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 Phishing attacks through deceptive URLs remain a critical cybersecurity 

threat, particularly in financial transactions and online payment systems. 

This study evaluates multiple deep learning (DL) models on the PhiUSIIL 

dataset of 235,795 URLs, with bidirectional gated recurrent unit (BiGRU) 

achieving the best performance—99.82% accuracy at a 60:40 split, along 

with high precision, F1-score, and the lowest test loss. To further improve 

detection of obfuscated URLs, an enhanced BiGRU variant is proposed 

using an expanded 366-character vocabulary. For real-time deployment, a 

Chrome extension is developed, integrating exact and fuzzy matching via the 

Ratcliff–Obershelp algorithm with cloud-based whitelist and blacklist 

checks. When fuzzy matching is inconclusive, the BiGRU model performs 

the final classification. By combining an adaptive browser-side tool with a 

robust DL backend, the proposed system ensures high accuracy, scalability, 

and efficiency for phishing detection in practical web environments. 
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1. INTRODUCTION 

Although URL-based phishing is not new to cybersecurity, it continues to grow in both complexity 

and frequency. Attackers increasingly employ obfuscation techniques and domain mimicry to bypass 

traditional blacklists and deceive even experienced users. Such attacks aim to trick victims into disclosing 

personal information, financial credentials, or authentication tokens through fraudulent links on online 

platforms, thereby enabling adversaries to gain unauthorized access and often exfiltrate funds or sensitive 

assets. These challenges necessitate the development of intelligent and adaptive models capable of accurately 

classifying URLs while maintaining minimal latency. 

The Anti-Phishing Working Group (APWG) reported 877,536 phishing incidents in Q2 2024, 

marking a decrease from 963,994 in Q1 [1]. Despite the decline, attackers are diversifying their methods by 

leveraging phone calls and text messages in addition to email, mainly targeting banking and payment service 

users. Social media platforms remain the most impacted sector, accounting for 32.9% of all attacks. 

Illustrating the real-world consequences of such attacks, a recent report published in February 2024, Pepco 

Group, a prominent European retail conglomerate owning brands such as Pepco, Dealz, and Poundland, fell 

victim to a sophisticated phishing attack targeting its Hungarian branch, resulting in a financial loss of 

approximately 15.5 million euros (equivalent to 16.8 million USD) [2]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The phishing URL detection method based on a whitelist was proposed by Azeez et al. [3], 

achieving 96.17% accuracy. These were further improved in [4] through dynamic list management, which 

integrated blacklists, whitelists, and greylists. While list-based methods are efficient in processing time when 

comparing URLs against known entries, they remain limited in detecting newly crafted or obfuscated 

phishing URLs. To address this, machine learning (ML) techniques have been explored. Sabahno and Safara 

[5] applied the improved spotted hyena optimization algorithm for feature selection in a support vector 

machine (SVM) model, reaching 98.64% accuracy on 11,055 URLs. Similarly, Kara et al. [6] used 11 

handcrafted features with a random forest (RF) model, achieving 98.90% accuracy on 32,928 samples. 

However, these ML approaches may still lose important structural or semantic information when handling 

long URLs, which can affect classification performance. 

Awasthi and Goel [7] evaluated ensemble methods on three datasets comprising 13,511 URLs, with 

Bagging, AdaBoost (AB), XGBoost, and voting ensemble achieving high accuracy; the best model reached 

99.18%. Meanwhile, Aljabri et al. [8] compared RF, Naïve Bayes (NB), convolutional neural network 

(CNN), and long short-term memory (LSTM) on 66,506 URLs, reporting that NB performed best with 

96.01% accuracy. In another study, Alqahtani et al. [9] proposed a phishing detection method using a deep 

autoencoder classifier, achieving up to 99.28% accuracy. Similarly, Bahaghighat et al. [10] developed an 

ML-based predictive framework with six algorithms, where XGBoost achieved the highest accuracy of 

99.2% on a dataset of more than 88,000 URLs. 

Pavani et al. [11] conducted a comprehensive evaluation of ten classical ML algorithms, including 

RF, decision tree (DT), logistic regression (LR), SVM, Gaussian Naïve Bayes (GNB), k-nearest neighbors 

(KNN), Bernoulli Naïve Bayes (BNB), AB, neural networks (NN), and gradient boosting (GB). Among 

these, the RF achieved the highest accuracy of 98.55%. The integration of model interpretation techniques 

such as SHAP and LIME further enhanced transparency and interpretability. In a related study,  

Kalabarige et al. [12] employed a boosting-based stacked ensemble framework with hybrid feature selection 

strategies, reporting superior performance over base learners with classification accuracy ranging from 

96.18% to 98.95%. The multilayered architecture significantly improved phishing detection capabilities, 

albeit at the expense of increased training time. Meanwhile, Asif et al. [13] proposed a hybrid model 

combining LSTM and CNN architectures with DeepWalk-based URL embeddings. Their approach achieved 

marginal gains in classification accuracy, but the improvements were not statistically significant. 

Alqahtani and Abu-Khadrah [14] proposed a phishing website detection model that integrates three 

classification algorithms: RF, SVM, and Bagging, within a unified system. The model was evaluated on a 

dataset comprising 1,353 URLs, including 548 legitimate, 702 phishing, and 103 suspicious URLs. 

Experimental results demonstrated that the proposed ensemble approach achieved an overall accuracy of 

92.33%, with a precision of 92.13%, recall of 92.09%, and F1-score of 92.10%. 

Buu and Cho [15] proposed a fuzzy-calibrated transformer network for phishing URL detection. The 

model was evaluated on the ISCX-URL2016 dataset comprising 35,000 benign, 9,000 phishing, 11,000 

malware, and 12,000 spam URLs, achieving 98.95% accuracy and 95.10% recall. However, the method 

introduces higher computational overhead due to fuzzy calibration and is constrained by the relatively small 

dataset size. 

Phishing URL attacks are becoming increasingly sophisticated, posing serious risks to users, 

especially in online financial transactions. Traditional detection methods—such as whitelist/blacklist filtering 

and classical ML classifiers—often struggle to extract meaningful features from raw URL structures. 

Moreover, many DL models treat URLs as simple linear sequences, thereby overlooking critical structural 

information embedded in different URL components. The key contributions of this work are summarized as 

follows and validated through extensive empirical evaluation: 

− To strengthen real-time security and safeguard user information—particularly in online financial 

transactions—a browser extension was developed in JavaScript and integrated into Chrome. Rather than 

embedding a DL model directly, the approach was advanced into a verification pipeline that combines 

cloud-based blacklist/whitelist checks via Firestore with an inspection mechanism using a pre-trained 

bidirectional gated recurrent unit (BiGRU) model to assess previously unseen URLs. 

− The browser extension was further enhanced with the Ratcliff–Obershelp algorithm, which computes 

string similarity by recursively identifying the longest common subsequences between two input strings. 

This algorithm verifies URLs against two datasets: a whitelist of 3,000 benign URLs [16] and a blacklist 

of 2,500 phishing URLs [17]. Both datasets are hosted on the Cloud Firestore platform and shared with 

the cybersecurity community for collaborative use [18]. Communication with the endpoint is handled 

automatically through a REST API, enabling efficient real-time URL evaluation. This approach addresses 

several limitations noted in [3], [4] by moving beyond traditional blacklist–whitelist methods. 

− Extends the character-level vocabulary from 270 [19] to 366 symbols and evaluates five deep learning 

(DL) models artificial neural network (ANN), CNN, LSTM, gated recurrent unit (GRU), and BiGRU—on 
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the academic dataset PhiUSIIL [20], which contains 235,795 URLs (134,850 benign and 100,945 

phishing). Multiple train–test splits (5:5, 6:4, 7:3, 8:2, and 9:1) were applied to determine the optimal 

configuration for maximizing accuracy and minimizing misclassification. 

− Addresses the limitations in [10], [14], [15]—including small dataset sizes, limited sequential modeling 

capacity, and insufficient evaluation diversity—by highlighting the superior performance of BiGRU. 

Capturing bidirectional sequence context, BiGRU outperformed the other models, achieving 99.82% 

testing accuracy at the 6:4 split and consistently exceeding 99.8% across all configurations when assessed 

with accuracy, precision, F1-score, loss, and confusion matrix. 

The structure of the paper is as follows: section 2 presents the proposed algorithm, which combines 

Firestore URL management with a hybrid inspection procedure. Section 3 describes the evaluation methods 

and dataset, while section 4 reports and discusses the experimental results. Finally, section 5 concludes the 

study, followed by the acknowledgments and references. 

 

 

2. PROPOSED ALGORITHM 

2.1.  Proposed batch URL bulk Firestore algorithm for Firestore URL management 

To enable scalable and efficient management of phishing-related URL datasets, the batch URL bulk 

Firestore algorithm (BUBFA) is proposed. The algorithm automates batched ingestion of labeled URLs into 

Firestore collections, ensuring centralized storage of blacklist and whitelist entries. Firestore, a scalable 

NoSQL cloud database by Google, is widely used for real-time synchronization across web and mobile 

platforms. BUBFA accepts a newline-separated string of URLs, performs parsing and sanitization, and 

uploads them in bounded batches via HTTP POST requests. To comply with Firestore API rate limits, short 

delays are inserted between transmissions. Designed for real-time phishing detection frameworks, this 

mechanism ensures reliable, modular, and efficient integration of threat intelligence into a centralized 

repository. 

BUBFA provides a structured mechanism for ingesting large sets of labeled URLs into Firestore in a 

reliable and rate-limited manner. It groups incoming URLs into bounded batches, performs sequential 

uploads, and ensures stable synchronization with the cloud database. Algorithm 1 presents the complete 

pseudocode of the proposed batching procedure. 

 

Algorithm 1. Batch URL bulk Firestore algorithm 

Input: A raw text string rawText containing newline-separated URLs 

Output: URLs inserted into a Firestore collection, where collection ∈ {blacklist_urls, whitelist_urls} 

1: urls ← Split rawText by newline characters, trim each entry, and remove empty lines 

2: collection ← “blacklist_urls” or “whitelist_urls” ⟶ selected based on the dataset type 

3: project_id ← “ptit-url-guardian” 

4: firestore_url←“https://firestore.googleapis.com/v1/projects/”+project_id+“/databases/(default)/documents/ 

”+collection 

5: for i ← 0 to length(urls) step 50 do 

6: batch ← urls[i : i + 50] 

7: Call Send_Batch(batch) 

8: Print “Uploaded i + batch.length of urls.length” 

9: Sleep for 400 milliseconds ⟶ to avoid Firestore API rate limiting 

10: end for 

11: Print “Completed upload to Firestore collection:”, collection 

Procedure: Send_Batch(batch) 

1: for each url in batch do 

2: body ← { 

3: fields: { 

4: url: { stringValue: url } 

5: } 

6: } 

7: Send an HTTP POST request to firestore_url with body as payload 

8: end for 

 

a. Initialization phase (lines 1–4): the input string rawText is parsed into a list of trimmed, non-empty 

URLs. Depending on the labeling context, either the blacklist_urls or whitelist_urls Firestore collection is 

selected. In deployment, the whitelist contains approximately 3,000 URLs, while the blacklist holds about 

2,500. 
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b. Batch processing and upload loop (lines 5–11): the cleaned URL list is partitioned into batches of 50. For 

each batch, the Send_Batch() procedure uploads the URLs to Firestore. To comply with Firestore API 

rate limits and avoid throttling, a fixed delay of 400 ms is introduced between consecutive uploads. 

c. Send_Batch procedure (lines 1–8): the procedure iterates through each URL in the batch, creating a JSON 

document with the URL as a string field. Each document is uploaded to Firestore via an HTTP POST 

request. This stateless design ensures scalability and seamless integration of labeled threat data. 

 

2.2.  Hybrid URL inspection procedure 

By leveraging a lightweight Chrome extension, the detection process starts by retrieving whitelist 

and blacklist data from Firestore. URLs are first checked using exact matching; if no direct match is found, 

the Ratcliff–Obershelp algorithm computes a similarity score through recursive pattern recognition of the 

longest common substrings, effectively identifying obfuscated or intentionally misspelled phishing URLs. 

Based on the similarity score and a predefined threshold, the URL is classified as either phishing or benign. 

When classification remains inconclusive, a BiGRU-based DL model provides the final decision. Real-time 

browser notifications then alert users, ensuring robust phishing protection directly at the point of access. 

MSPGA coordinates multi-stage phishing detection directly within the browser by integrating 

whitelist/blacklist retrieval, fuzzy similarity scoring, and deep-learning-based URL classification. The 

mechanism continuously monitors browser navigation events, evaluates each URL through exact and fuzzy 

matching, and invokes a BiGRU model when a decision cannot be reached deterministically. Algorithm 2 

presents the full pseudocode describing the operational flow of the MSPGA procedure. 

 

Algorithm 2. MSPGA-multi-stage PhishGuard algorithm 

Input: URL events captured from browser navigation and tab updates 

Output: URL label ∈ {phishing, benign} 

1: Initialize Firebase App with ptit-url-guardian credentials 

2: Initialize db ← Firestore instance 

3: Set threshold ← 0.85 for similarity-based phishing classification 

4: Register listeners for onBeforeNavigate and onUpdated browser events 

5: for each detected event do 

6: url ← Extract URL from browser event 

7: Call analyzeURL(url) 

8: end for 

Procedure: analyzeURL(url) 

1: Print “Checking URL:”, url 

2: {blacklist, whitelist} ← fetchURLsFromFirebase() 

3: if url ∈ blacklist then 

4: notifyUser(“phishing”, url) 

5: return 

6: end if 

7: if url ∈ whitelist then 

8: notifyUser(“benign”, url) 

9: return 

10: end if 

11: Print “No exact match → computing fuzzy similarity” 

12: score_phish ← safeMaxScore(url, blacklist, “phishing”) 

13: score_benign ← safeMaxScore(url, whitelist, “whitelist”) 

14: Print scores for debugging 

15: if score_phish ≥ threshold and score_phish > score_benign then 

16: notifyUser(“phishing”, url, isSimilar=true) 

17: else if score_benign ≥ threshold and score_benign > score_phish then 

18: notifyUser(“benign”, url, isSimilar=true) 

19: else 

20: prediction = predictWithDeepModel(url) 

21: notifyUser(prediction.label, url, modelUsed = true) 

22: end if 

Procedure: fetchURLsFromFirebase() 

1: Start timer 

2: phishing_snap ← db.collection(“blacklist_urls”).get() 

3: whitelist_snap ← db.collection(“whitelist_urls”).get() 

4: phishing ← Extract URL field from phishing_snap 
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5: whitelist ← Extract URL field from whitelist_snap 

6: End timer 

7: return {phishing, whitelist} 

Procedure: safeMaxScore(url, list, label) 

1: maxScore ← 0.0 

2: for each item in list do 

3: score ← ratcliffObershelp(url, item) 

4: Print score between url and item 

5: if score > maxScore then 

6: maxScore ← score 

7: end if 

8: end for 

9: return maxScore 

Procedure: ratcliffObershelp(s1, s2) 

1: if s1 or s2 is empty then return 0.0 

2: lcs ← longestCommonSubstring(s1, s2) 

3: if lcs is empty then return 0.0 

4: Calculate left and right segments excluding lcs 

5: Recursively compute similarity on segments 

6: Return normalized score based on LCS and recursion 

Procedure: predictWithDeepModel(url) 

1: vectorized_url ← preprocessURL(url) 

2: prediction ← deepModel.predict(vectorized_url) 

3: if prediction ≥ 0.5 then 

4: return {label: “phishing”} 

5: else 

6: return {label: “benign”} 

Procedure: notifyUser(status, url, isSimilar=false) 

1: if status = “phishing” then 

2: Set badge ← “!”, red 

3: Show Chrome notification with warning 

 

a. Initialization phase (lines 1–4): the detection module initializes a Firebase App instance with the ptit-url-

guardian project credentials and establishes a Firestore database connection. A similarity threshold of 

0.85 is defined for fuzzy-matching classification. Event listeners are then registered for two browser 

APIs—onBeforeNavigate and onUpdated—enabling the system to capture URL events during both page 

navigations and tab updates. 

b. URL event handling loop (lines 5–8): for each detected browser URL event, the system extracts the 

current URL and invokes the main analysis procedure analyzeURL(url) to perform classification. 

c. URL analysis procedure (lines 1–22): 

− The procedure begins by logging the inspected URL and retrieving the latest blacklist and whitelist 

collections from Firestore via fetchURLsFromFirebase(). It then performs exact matching: if the URL is 

found in the blacklist, it is immediately flagged as phishing and the process terminates; if it appears in the 

whitelist, it is labeled as benign and terminates. When no exact match is found, the procedure computes 

fuzzy similarity scores using the safeMaxScore function, which applies the Ratcliff–Obershelp algorithm 

to compare the input URL against both lists. Finally, the computed similarity scores for phishing and 

benign categories are printed for debugging. 

− If the phishing similarity score exceeds the threshold and is greater than the benign score, the URL is 

flagged as phishing with isSimilar set to true. Conversely, if the benign score meets the threshold and 

surpasses the phishing score, the URL is classified as benign. When neither score provides a definitive 

decision, the algorithm invokes the DL model predictWithDeepModel(url) based on the BiGRU 

architecture to predict the label. The final result is then returned to the user, together with an indication 

that the model was applied. 

− Procedure: fetchURLsFromFirebase() (lines 1–7): this procedure starts a timer and retrieves 

snapshots from the blacklist_urls and whitelist_urls collections in Firestore. The extracted URLs are 

stored in two lists representing phishing and benign entries. Once completed, the timer stops and both 

lists are returned, ensuring the system operates with the most recent remote data. 
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d. Procedure: safeMaxScore(url, list, label) (lines 1–9): this function computes the 

maximum similarity score between the input URL and all entries in a given reference list using the 

Ratcliff–Obershelp algorithm. It initializes maxScore to zero, iterates through the list, and prints 

each computed score for debugging. After all comparisons, it returns the maximum score, reflecting how 

closely the URL matches known entries. 

e. Procedure: ratcliffObershelp(s1, s2) (lines 1–6): this recursive function implements the 

Ratcliff–Obershelp algorithm for string similarity. It returns zero if either input string is empty or if no 

longest common substring (LCS) is found. Otherwise, it recursively calculates similarity scores for 

segments adjacent to the LCS. The final score is normalized to reflect structural similarity, making the 

method effective for detecting obfuscated or misspelled phishing URLs. 

f. Procedure: predictWithDeepModel(url) (lines 1–6): this procedure preprocesses and vectorizes 

the input URL for a trained BiGRU-based DL model. The model outputs a phishing likelihood score, 

which is compared against a 0.5 threshold to assign a phishing or benign label. It classifies previously 

unseen URLs, thereby improving detection robustness. 

g. Procedure: notifyUser(status, url, isSimilar=false) (lines 1–3): based on the 

classification result, this procedure updates the browser interface to inform the user. For URLs labeled as 

phishing, a red badge with an exclamation mark (“!”) is set, and a Chrome notification with a warning 

message is displayed in real time to enhance user awareness and security. 

 

 

3. EVALUATION METHODS AND DATASET 

3.1.  Hyperparameter selection for deep neural networks 

To control for architectural bias and isolate the impact of different sequence modeling mechanisms, 

five DL models—ANN, CNN, LSTM, GRU, and the proposed BiGRU —were systematically designed 

under harmonized hyperparameter constraints. All models received the same character-level input with a 

fixed sequence length of 54, derived from a unified vocabulary of 366 tokens. Each model incorporated a 

128-dimensional embedding layer to ensure consistent input representation. The primary architectural 

differences lie in their sequential and convolutional processing components. Table 1 summarizes the internal 

structure of each model. 

 

 

Table 1. Summary of the neural network architectures and hyperparameters 
Model Input layer Core layers Dropout rate (s) Dense layer (s) Output layer 

ANN Embedding 

(128-dim) 

Flatten→Dense(256)→Dense(128)→Dense(64) 0.4→0.3→0.2 3 layers (ReLU) Dense(1, 

Sigmoid) 

CNN Embedding 
(128-dim) 

Conv1D(256, k=3)→Conv1D(128, 
k=3)→GlobalMaxPooling1D 

0.3→0.3→0.4 Dense(128, ReLU) Dense(1, 
Sigmoid) 

LSTM Embedding 

(128-dim) 

LSTM(128) 0.3→0.2 Dense(64, ReLU) Dense(1, 

Sigmoid) 
GRU Embedding 

(128-dim) 

GRU(128, 

return_sequences=True)→GRU(128) 

0.3→0.4→0.4 Dense(128, ReLU) Dense(1, 

Sigmoid) 
BiGRU Embedding 

(128-dim) 

Bidirectional GRU(128, 

return_sequences=true)→bidirectional 

GRU(128, return_sequences=true)→attention 
layer 

0.3→0.3 Dense(64, 

ReLU)→Dense(32, 

ReLU) 

Dense(1, 

Sigmoid) 

 

 

All models were trained using the Adam optimizer and binary cross-entropy loss, with early 

stopping applied at a patience of 5. A fixed batch size of 32 was used, and the output layer of each model 

employed a sigmoid activation function for binary classification between phishing and benign URLs. These 

standardized hyperparameters ensured a controlled and unbiased experimental setup, enabling rigorous and 

fair comparisons across all neural network architectures. 

 

3.2.  Extended character vocabulary and indexing method 

The 270-character encoder is expanded by incorporating 96 additional symbols, yielding a total of 

366 unique character encodings. These are organized into three functional categories to capture common 

obfuscation and semantic patterns in phishing URLs, as illustrated in Figure 1. This targeted expansion 

enhances the model’s ability to generalize across multilingual, encoded, and adversarial URL structures. 

a. URL-specific special characters (codes 271–291; 21 characters): include commonly used symbols in 

obfuscated or malicious URLs, such as \, ^, ~, ©, ×, ÷, and other extended Unicode punctuation. These 

characters enable the model to capture structural manipulations within path or parameter segments. 
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b. Multilingual and semantic characters (codes 292–345; 54 characters): consist of characters from Cyrillic, 

Chinese, Japanese (Kana), and Korean scripts, as well as extended Latin symbols (e.g., ⅰ, ℉, ₿, and €) 

and invisible Unicode modifiers (\u00A0, \u200B, and \u2060). This allows the model to detect IDN-

based spoofing and cross-script phishing attacks. 

c. Cybersecurity-relevant keywords and domains (codes 346–366; 21 characters): contain domain suffixes 

(e.g., .com, .php, and .html) and query tokens (e.g., auth=, form=, and submit=) that frequently appear in 

phishing payloads or redirection URLs. 

 

 

 
 

Figure 1. Character vocabulary indexing scheme 

 

 

3.3.  Evaluation methodology 

Model effectiveness is quantitatively assessed using a comprehensive set of evaluation metrics, 

including the confusion matrix (𝐶𝑀𝑎), accuracy (𝐴𝑐𝑐), precision (𝑃𝑟𝑒), F1-score (𝐹1), and loss (𝐿𝑜𝑠), as 

referenced in [21]–[24]. The confusion matrix, defined in (1), captures the relationship between predicted and 

actual class labels. Together, these metrics provide a holistic view of classification performance, enabling 

rigorous evaluation of both ML and DL models. 

 

𝐶𝑀𝑎 = [
𝑇𝑁 𝐹𝑃
𝐹𝑁 𝑇𝑃

] (1) 

 

Here, 𝑇𝑃 denotes a true positive, i.e., phishing URLs correctly classified as phishing; 𝑇𝑁 denotes a 

true negative, i.e., benign URLs correctly classified as benign; 𝐹𝑃 refers to a false positive, i.e., benign URLs 

incorrectly classified as phishing; and 𝐹𝑁 refers to a false negative, i.e., phishing URLs incorrectly classified 

as benign. The remaining evaluation metrics are defined as (2)-(5): 

 

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

 

𝑃𝑟𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

𝑅𝑒𝑐 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 

𝐹1 = 2 ×  
𝑃𝑟𝑒 × 𝑅𝑒𝑐

𝑃𝑟𝑒 × 𝑅𝑒𝑐
 (5) 

 

Here, 𝐴𝑐𝑐 represents the proportion of correct predictions relative to the total number of samples, 

while 𝑃𝑟𝑒 is defined as the ratio of 𝑇𝑃 to the sum of 𝑇𝑃 + 𝐹𝑃. When 𝑃𝑟𝑒 equals 1, the numerator and 

denominator are identical (𝑇𝑃 = 𝑇𝑃 + 𝐹𝑃), implying that 𝐹𝑃=0. An increase in FP enlarges the 

denominator, thereby reducing precision. 𝐹1 is the harmonic mean of 𝑃𝑟𝑒 and 𝑅𝑒𝑐, where a higher 𝐹1 value 

indicates that both Pre and Rec are high, reflecting improved classification performance, particularly when 

Rec approaches 1. Cross-entropy loss (𝐿𝑜𝑠) is a widely adopted objective function for binary classification 

tasks, including phishing versus legitimate URL detection [25]–[27]. Its mathematical formulation is given as 

(6): 

 

𝐿𝑜𝑠 = −
1

N
∑ [𝑦𝑖 log(𝑦𝑖̂) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖̂)]𝑁

𝑖=1  (6) 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Real-time browser-integrated phishing uniform resource locator detection via deep … (Dam Minh Linh) 

4883 

Here, 𝑁 denotes the total number of samples, 𝑦𝑖  is the ground-truth label of the ith sample (1 for 

legitimate, 0 for phishing), and 𝑦𝑖̂ is the predicted probability, typically generated by a sigmoid or softmax 

function. The logarithmic function uses the natural base 𝑒. 𝐿𝑜𝑠 quantifies the discrepancy between the actual 

and predicted labels, serving as the optimization objective during training. A lower 𝐿𝑜𝑠 indicates better 

model performance, whereas a higher 𝐿𝑜𝑠 suggests the need for further parameter tuning to enhance 

predictive accuracy. 

 

3.4.  Benchmark dataset and evaluation setup 

This study employs the PhiUSIIL dataset [20], a benchmark specifically designed for classifying 

phishing and benign URLs. Published in a reputable cybersecurity journal (ISI Q1, impact factor=5.4, 

CiteScore=13.3), the dataset contains 235,795 URLs, including 134,850 benign and 100,945 phishing 

samples. The URLs were collected from diverse and credible sources to ensure both label accuracy and 

dataset representativeness. 

To assess the impact of training data volume on model performance, the PhiUSIIL dataset is 

partitioned into five training–testing ratios ranging from 0.5 to 0.9. The test proportion in each case is 

calculated as 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 (𝑖)  =  1 −  𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 (𝑖), where 𝑖 denotes the iteration. As shown in Table 2, 

increasing the training fraction reduces the test set size, enabling evaluation of model performance under 

varying levels of training data availability. 
 

 

Table 2. Training–testing splits for the PhiUSIIL dataset containing 235,795 URLs 
Simulation iteration (i) Training fraction Training URLs Testing fraction Testing URLs Training–testing ratio 

1 0.5 117,897 0.5 117,898 5:5 

2 0.6 141,476 0.4 94,319 6:4 
3 0.7 164,924 0.3 70,871 7:3 

4 0.8 188,402 0.2 47,393 8:2 

5 0.9 211,880 0.1 23,915 9:1 

 

 

4. RESULTS AND DISCUSSION 

All empirical evaluations were conducted on a high-performance server equipped with dual Intel 

Xeon E5-2696 v3 processors (2.30 GHz, 36 cores, and 72 threads), 64 GB DDR4 RAM, and an NVIDIA 

RTX 3090 XC3 Ultra Hybrid GPU (24 GB GDDR6X, 10,496 CUDA cores). To minimize implementation 

variance and ensure consistency, all models were executed in a standardized computing environment. Model 

performance was assessed using four quantitative metrics—accuracy, precision, F1-score, and loss—

providing a comprehensive evaluation of predictive effectiveness and classification quality across ANN, 

CNN, LSTM, GRU, and the proposed BiGRU. 

 

4.1.  Real-time response detection in browser extensions 

The browser extension, implemented in JavaScript, is enhanced into a lightweight Chrome tool for 

real-time phishing detection. It retrieves whitelist and blacklist data from Firestore, performs exact URL 

matching, and applies the Ratcliff–Obershelp algorithm for similarity scoring to identify obfuscated or 

deceptively modified phishing URLs. Figure 2 illustrates a browser-based security warning triggered when 

accessing a suspected phishing website. The notification, titled “website blocked warning”, labels the site as 

“Phishing” in red, indicating potential malicious intent. The examined URL, https://celcom-life.weebly.com/, 

is flagged for possible impersonation aimed at stealing personal information. A red triangular icon with an 

exclamation mark reinforces the alert, accompanied by a cautionary message advising the user to return. 
 

 

 
 

Figure 2. Browser extension supporting unsafe URL detection 
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Figure 3 illustrates the process of verifying a suspicious URL using the developed browser 

extension. The system queries the blacklist and whitelist from Firestore, and when no exact match is found, 

the fuzzy matching algorithm is triggered, producing similarity scores of 0.3836 with the phishing list and 

0.2424 with the benign list. The total processing time is 1975.716 ms, demonstrating the system’s capability 

to detect phishing URLs in near real-time directly within the browser. 

 

 

 
 

Figure 3. Console log illustrating the phishing detection process 

 

 

4.2.  Effectiveness of multi-model assessment 

Table 3 shows that BiGRU consistently delivers high testing accuracy across all training–testing 

ratios, while ANN performs slightly lower. At the 6:4 ratio, BiGRU achieves the highest testing accuracy of 

99.82%, compared to 99.81% for GRU, 99.80% for LSTM, and 99.79% for both ANN and CNN. From 5:5 

to 9:1, BiGRU maintains a stable and superior accuracy trend, whereas CNN and ANN exhibit slight declines 

as the training portion increases. As illustrated in Figure 4, BiGRU demonstrates the best test accuracy 

distribution, reflected by its taller and more concentrated violin plot, while CNN records the lowest accuracy 

with a shorter and more dispersed distribution. 
 

 

Table 3. Post-training and testing accuracies of the five algorithms evaluated on the PhiUSIIL dataset 
Training–testing 

ratio 

ANN CNN LSTM GRU BiGRU 

Train Test Train Test Train Test Train Test Train Test 

5:5 0.99841 0.99783 0.99821 0.99804 0.99801 0.99787 0.99832 0.99785 0.99841 0.99802 

6:4 0.99831 0.99795 0.99797 0.99787 0.99855 0.99808 0.99836 0.99810 0.99843 0.99819 
7:3 0.99833 0.99790 0.99810 0.99802 0.99883 0.99819 0.99835 0.99820 0.99842 0.99809 

8:2 0.99823 0.99773 0.99804 0.99775 0.99856 0.99798 0.99839 0.99796 0.99851 0.99802 

9:1 0.99828 0.99770 0.99810 0.99770 0.99865 0.99783 0.99818 0.99792 0.99862 0.99796 

 

 

 
 

Figure 4. Violin plot of test accuracy distribution across models at a training–testing ratio of 6:4 
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Table 4 shows that the precision of all models remains generally stable across different training–

testing ratios, with BiGRU and LSTM consistently yielding superior results. At the 6:4 ratio, BiGRU 

achieves the highest test precision at 99.7%, followed by LSTM and GRU at 99.694% and 99.691%, 

respectively, while ANN and CNN record the lowest values at 99.645% and 99.634%. As presented in  

Table 5, at the 7:3 training–testing ratio, GRU and LSTM achieve test F1-scores of 99.843% and 99.842%, 

respectively. BiGRU maintains consistently high performance across all ratios, peaking at 99.842% at the 6:4 

split. In contrast, CNN and ANN exhibit slightly lower but more stable results, with F1-scores consistently 

around 99.8% across configurations. 

 

 

Table 4. Precision of the five algorithms evaluated on the PhiUSIIL dataset 
Training–testing 

ratio 

ANN CNN LSTM GRU BiGRU 

Train Test Train Test Train Test Train Test Train Test 

5:5 0.99723 0.99645 0.99688 0.99665 0.99654 0.99630 0.99754 0.99717 0.99772 0.99718 
6:4 0.99705 0.99645 0.99646 0.99634 0.99749 0.99694 0.99718 0.99691 0.99728 0.99700 

7:3 0.99711 0.99645 0.99715 0.99691 0.99801 0.99704 0.99713 0.99699 0.99733 0.99691 

8:2 0.99694 0.99615 0.99672 0.99630 0.99750 0.99682 0.99722 0.99648 0.99783 0.99693 
9:1 0.99700 0.99615 0.99678 0.99608 0.99787 0.99659 0.99682 0.99637 0.99764 0.99659 

 

 

Table 5. F1-scores of the five algorithms evaluated on the PhiUSIIL dataset 
Training–testing 

ratio 
ANN CNN LSTM GRU BiGRU 

Train Test Train Test Train Test Train Test Train Test 

5:5 0.99861 0.99811 0.99843 0.99828 0.99826 0.99814 0.99854 0.99812 0.99861 0.99827 

6:4 0.99852 0.99821 0.99822 0.99814 0.99874 0.99832 0.99857 0.99834 0.99862 0.99842 

7:3 0.99855 0.99817 0.99834 0.99827 0.99897 0.99842 0.99856 0.99843 0.99862 0.99833 

8:2 0.99846 0.99802 0.99829 0.99803 0.99874 0.99824 0.99859 0.99822 0.99870 0.99827 

9:1 0.99849 0.99800 0.99834 0.99800 0.99882 0.99811 0.99841 0.99818 0.99879 0.99822 

 

 

Table 6 shows that BiGRU achieves the lowest test loss at the 6:4 training–testing ratio, with a value 

of 0.01114, indicating superior generalization capability. At the same ratio, LSTM records the lowest training 

loss of 0.00761; however, its test loss reaches 0.01235, which is slightly higher than that of BiGRU. In 

contrast, CNN consistently produces higher test losses across all configurations—for example, 0.01427 at the 

6:4 ratio—reflecting poorer learning performance compared to the other models. 
 

 

Table 6. Loss of the five algorithms evaluated on the PhiUSIIL dataset 
Training–testing 

ratio 

ANN CNN LSTM GRU BiGRU 

Train Test Train Test Train Test Train Test Train Test 

5:5 0.01026 0.01387 0.01110 0.01296 0.01092 0.01260 0.01023 0.01298 0.00858 0.01285 
6:4 0.01074 0.01316 0.01228 0.01427 0.00761 0.01235 0.00942 0.01166 0.00984 0.01114 

7:3 0.01054 0.01319 0.01200 0.01366 0.00552 0.01255 0.00940 0.01166 0.01102 0.01293 

8:2 0.01148 0.01535 0.01253 0.01417 0.00785 0.01267 0.00917 0.01221 0.00763 0.01294 
9:1 0.01086 0.01406 0.01200 0.01440 0.00772 0.01420 0.01121 0.01437 0.00750 0.01359 

 

 

In Figure 5, at the 6:4 training–testing ratio, the ANN model achieves the best classification 

performance, misclassifying only 1 phishing URL and 192 benign URLs. The BiGRU model follows closely, 

with 8 phishing and 162 benign misclassifications, demonstrating strong discriminatory capability between 

the two classes. In contrast, the LSTM and GRU models show weaker performance, misclassifying 16 

phishing and 165 benign URLs, and 12 phishing and 167 benign URLs, respectively. 

 

4.3.  Discussion 

Although phishing attacks via deceptive URLs are not a new cybersecurity issue, their increasing 

sophistication—particularly in financial transactions and online payment platforms—renders detection 

significantly more challenging, necessitating the development of intelligent and real-time adaptive solutions. 

Accordingly, this study evaluates five DL models—ANN, CNN, LSTM, GRU, and BiGRU —using 

the PhiUSIIL dataset [20]. The dataset contains 235,795 URLs, including 134,850 benign and 100,945 

phishing samples, and is divided into multiple training–testing ratios to identify the optimal split that 

maximizes classification accuracy while minimizing misclassification. This experimental design provides a 

consistent basis for comparing model effectiveness and identifying the most reliable architecture for phishing 

URL detection. 
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Figure 5. Misclassifications by the models at the 6:4 training–testing ratio 

 

 

To ensure fairness and reproducibility, all models are implemented with the same configuration, 

including standardized inputs, architectures, and outputs (Table 1). Model performance is compared using 

multiple metrics: confusion matrix, accuracy, precision, F1-score, and loss. At the 6:4 split, BiGRU achieves 

the highest testing accuracy of 99.82%, surpassing GRU (99.81%), LSTM (99.80%), ANN (99.79%), and 

CNN (99.787%). BiGRU also maintains a stable accuracy trend above 99.8% across a wide range of splits 

(5:5 to 8:2), whereas the other models exhibit less consistent performance. Moreover, BiGRU outperforms its 

counterparts on other metrics at the 6:4 split, attaining a precision of 99.7% and an F1-score of 99.842%. 

Notably, it also achieves the lowest test loss of 0.01114, confirming its robustness and predictive efficiency. 

Therefore, BiGRU is recommended as the most reliable model for phishing URL classification. 

For strengthening security and improving user convenience in real-time environments, particularly 

for financial transactions, a browser extension is developed in JavaScript and integrated into Chrome. This 

tool expands the character set from 270 to 366 symbols, enhancing the model’s ability to detect unseen 

phishing URLs. The extension integrates the Ratcliff–Obershelp algorithm for fuzzy matching against two 

datasets—approximately 3,000 benign and 2,500 phishing URLs—stored in Cloud Firestore, with 

communication handled via REST API to ensure efficient real-time evaluation. The URL inspection process 

retrieves whitelist and blacklist data from Firestore, performs exact matching, and applies similarity scoring 

against stored entries with a predefined threshold. If the score is inconclusive, the pre-trained BiGRU model 

assigns the final label. 

 

 

5. CONCLUSION 

This study presents a comprehensive evaluation of DL models for phishing URL detection, 

identifying the BiGRU as the most effective architecture in terms of accuracy, precision, F1-score, and test 

loss across multiple training–testing ratios. BiGRU consistently achieved stable and superior results, with 

peak testing accuracy of 99.82% at the 6:4 split. To strengthen real-time phishing detection, the proposed 

framework integrates BiGRU into a lightweight Chrome extension, augmented with a 366-character 

encoding scheme and the Ratcliff–Obershelp similarity algorithm. This hybrid design combines similarity-

based filtering with DL classification to detect even previously unseen URLs. Overall, the framework 

delivers a robust, efficient, and scalable solution for mitigating phishing threats in online environments. 

The current study is limited to classifying URLs into phishing and benign categories, without 

addressing other attack vectors such as malware or scams. Future work will expand the dataset to include 

more diverse labels and investigate advanced models such as Transformer, BERT, and federated learning. 
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Furthermore, data augmentation techniques will be refined for pretraining to mitigate class imbalance, 

thereby improving the accuracy and reliability of real-time URL classification. 
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