim of maximizing power
output of PV modules under different environmental conditions and thus improving the overall efficiency of
the system. These environmental parameters are considered fundamental inputs to the ANN model because
PV panel power output is intrinsically linked to panel temperature T and solar radiation G. The (7) and (8)
were explicitly used to generate a wide range of temperature and radiation values, which were the main
inputs to the ANN model. Subsequently, the corresponding maximum power point (MPP) voltage Vmp,
current Imp, and power P, were calculated using (9) to (11) under these simulated conditions. The designed
ANN's output was explicitly defined as the optimal voltage to be generated by the solar panel, corresponding
to the MPP.

The maximum (Gmax) and minimum (Gmin) radiation values were set at 1000 and 0 W/m?,
respectively, and the minimum (Tmin) and maximum (Tmax) temperature values were set at 15 and 35 °C,
respectively. Standard solar radiation (Gs) was defined as 1000 W/m?, and standard temperature (Ts) as
25 °C. Table 1 gives the voltage and current temperature coefficients, a and . The following is an explicit
formulation of these relationships:

G = [(Gmax — Gmin ) X rand] + Gn )
T = [(Tyax — Tonin) X rand] + Ty ®)
Vinp = Voo + (B(T = TY)) ©)]
Ly = Iy X (GG—S) + (1 + (a(T - T,))) (10)
Prp = Inp X Vinp (1)

For this study, a feedforward ANN architecture was employed to model the intricate relationship
between solar irradiance and temperature as input variables, and the desired optimal voltage output. The
network's structure comprised an input layer, a single hidden layer containing 10 neurons that utilised a
sigmoid activation function, and an output layer. To ensure robust training and evaluation, the overall dataset
comprising 1000 data points of solar irradiance, temperature, and corresponding maximum power voltages
was systematically partitioned into three distinct subsets. The training set, which made up 70% of the total
data, was used to optimize the weights and biases of the ANN. A validation set, which made up 15% of the
data, was essential for adjusting hyperparameters and reducing overfitting while training the model. The last
15% of the data was set aside as a test set to accurately evaluate how well the model performs on previously
unseen data. This rigorous partitioning ensures that the ANN effectively tracks the MPP across various
environmental conditions and exhibits strong generalisation capabilities for novel scenarios [27].

Levenberg-Marquardt (LM) algorithm has been chosen to train ANN models, mainly because of its
proven effectiveness in solving non-linear problems of least squares [28]. This algorithm judiciously
combines aspects of both steepest descent and Gauss—Newton methods, offering fast convergence, especially
when estimated values are close to the final solution. The LM algorithm iteratively adjusts the network's
weights and biases by approximating the Hessian matrix using the Jacobian, aiming to minimise the error
function. During training, the network prediction accuracy was quantified using the MSE loss function,
which measures the average square difference between the optimal ANN prediction voltage and the actual
target MPP voltage [29]. The purpose of the LM algorithm is to minimize this MSE, thus optimizing the
network's ability to identify the best operational points and maximize energy extraction efficiency.

Several key performance indicators and graphical representations were used to evaluate the ANN
trained model, in particular for the LM algorithm, which consistently demonstrated superior performance in
terms of gradients and overall efficiency. The regression plot visually depicts the correlation between the
actual target values and the ANN model's predicted outputs. A regression coefficient (R) of 1, as reported for
the LM algorithm in this study and in line with extensive literature, represents a perfect, nearly linear
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relationship and predictive power between observed and predicted values [30]. The error histogram is a plot
of the prediction errors showing the difference between the predicted and actual values in training, validation,
and test datasets. This histogram aids in verifying the overall accuracy and consistency of the model's
predictions, with ideal performance indicated by errors clustered near zero [30]. The performance plot tracks
critical metrics like mean squared error (MSE) and R-squared values across various training epochs, offering
insights into the convergence behaviour and efficacy of the LM algorithm in optimising the ANN for precise
MPPT predictions [31]. It's typically observed that training loss decreases with each epoch (a complete pass
through the training dataset), while increasing test loss may signal overfitting. In addition, the Training States
plot shows the MSE, gradients, and validation scores over time, illustrating how the LM algorithm learns
from the dataset, with validation performance monitored to avoid overfitting and gradient values going to
zero (indicating convergence) and a validation performance near zero indicating a low error in MPPT
prediction.

The application of ANN in MPPT solar PV systems is widely appreciated for its superior precision,
inherent flexibility and fast response times, often surpassing traditional methods [32], [33]. However, the
effectiveness of ANN-based MPPT depends mainly on the quality and completeness of the training data sets
and requires a large number of computing and data resources for optimal performance. A potential
disadvantage is the risk of overfitting, which may compromise the generalisation capability of the model if
not properly controlled during training. Consequently, the introduction of systems based on ANNs may entail
higher upfront costs due to the need for complex hardware and software components [34].

3. RESULTS AND DISCUSSION

This section provides a summary and discussion of the key findings of this study. The simulation
employs the proposed ANN-MPPT methodology to establish a correlation with 1000 input data points,
specifically solar irradiance and temperature, pertaining to the PV array. To facilitate optimal analysis, a
discrete simulation methodology is utilized in place of a continuous simulation approach.

As shown in Figure 6, the proposed ANN has an ideal predictive capability as confirmed by the R-
regression coefficient (R) of 1. The result demonstrates high accuracy of the prediction power based on the
input data and establishes a strong correlation between the output voltage produced and the target voltage
required by the PV selected. Moreover, the regression chart in Figure 6 clearly shows that the data are trained
carefully, which leads to negligible errors and a close match between the ANN output and the target value.
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Figure 6. Regression plot of the proposed ANN approach
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The error histogram presented in Figure 7 illustrates the absence of error throughout the training,
validation, and testing phases of data matching, thereby affirming the effectiveness of the employed
methodology. The histogram comprises a total of 20 vertical bars, each representing the number of samples
from the selected dataset that correspond to specific error ranges. The total ANN error spans from -0.0027,
located in the leftmost bin, to 0.002221, situated in the rightmost bin. This error range has been divided into
20 smaller bins, each possessing a width of 0.00025. Notably, a bin with an error value of -0.00011 is
positioned at the midpoint of the histogram. The culmination of the error histogram reveals that all 20 bins
register zero error, thereby underscoring the appropriateness of the ANN for MPPT.
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Figure 7. Error histogram

For processing the selected dataset, Figures 8 and 9 show the training status and performance test of
the suggested approach. Figure 8 shows the validation assessment of the training dataset at 1000 epochs
along with the gradient and momentum parameter (Mu). Using a minimum loss function, the simulation
shows that the gradient at 1000 epochs is 0.0035294, indicating low variance in the trained data. The
simulation results show that a zero output decision and an average per input vector define the cumulative
error. The suitability of the LM algorithm for MPPT is supported by the small value of Mu, in conjunction
with the gradient and validation assessments of the trained dataset. The mean squared error, illustrated in
Figure 9, indicates that the samples from the trained dataset converge towards the optimal training outcome
after 1000 epochs. At 1000 epochs, the training data set has ideal validation performance. The simulation
results attached at 1000 epochs show that the ideal validation performance is 0.00000049248. When using
the LM algorithm, the validation performance close to zero indicates a very small error in MPPT prediction.
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Figure 8. Training state
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Best Validation Performance is 4.9248e-07 at epoch 1000

Train
Validation
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Best

Mean Squared Error (mse)

0 200 400 600 800 1000
1000 Epochs

Figure 9. Performance test

This study aims to illustrate the effectiveness of the proposed ANN-MPPT method in minimizing
THD compared to the traditional and commonly used P&O technique. The model, as depicted in Figure 1,
was executed utilizing the MATLAB/Simulink software. The parameters utilized for the simulation are
enumerated in Table 2. Various levels of solar irradiance were employed to evaluate the robustness and
efficiency of the proposed methodology.

Table 2. Specifications values for the proposed model

Specification Value
Rated power of PV array (Ppv) 95.92 Kw
PV array open-voltage circuit (Voc) 907.6 V
DC-link capacitor (Cdc) 1000 pF
Frequency switch (Fsw) 10 Khz
Inverter side inductor in LCL filter (Li) 500 uH
Capacitor in LCL filter (Ci) 100 puF
Grid side inductor in LCL filter (Lg) 500 uH
Grid voltage (VLL) 400 V
Grid frequency (fg) 50 Hz

Figure 10 illustrates a dynamic solar irradiance profile employed in the simulation study aimed at
assessing the performance of the PV system under rapidly fluctuating weather conditions. The profile
initiates with standard test conditions (STC: 1000 W/m2 and 25 °C) from 0 to 0.35 seconds, during which
four distinct irradiation levels are presented, characterized by abrupt transitions. Subsequently, the irradiance
gradually diminishes to 750 W/m2 until 0.7 seconds, followed by a further reduction to 500 W/m2 until 1.05
seconds, concluding with an increase to 950 W/m?2 until the simulation terminates at 1.3 seconds. This profile
is specifically designed to assess the system's dynamic responsiveness, MPPT efficiency, and power quality
characteristics in the face of sudden irradiance variations, thereby simulating real-world conditions. The
abrupt conditions to study the ability of the control system to maintain continuous operation and fluctuations
in irradiance are used to evaluate the power converter's performance under difficult atmospheric conditions.
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Figure 10. Solar irradiance level profile
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Figure 11 presents an analysis of the THD associated with the current supplied to the grid, utilizing
P&O-MPPT methodology. This analysis was conducted under different solar irradiance conditions of 1000,
750, 500, and 950 W/m?2. At the outset, the fundamental current operating at 50 Hz under 1000 W/m? stands
at 195.5 A, accompanied by a THD of 1.18%, indicating a minimal level of harmonic distortion. As the
radiation level diminishes to 750 W/m2, the fundamental current decreases to 148.3 A. However, the THD
rises to 1.65%, which means a slight deterioration in power quality. The fundamental current reaches 99.49 A
at a reduced irradiance of 500 W/m2, which corresponds to the THD of 2.72%, showing that low irradiance
values increase the harmonic distortion in the system. The fundamental current rises to 186 A at 950 W/m?2
along with a THD of 1.29%, indicating a change in current quality. The P&0O method shows a trend of
increasing THD with decreasing irradiance by producing different THD values at different irradiance levels.
This suggests that the P&O MPPT approach, while effective in tracking maximum power, may produce more

harmonic content when irradiance varies, requiring additional filtering or compensation strategies for grid
compliance.
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Figure 11. THD analysis of current injected into the grid using the P&O-MPPT method

Utilizing ANN-based MPPT approach, Figure 12 illustrates the current that is introduced into the
grid under varying solar irradiance conditions of 1000, 750, 500, and 950 W/m2. Furthermore, the THD is
assessed for each of these scenarios. The current waveform shows a clear sinusoidal shape at each irradiation
level, with accompanying THD values well below 1%, demonstrating effective harmonic reduction and
consistent grid compatibility. The fundamental current is 195.4 A with a THD of 0.29%; the fundamental
current was reduced to 148.1 A with a THD of 0.35%); the fundamental was reduced to 99.43 A with a THD
of 0.57%; and the fundamental increases to 186 A with a THD of 0.29% at an irradiance of 950 W/mz2,
Variations in irradiance demonstrate that the low THD values observed across different irradiance levels
signify the efficacy of the ANN-based MPPT approach in accurately identifying the maximum power. This
capability not only ensures minimal harmonic distortion but also enhances the quality of the power supplied
into the grid. Consequently, the performance of the GCPVs is optimized.

Current Inj to the grid
M f o f 1 l | f e 1
o~ AW A PP B P TP ToT =— b AV WV Iy
z W vy AV AV A - T T — L
E | il HAMLAR AR AL il Al | A A A W A f i A AN
g I f A AN AMAN AR A | ! AAAAARMALAVALA
3 AR AMARASARAARARAARL G AL AR A ARV MAMANMARMAMANVAAAMA A iy M | i
[ gk | I - v VIV \
X 05N 0.35 0.45 / 0,55 0.65 0.75 0.85/ Q98 1.05 115/ N2s 13
/ \ / N ; / \ g
S ¥ z =% Time(sec) zm V4 \ zm 4 A
HE I i N\ £ o
2813 014 045 016 0% . T N A oz o ode L rm m i
P Time(sec) \\ - Time(sec) 1 / Time(sec) R P4 Time(sec) "\,
Y . / . - Z S s £ =
- ; : o ; H N g T s 8 I = 1
£ Fundamental (50Hz) = 195.4 , £ j0p Fundamental (S0Hz) = 143.1 g Fundamental (50Hz) = 99.43 € 01r F"“d‘”“;:‘::_' ‘052:;) 186
g o4 THD= 0.20% B THD= 0.35% E0.15 THD= 0.57% g | bl
b S 006 g T |
2 2 i 101 & 005 -
5 0.05 | 5 004 5 s | |
= i 20,05 q | /RN
£ | Ll i 202 = = |
§ b | ] g, I} g oLl b
0 200 400 600 800 1000 %0 200 doo €0 800 1000 0 500 1000 £

Frequency (Hz) Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Figure 12. THD analysis of current injected into the grid using the ANN-MPPT approach
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4. CONCLUSION

In this study, a novel ANN-based MPPT approach was proposed and tested to overcome the dual
challenge of maximum energy harvesting and THD minimisation in GCPV systems, which are commonly
faced by traditional MPPT methods. This research was driven by the fact that the traditional MPPT methods
cannot effectively reduce THD, which will lead to low-quality power and the difficulty of grid integration.
The simulation results indicated that the proposed ANN-MPPT can achieve more than 99% energy
harvesting. The THD values are much lower than 1% at all the different solar irradiance levels and rapidly
changing irradiance conditions, which is superior to the conventional P&O method. The THD values of the
ANN-MPPT are much lower than those of the P&0O method, which will increase as the irradiance decreases.
These results suggest that the ANN-based MPPT approach can improve the maximum energy harvest and
maintain the THD values below 1%, fulfilling strict grid THD requirements and solar power quality.
However, there are specific inherent properties of ANN-based systems that need to be recognized. The
performance of ANN-based systems is highly dependent on the quality and volume of the training dataset,
which often requires a large amount of computational and data resources. It may be prone to overfitting under
certain conditions, which could affect generalization in completely new settings, increasing the initial cost of
implementation, as the hardware and software can be complex. For future research, testing the real-time
implementation of this ANN-based MPPT algorithm in more complex environments, such as partial shading,
would further confirm its robustness and flexibility. In addition, research into the integration of reinforcement
learning algorithms to improve MPPT control or the development of hybrid control strategies combining
multiple Al techniques offer promising avenues to further increase the efficiency and performance of the
overall system. The model is applicable in a wide range of areas, including stand alone and grid-connected
PV systems, as well as specialised applications in military equipment, telecommunications and space
satellites.
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