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 This study introduces a novel methodology aimed at minimising total 

harmonic distortion (THD) in grid-connected photovoltaic (PV) systems 

(GCPVs) through the implementation of a maximum power point tracking 

(MPPT) approach based on artificial neural networks (ANN). High THD 

levels in PV systems can lead to inefficiencies, power quality issues, and 

potential damage to the grid infrastructure. Although traditional MPPT 

methods effectively optimise the power output, they often fail to address 

harmonics. The proposed ANN-based MPPT algorithm improves PV power 

harvesting while actively minimising the harmonic distortions. The ANN 

was trained using a comprehensive dataset that included various 

environmental conditions, ensuring robust performance in diverse 

operational scenarios. Simulation results demonstrate that the ANN-based 

MPPT approach significantly reduces THD to below 1% across various 

irradiance levels, in contrast to the 1.18% to 2.72% observed with 

conventional methods such as perturb and observe (P&O), while 

simultaneously preserving optimal power output. Reducing harmonic 

distortion improves the power quality, system efficiency, and lifespan of 

grid-connected components. This study highlights ANN-based control 

strategies for addressing the challenge of maximising energy harvesting and 

maintaining power quality in modern PV systems, offering a solution for the 

sustainable integration of solar energy into the grid. 

Keywords: 

Artificial neural network 

Maximum power point tracking 

Photovoltaic 

Power quality 

Total harmonic distortion 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Adel Bouledroua 

Department of Electrical Engineering, Faculty of Technology, Badji Mokhtar University 

B.P.12, Annaba, 23000 Algeria  

Email: adel.bouledroua@univ-annaba.dz 

 

 

1. INTRODUCTION 

In order to fulfill the increasing global energy demand, the use of renewable energy sources has 

grown; among these sources, photovoltaic systems (PVs) have emerged as a viable and promising alternative 

to fossil fuels [1], [2]. PV systems based on PVs effect convert solar radiation directly into electrical power 

[3]. Total harmonic distortion (THD) in solar systems is a major and permanent challenge that affects the 

power quality and efficiency of the overall system [4]. THD levels can lead to the damage of electrical 

components, overheating, and shorter operating times, which can defeat the environmental and economic 

purposes of solar energy systems [5]. 

Despite significant advancements in PV technology, the issue of THD remains a critical concern, 

particularly within grid-connected PV (GCPV) systems, where the seamless integration of sustainable energy 

into existing power grids is imperative [6]. While conventional maximum power point tracking (MPPT) 

techniques are effective in optimising PV system power output, they often exhibit limitations in their capacity 

https://creativecommons.org/licenses/by-sa/4.0/
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to regulate THD values effectively [7]. This intrinsic inefficiency underscores the necessity for innovative 

approaches that concurrently enhance energy extraction efficiency and reduce harmonic distortion. 

Recently, expensive studies have investigated various approaches to reduce THD in PV systems. A 

comprehensive review of the THD reduction technology [8] was carried out, emphasizing the importance of 

inverter technology and control strategies for optimal performance. Researchers discovered that employing 

advanced modulation techniques and filtering methods can greatly enhance the quality of power supplied to 

the grid. Additionally, [9] has offered a three-phase inverter optimized control method that considerably 

lowers THD while maintaining PVs system stability. Similarly, [10] has studied an optimization-based 

technique for selective harmonic elimination in GCPVs, which has been shown to significantly improve 

power quality by effectively reducing harmonic distortion. Their results highlighted the importance of using 

evolved control approaches to increase the effectiveness of PV systems while ensuring compliance with grid 

standards. Moreover, [11] has presented an active harmonic dampening filter that is controlled by an Imperial 

competitive algorithm (ICA). This study presents a new method that improves the performance of GCPVs. It 

effectively reduces harmonic distortion and increases the system's ability to adjust to different load 

conditions. An enhanced multi-carrier pulse width modulation (PWM) technique was introduced by [12], 

which was designed to mitigate harmonics in solar PVs systems based on cascaded H-bridge configurations. 

This advancement represents a significant contribution to the continuous efforts aimed at enhancing the 

reliability and renewable energy systems efficiency. These studies show the ongoing attempts to improve 

GCPV's power quality of GCPV, focusing on the implementation of innovative control strategies and the 

application of harmonic mitigation techniques. 

This study presents an advanced methodology for addressing THD. While preceding sections 

highlighted the critical need for solutions that improve power extraction efficiency and reduce harmonic 

distortion, this research specifically proposes an artificial neural network (ANN)-based MPPT technique. 

This novel approach is engineered to concurrently optimise power harvesting from PV systems and actively 

minimise harmonic distortions, thereby enhancing overall system performance and reliability. A robust 

training regimen for the ANN will involve the utilisation of a comprehensive dataset, integrating both 

historical operational data and real-time measurements. This rigorous training regimen is intended to 

facilitate the ANN effective adaptation to a range of variable environmental conditions and dynamic load 

requirements, thereby confirming its efficacy across diverse operational scenarios. 

The comprehensive ANN framework of this study, which successfully tackles two important 

problems in PV systems increasing energy extraction and actively lowering THD encapsulates its innovative 

element. Unlike conventional MPPT techniques, which often give priority to energy extraction without a 

proper balance of content management, our proposed methodology offers a holistic solution. This integrated 

approach enhances our understanding of renewable energy systems by improving scientific quality and 

contributions. It also significantly influences the design and operation of more efficient PV systems, leading 

to increased reliability and performance. Ultimately, this study aims to advance sustainable energy solutions, 

facilitating their seamless integration with modern power grids and supporting the global shift towards 

cleaner energy future by effectively mitigating harmonic distortion. 

 

 

2. PROPOSED SYSTEM CONFIGURATION AND CONTROL METHODOLOGY 

As illustrated in Figure 1, the proposed system configuration comprises several basic components 

designed to enable efficient energy conversion and easy integration into the power grid. PVs panels convert 

sunlight into direct current (DC) and are the central components of the system. This DC power is then 

buffered by a DC link that maintains a stable voltage level before the energy is transferred to the inverter. 

The inverter plays a crucial role in converting DC into alternating current (AC), an essential process for 

feeding energy into the power grid. To enhance the output waveform quality and effectively mitigate 

harmonic distortion, an LCL passive filter is strategically positioned between the inverter and the grid 

interface. This comprehensive configuration is designed to enhance the performance of the PV system and 

ensure both high operational reliability and high-power quality management in order to successfully integrate 

the power grid. 

 

2.1.  Solar photovoltaic modelling 

The PV cell is the fundamental component of PV systems. To generate the required power and 

voltage, multiple PV cells are interconnected in either a series or parallel configuration, thereby forming a 

complete PV array [13], [14]. A single diode model is typically employed to represent a PV cell, as visually 

presented in Figure 2. This equivalent circuit provides a mathematical representation of the operational 

behaviour of the solar cell. Within this model, a current source is arranged in parallel with a diode, along with 

a series resistor (Rs) and a shunt resistor (Rsh). The photogenerated current (Iph) is directly proportional to the 
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intensity of incident sunlight, while the diode effectively depicts the characteristics of the cell's p-n junction. 

Specifically, series resistance (R) is responsible for resistance losses in cell connections, while shunt 

resistance (𝑅𝑠ℎ) is the leakage current present in the cell. In (1) illustrates the relationship between the current 

(I) and the voltage (V) in the PV cell [15]-[17]. 

 

𝐼 = 𝐼𝑝ℎ − 𝐼𝐷 − 𝐼𝑠ℎ (1) 

 

In this context, the photocurrent is denoted as 𝐼𝑝ℎ, while the diode current is denoted by 𝐼𝐷, and the 

shunt current is indicated as 𝐼𝑠ℎ. These parameters are defined as (2)-(6): 

 

𝐼𝑝ℎ =
𝐺

𝐺𝑛
(𝐼𝑠𝑐𝑛 + 𝐾𝑖(𝑇𝑐 − 𝑇𝑐𝑛)) (2) 

 

𝐼𝐷 = 𝐼𝑠 (𝑒
𝑞(𝑉+𝐼𝑅𝑠)

𝐴𝐾𝑇𝑐 − 1) (3) 

 

𝐼𝑠ℎ =
𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
 (4) 

 

𝐼𝑠 = 𝐼𝑠𝑛 (
𝑇𝑐𝑛

𝑇𝑐
)

3

𝑒
(

𝑞𝐸𝑔

𝐴𝐾
(

1

𝑇𝑐𝑛
−

1

𝑇𝑐
))

 (5) 

 

𝐼𝑠𝑛 =
𝐼𝑠𝑐𝑛

𝑒
(

𝑞𝑉𝑜𝑐𝑛
𝐴𝐾𝑇𝑐𝑛

)
−1  

 (6) 

 

 

 
 

Figure 1. The proposed model was implemented in MATLAB/Simulink 
 

 

 
 

Figure 2. Single diode model of PV cell 
 

 

Where 𝐼𝑠𝑐𝑛 represents the short-circuit current of a PV cell measured in amperes (A), while G 

denotes the solar irradiance expressed in watts per square meter (W/m²). The Boltzmann constant is indicated 

by K, measured in joules per kelvin (J·K⁻¹), and Tc refers to the PV cell temperature in kelvins (K). The 

reference temperature is represented by Tcn, also in kelvins (K). The PV cell series resistance Rs is measured 

in ohms (Ω), and the shunt resistance 𝑅𝑠ℎ is also measured in ohms (Ω). In voltage (V) the Vocn shows the PV 

cell open circuit voltage. The band gap energy is denoted by Eg in joules (J), while K again refers to the 

Boltzmann constant. The ideality factor is represented by A, and the charge of an electron is indicated by q. 

The scenario characterized by standard testing conditions, wherein 𝐺𝑛 is equal to 1000 W/m² and 𝑇𝑐𝑛 is  

25 °C, is represented by the subscript "n." 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4161-4173 

4164 

Figure 3 shows how variations in solar irradiance and temperature impact the performance of PV 

systems. In particular, Figure 3(a) shows the effect of different irradiation levels on the P-V curve at constant 

temperature and Figure 3(b) shows the effect of the change in temperature at constant irradiation. These 

visual relationships clearly indicate that optimal operating points that deliver maximum power output change 

considerably with environmental changes. Therefore, accurate MPPT approaches must be implemented to 

adapt to these changes continuously and ensure that PV systems provide maximum performance. This study 

utilized the 1Soltech ISTH-215-P solar module and provided its electrical characteristics under standard 

testing conditions (STC), which are set at a solar irradiation of 1000 W/m² and a temperature of 25 °C, as 

detailed in Table 1. 
 

 

  
(a) (b) 

 

Figure 3. P-V curve: (a) effect of irradiance (T=25 °C) and (b) effect of temperature G=1000 W/m2 
 

 

Table 1. Specifications of 1Soltech ISTH-215-P PV module 
Specification  Value  

Power at STC 215 W 

Voltage at MPP Vmp 29 V 
Current at MPP Imp 7.35 A 

Open circuit voltage Voc 36.3 V 

Short circuit current Isc 7.84 A 
Open circuit voltage temp coefficient β -0.361 %/°C 

Short circuit current temp coefficient α 0.102 %/°C 

 

 

2.2.  Maximum power point tracking technique 

MPPT techniques are indispensable in PV applications, as they actively optimise the energy 

harvested from solar panels. This optimisation is essential given the inherent fluctuations in environmental 

conditions. By continuously adjusting the operating point, MPPT ensures the PV system consistently delivers 

its maximum power output, thereby adapting to variations in temperature and solar irradiation and 

consequently improving the entire system's efficiency [18]. 

 

2.2.1. Perturb and observe technique 

Figure 4 illustrates the flowchart of the perturb and observe (P&O) algorithm, a popular method for 

MPPT commonly utilized in PV systems. Its widespread adoption is largely attributed to its inherent 

simplicity and proven effectiveness across diverse environmental conditions. The basic operation of the P&O 

method consists of iteratively adjusting the voltage of the PV array and carefully monitoring the 

corresponding changes in the energy output. This adaptation mechanism enables the system to continuously 

progress towards its maximum power point (MPP) [19], [20]. The operating cycle starts with the 

measurement of the instantaneous voltage, V(k), and the instantaneous current, I(k), of the PV panel, from 

which the current output, P(k), is calculated. The algorithm then calculates the change in power (ΔP) and 

voltage (ΔV) in relation to the previous measurement (k-1). Based on these computed variations, the system 

enacts specific control adjustments:  

− If a zero change in power (ΔP is zero) is observed concurrently with a positive voltage perturbation (ΔV 

is positive), the algorithm decreases the voltage to search for a potentially superior power point.  

− Should power output show an increase (ΔP is positive), the voltage is typically augmented to advance 

towards the MPP, irrespective of the prior voltage change direction. 
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− Furthermore, if a positive voltage change (V is positive) is recorded, the voltage decreases, which 

constitutes the standard exploration step of the algorithm's mechanism for navigation of the power-

voltage characteristic curve. 

− After each adjustment, historical voltage and current data are updated with the latest values to prepare the 

system for the next iteration. This continuous iterative process ensures that the system's operational point 

is optimised continuously, thus maximising the energy recovery from PV panels. 
 
 

 
 

Figure 4. Flowchart of P&O algorithm 

 

 

2.2.2. Proposed artificial neural network based maximum power point tracking technique approach 
ANN is a complex computational framework that is inspired by the complex structure and functions 

of the human brain. ANN is comprised interconnected processing units called neurons, which cooperate to 

receive, process, and transmit information. As shown in Figure 5, a typical ANN architecture has three main 

layers: the input layer captures data, one or more hidden layers that handle complex calculations and 

information processing, and the output layer generates final results. These networks have special abilities in 

learning data and discovering complex nonlinear relationships without explicit mathematical models, making 

them particularly valuable for the analysis of complex systems [21], [22]. 
 

 

 
 

Figure 5. Structure of an ANN 
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ANNs provide a practical solution for MPPT in PV systems [23]. Their particular suitability is due 

to their inherent ability to model and identify complex non-linear relationships that are commonly 

encountered in PV systems, mainly due to the dynamic and variable nature of the environment, such as solar 

radiation and temperature [24]. The systematic design of an ANN for MPPT encompasses several critical 

stages: problem definition, meticulous data collection and preprocessing, precise network architecture design, 

robust model training and validation, and subsequent system implementation and iterative refinement. Each 

of these phases is indispensable for ensuring the ANN's optimal performance in maximising power extraction 

from PV systems [25], [26]. 

In this study, the development of ANN based MPPT started with the aim of maximizing power 

output of PV modules under different environmental conditions and thus improving the overall efficiency of 

the system. These environmental parameters are considered fundamental inputs to the ANN model because 

PV panel power output is intrinsically linked to panel temperature T and solar radiation G. The (7) and (8) 

were explicitly used to generate a wide range of temperature and radiation values, which were the main 

inputs to the ANN model. Subsequently, the corresponding maximum power point (MPP) voltage Vmp, 

current Imp, and power Pmp were calculated using (9) to (11) under these simulated conditions. The designed 

ANN's output was explicitly defined as the optimal voltage to be generated by the solar panel, corresponding 

to the MPP. 

The maximum (Gmax) and minimum (Gmin) radiation values were set at 1000 and 0 W/m2, 

respectively, and the minimum (Tmin) and maximum (Tmax) temperature values were set at 15 and 35 °C, 

respectively. Standard solar radiation (Gs) was defined as 1000 W/m², and standard temperature (Ts) as  

25 °C. Table 1 gives the voltage and current temperature coefficients, α and β. The following is an explicit 

formulation of these relationships: 

 

𝐺 = [(𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛  ) × 𝑟𝑎𝑛𝑑] + 𝐺𝑚𝑖𝑛   (7) 

 

𝑇 = [(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) × 𝑟𝑎𝑛𝑑] + 𝑇𝑚𝑖𝑛 (8) 

 

𝑉𝑚𝑝 = 𝑉𝑜𝑐 + (𝛽(𝑇 − 𝑇𝑠)) (9) 

 

𝐼𝑚𝑝 = 𝐼𝑠𝑐 × (
𝐺 

𝐺𝑠 
) + (1 + (𝛼(𝑇 − 𝑇𝑠))) (10) 

 

𝑃𝑚𝑝 = 𝐼𝑚𝑝 × 𝑉𝑚𝑝 (11) 

 

For this study, a feedforward ANN architecture was employed to model the intricate relationship 

between solar irradiance and temperature as input variables, and the desired optimal voltage output. The 

network's structure comprised an input layer, a single hidden layer containing 10 neurons that utilised a 

sigmoid activation function, and an output layer. To ensure robust training and evaluation, the overall dataset 

comprising 1000 data points of solar irradiance, temperature, and corresponding maximum power voltages 

was systematically partitioned into three distinct subsets. The training set, which made up 70% of the total 

data, was used to optimize the weights and biases of the ANN. A validation set, which made up 15% of the 

data, was essential for adjusting hyperparameters and reducing overfitting while training the model. The last 

15% of the data was set aside as a test set to accurately evaluate how well the model performs on previously 

unseen data. This rigorous partitioning ensures that the ANN effectively tracks the MPP across various 

environmental conditions and exhibits strong generalisation capabilities for novel scenarios [27]. 

Levenberg-Marquardt (LM) algorithm has been chosen to train ANN models, mainly because of its 

proven effectiveness in solving non-linear problems of least squares [28]. This algorithm judiciously 

combines aspects of both steepest descent and Gauss–Newton methods, offering fast convergence, especially 

when estimated values are close to the final solution. The LM algorithm iteratively adjusts the network's 

weights and biases by approximating the Hessian matrix using the Jacobian, aiming to minimise the error 

function.  During training, the network prediction accuracy was quantified using the MSE loss function, 

which measures the average square difference between the optimal ANN prediction voltage and the actual 

target MPP voltage [29]. The purpose of the LM algorithm is to minimize this MSE, thus optimizing the 

network's ability to identify the best operational points and maximize energy extraction efficiency. 

Several key performance indicators and graphical representations were used to evaluate the ANN 

trained model, in particular for the LM algorithm, which consistently demonstrated superior performance in 

terms of gradients and overall efficiency. The regression plot visually depicts the correlation between the 

actual target values and the ANN model's predicted outputs. A regression coefficient (R) of 1, as reported for 

the LM algorithm in this study and in line with extensive literature, represents a perfect, nearly linear 
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relationship and predictive power between observed and predicted values [30]. The error histogram is a plot 

of the prediction errors showing the difference between the predicted and actual values in training, validation, 

and test datasets. This histogram aids in verifying the overall accuracy and consistency of the model's 

predictions, with ideal performance indicated by errors clustered near zero [30]. The performance plot tracks 

critical metrics like mean squared error (MSE) and R-squared values across various training epochs, offering 

insights into the convergence behaviour and efficacy of the LM algorithm in optimising the ANN for precise 

MPPT predictions [31]. It's typically observed that training loss decreases with each epoch (a complete pass 

through the training dataset), while increasing test loss may signal overfitting. In addition, the Training States 

plot shows the MSE, gradients, and validation scores over time, illustrating how the LM algorithm learns 

from the dataset, with validation performance monitored to avoid overfitting and gradient values going to 

zero (indicating convergence) and a validation performance near zero indicating a low error in MPPT 

prediction. 

The application of ANN in MPPT solar PV systems is widely appreciated for its superior precision, 

inherent flexibility and fast response times, often surpassing traditional methods [32], [33]. However, the 

effectiveness of ANN-based MPPT depends mainly on the quality and completeness of the training data sets 

and requires a large number of computing and data resources for optimal performance. A potential 

disadvantage is the risk of overfitting, which may compromise the generalisation capability of the model if 

not properly controlled during training. Consequently, the introduction of systems based on ANNs may entail 

higher upfront costs due to the need for complex hardware and software components [34]. 

 

 

3. RESULTS AND DISCUSSION 

This section provides a summary and discussion of the key findings of this study. The simulation 

employs the proposed ANN-MPPT methodology to establish a correlation with 1000 input data points, 

specifically solar irradiance and temperature, pertaining to the PV array. To facilitate optimal analysis, a 

discrete simulation methodology is utilized in place of a continuous simulation approach. 

As shown in Figure 6, the proposed ANN has an ideal predictive capability as confirmed by the R-

regression coefficient (R) of 1. The result demonstrates high accuracy of the prediction power based on the 

input data and establishes a strong correlation between the output voltage produced and the target voltage 

required by the PV selected. Moreover, the regression chart in Figure 6 clearly shows that the data are trained 

carefully, which leads to negligible errors and a close match between the ANN output and the target value. 

 

 

 
 

Figure 6. Regression plot of the proposed ANN approach  
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The error histogram presented in Figure 7 illustrates the absence of error throughout the training, 

validation, and testing phases of data matching, thereby affirming the effectiveness of the employed 

methodology. The histogram comprises a total of 20 vertical bars, each representing the number of samples 

from the selected dataset that correspond to specific error ranges. The total ANN error spans from -0.0027, 

located in the leftmost bin, to 0.002221, situated in the rightmost bin. This error range has been divided into 

20 smaller bins, each possessing a width of 0.00025. Notably, a bin with an error value of -0.00011 is 

positioned at the midpoint of the histogram. The culmination of the error histogram reveals that all 20 bins 

register zero error, thereby underscoring the appropriateness of the ANN for MPPT. 

 

 

 
 

Figure 7. Error histogram 

 

 

For processing the selected dataset, Figures 8 and 9 show the training status and performance test of 

the suggested approach. Figure 8 shows the validation assessment of the training dataset at 1000 epochs 

along with the gradient and momentum parameter (Mu). Using a minimum loss function, the simulation 

shows that the gradient at 1000 epochs is 0.0035294, indicating low variance in the trained data. The 

simulation results show that a zero output decision and an average per input vector define the cumulative 

error. The suitability of the LM algorithm for MPPT is supported by the small value of Mu, in conjunction 

with the gradient and validation assessments of the trained dataset. The mean squared error, illustrated in 

Figure 9, indicates that the samples from the trained dataset converge towards the optimal training outcome 

after 1000 epochs. At 1000 epochs, the training data set has ideal validation performance. The simulation 

results attached at 1000 epochs show that the ideal validation performance is 0.00000049248. When using 

the LM algorithm, the validation performance close to zero indicates a very small error in MPPT prediction. 

 

 

 
 

Figure 8. Training state 
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Figure 9. Performance test 
 
 

This study aims to illustrate the effectiveness of the proposed ANN-MPPT method in minimizing 

THD compared to the traditional and commonly used P&O technique. The model, as depicted in Figure 1, 

was executed utilizing the MATLAB/Simulink software. The parameters utilized for the simulation are 

enumerated in Table 2. Various levels of solar irradiance were employed to evaluate the robustness and 

efficiency of the proposed methodology. 
 

 

Table 2. Specifications values for the proposed model 
Specification  Value  

Rated power of PV array (Ppv) 95.92 Kw 

PV array open-voltage circuit (Voc) 907.6 V 

DC-link capacitor (Cdc) 1000 μF 
Frequency switch (Fsw) 10 Khz 

Inverter side inductor in LCL filter (Li) 500 μH 

Capacitor in LCL filter (Ci) 100 μF 
Grid side inductor in LCL filter (Lg) 500 μH 

Grid voltage (VLL) 400 V 

Grid frequency (fg) 50 Hz 

 

 

Figure 10 illustrates a dynamic solar irradiance profile employed in the simulation study aimed at 

assessing the performance of the PV system under rapidly fluctuating weather conditions. The profile 

initiates with standard test conditions (STC: 1000 W/m² and 25 °C) from 0 to 0.35 seconds, during which 

four distinct irradiation levels are presented, characterized by abrupt transitions. Subsequently, the irradiance 

gradually diminishes to 750 W/m² until 0.7 seconds, followed by a further reduction to 500 W/m² until 1.05 

seconds, concluding with an increase to 950 W/m² until the simulation terminates at 1.3 seconds. This profile 

is specifically designed to assess the system's dynamic responsiveness, MPPT efficiency, and power quality 

characteristics in the face of sudden irradiance variations, thereby simulating real-world conditions. The 

abrupt conditions to study the ability of the control system to maintain continuous operation and fluctuations 

in irradiance are used to evaluate the power converter's performance under difficult atmospheric conditions. 
 

 

 
 

Figure 10. Solar irradiance level profile 
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Figure 11 presents an analysis of the THD associated with the current supplied to the grid, utilizing 

P&O-MPPT methodology. This analysis was conducted under different solar irradiance conditions of 1000, 

750, 500, and 950 W/m². At the outset, the fundamental current operating at 50 Hz under 1000 W/m² stands 

at 195.5 A, accompanied by a THD of 1.18%, indicating a minimal level of harmonic distortion. As the 

radiation level diminishes to 750 W/m², the fundamental current decreases to 148.3 A. However, the THD 

rises to 1.65%, which means a slight deterioration in power quality. The fundamental current reaches 99.49 A 

at a reduced irradiance of 500 W/m², which corresponds to the THD of 2.72%, showing that low irradiance 

values increase the harmonic distortion in the system. The fundamental current rises to 186 A at 950 W/m² 

along with a THD of 1.29%, indicating a change in current quality. The P&O method shows a trend of 

increasing THD with decreasing irradiance by producing different THD values at different irradiance levels. 

This suggests that the P&O MPPT approach, while effective in tracking maximum power, may produce more 

harmonic content when irradiance varies, requiring additional filtering or compensation strategies for grid 

compliance. 

 

 

 
 

Figure 11. THD analysis of current injected into the grid using the P&O-MPPT method 

 

 

Utilizing ANN-based MPPT approach, Figure 12 illustrates the current that is introduced into the 

grid under varying solar irradiance conditions of 1000, 750, 500, and 950 W/m². Furthermore, the THD is 

assessed for each of these scenarios. The current waveform shows a clear sinusoidal shape at each irradiation 

level, with accompanying THD values well below 1%, demonstrating effective harmonic reduction and 

consistent grid compatibility. The fundamental current is 195.4 A with a THD of 0.29%; the fundamental 

current was reduced to 148.1 A with a THD of 0.35%; the fundamental was reduced to 99.43 A with a THD 

of 0.57%; and the fundamental increases to 186 A with a THD of 0.29% at an irradiance of 950 W/m². 

Variations in irradiance demonstrate that the low THD values observed across different irradiance levels 

signify the efficacy of the ANN-based MPPT approach in accurately identifying the maximum power. This 

capability not only ensures minimal harmonic distortion but also enhances the quality of the power supplied 

into the grid. Consequently, the performance of the GCPVs is optimized. 

 

 

 
 

Figure 12. THD analysis of current injected into the grid using the ANN-MPPT approach 
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4. CONCLUSION  

In this study, a novel ANN-based MPPT approach was proposed and tested to overcome the dual 

challenge of maximum energy harvesting and THD minimisation in GCPV systems, which are commonly 

faced by traditional MPPT methods. This research was driven by the fact that the traditional MPPT methods 

cannot effectively reduce THD, which will lead to low-quality power and the difficulty of grid integration. 

The simulation results indicated that the proposed ANN-MPPT can achieve more than 99% energy 

harvesting. The THD values are much lower than 1% at all the different solar irradiance levels and rapidly 

changing irradiance conditions, which is superior to the conventional P&O method. The THD values of the 

ANN-MPPT are much lower than those of the P&O method, which will increase as the irradiance decreases. 

These results suggest that the ANN-based MPPT approach can improve the maximum energy harvest and 

maintain the THD values below 1%, fulfilling strict grid THD requirements and solar power quality. 

However, there are specific inherent properties of ANN-based systems that need to be recognized. The 

performance of ANN-based systems is highly dependent on the quality and volume of the training dataset, 

which often requires a large amount of computational and data resources. It may be prone to overfitting under 

certain conditions, which could affect generalization in completely new settings, increasing the initial cost of 

implementation, as the hardware and software can be complex. For future research, testing the real-time 

implementation of this ANN-based MPPT algorithm in more complex environments, such as partial shading, 

would further confirm its robustness and flexibility. In addition, research into the integration of reinforcement 

learning algorithms to improve MPPT control or the development of hybrid control strategies combining 

multiple AI techniques offer promising avenues to further increase the efficiency and performance of the 

overall system. The model is applicable in a wide range of areas, including stand alone and grid-connected 

PV systems, as well as specialised applications in military equipment, telecommunications and space 

satellites. 
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