Bulletin of Electrical Engineering and Informatics
Vol. 14, No. 6, December 2025, pp. 4876~4889
ISSN: 2302-9285, DOI: 10.11591/eei.v14i6.10099 O 4876

Real-time browser-integrated phishing uniform resource
locator detection via deep learning and fuzzy matching

Dam Minh Linh?!, Han Minh Chau?, Huynh Trong Thua?!, Tran Cong Hung?

Information Security Technology Lab, Faculty of Information Technology, Posts and Telecommunications Institute of Technology, Ho

Chi Minh City, Vietnam

2Faculty of Information Technology, HUTECH University, Ho Chi Minh City, Vietnam
SFaculty of Computer Science and Engineering, The Saigon International University, Ho Chi Minh City, Vietnam

Article Info

ABSTRACT

Article history:

Received Feb 16, 2025
Revised Sep 29, 2025
Accepted Oct 14, 2025

Keywords:

Blacklist and whitelist URLs
Character vocabulary

Deep neural networks

Fuzzy string matching
Online URL classification
Phishing prevention

Phishing attacks through deceptive URLs remain a critical cybersecurity
threat, particularly in financial transactions and online payment systems.
This study evaluates multiple deep learning (DL) models on the PhiUSIIL
dataset of 235,795 URLs, with bidirectional gated recurrent unit (BiGRU)
achieving the best performance—99.82% accuracy at a 60:40 split, along
with high precision, F1-score, and the lowest test loss. To further improve
detection of obfuscated URLs, an enhanced BiGRU variant is proposed
using an expanded 366-character vocabulary. For real-time deployment, a
Chrome extension is developed, integrating exact and fuzzy matching via the
Ratcliff-Obershelp algorithm with cloud-based whitelist and blacklist
checks. When fuzzy matching is inconclusive, the BiGRU model performs
the final classification. By combining an adaptive browser-side tool with a
robust DL backend, the proposed system ensures high accuracy, scalability,
and efficiency for phishing detection in practical web environments.

This is an open access article under the CC BY-SA license.

©00

Corresponding Author:

Han Minh Chau

Faculty of Information Technology, HUTECH University

475A Dien Bien Phu Street, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
Email: hm.chau80@hutech.edu.vn

1. INTRODUCTION

Although URL-based phishing is not new to cybersecurity, it continues to grow in both complexity
and frequency. Attackers increasingly employ obfuscation techniques and domain mimicry to bypass
traditional blacklists and deceive even experienced users. Such attacks aim to trick victims into disclosing
personal information, financial credentials, or authentication tokens through fraudulent links on online
platforms, thereby enabling adversaries to gain unauthorized access and often exfiltrate funds or sensitive
assets. These challenges necessitate the development of intelligent and adaptive models capable of accurately
classifying URLs while maintaining minimal latency.

The Anti-Phishing Working Group (APWG) reported 877,536 phishing incidents in Q2 2024,
marking a decrease from 963,994 in Q1 [1]. Despite the decline, attackers are diversifying their methods by
leveraging phone calls and text messages in addition to email, mainly targeting banking and payment service
users. Social media platforms remain the most impacted sector, accounting for 32.9% of all attacks.
Ilustrating the real-world consequences of such attacks, a recent report published in February 2024, Pepco
Group, a prominent European retail conglomerate owning brands such as Pepco, Dealz, and Poundland, fell
victim to a sophisticated phishing attack targeting its Hungarian branch, resulting in a financial loss of
approximately 15.5 million euros (equivalent to 16.8 million USD) [2].

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4877

The phishing URL detection method based on a whitelist was proposed by Azeez et al. [3],
achieving 96.17% accuracy. These were further improved in [4] through dynamic list management, which
integrated blacklists, whitelists, and greylists. While list-based methods are efficient in processing time when
comparing URLs against known entries, they remain limited in detecting newly crafted or obfuscated
phishing URLs. To address this, machine learning (ML) techniques have been explored. Sabahno and Safara
[5] applied the improved spotted hyena optimization algorithm for feature selection in a support vector
machine (SVM) model, reaching 98.64% accuracy on 11,055 URLs. Similarly, Kara et al. [6] used 11
handcrafted features with a random forest (RF) model, achieving 98.90% accuracy on 32,928 samples.
However, these ML approaches may still lose important structural or semantic information when handling
long URLSs, which can affect classification performance.

Awasthi and Goel [7] evaluated ensemble methods on three datasets comprising 13,511 URLS, with
Bagging, AdaBoost (AB), XGBoost, and voting ensemble achieving high accuracy; the best model reached
99.18%. Meanwhile, Aljabri et al. [8] compared RF, Naive Bayes (NB), convolutional neural network
(CNN), and long short-term memory (LSTM) on 66,506 URLs, reporting that NB performed best with
96.01% accuracy. In another study, Algahtani et al. [9] proposed a phishing detection method using a deep
autoencoder classifier, achieving up to 99.28% accuracy. Similarly, Bahaghighat et al. [10] developed an
ML-based predictive framework with six algorithms, where XGBoost achieved the highest accuracy of
99.2% on a dataset of more than 88,000 URLs.

Pavani et al. [11] conducted a comprehensive evaluation of ten classical ML algorithms, including
RF, decision tree (DT), logistic regression (LR), SVM, Gaussian Naive Bayes (GNB), k-nearest neighbors
(KNN), Bernoulli Naive Bayes (BNB), AB, neural networks (NN), and gradient boosting (GB). Among
these, the RF achieved the highest accuracy of 98.55%. The integration of model interpretation techniques
such as SHAP and LIME further enhanced transparency and interpretability. In a related study,
Kalabarige et al. [12] employed a boosting-based stacked ensemble framework with hybrid feature selection
strategies, reporting superior performance over base learners with classification accuracy ranging from
96.18% to 98.95%. The multilayered architecture significantly improved phishing detection capabilities,
albeit at the expense of increased training time. Meanwhile, Asif et al. [13] proposed a hybrid model
combining LSTM and CNN architectures with DeepWalk-based URL embeddings. Their approach achieved
marginal gains in classification accuracy, but the improvements were not statistically significant.

Algahtani and Abu-Khadrah [14] proposed a phishing website detection model that integrates three
classification algorithms: RF, SVM, and Bagging, within a unified system. The model was evaluated on a
dataset comprising 1,353 URLs, including 548 legitimate, 702 phishing, and 103 suspicious URLs.
Experimental results demonstrated that the proposed ensemble approach achieved an overall accuracy of
92.33%, with a precision of 92.13%, recall of 92.09%, and F1-score of 92.10%.

Buu and Cho [15] proposed a fuzzy-calibrated transformer network for phishing URL detection. The
model was evaluated on the ISCX-URL2016 dataset comprising 35,000 benign, 9,000 phishing, 11,000
malware, and 12,000 spam URLSs, achieving 98.95% accuracy and 95.10% recall. However, the method
introduces higher computational overhead due to fuzzy calibration and is constrained by the relatively small
dataset size.

Phishing URL attacks are becoming increasingly sophisticated, posing serious risks to users,
especially in online financial transactions. Traditional detection methods—such as whitelist/blacklist filtering
and classical ML classifiers—often struggle to extract meaningful features from raw URL structures.
Moreover, many DL models treat URLs as simple linear sequences, thereby overlooking critical structural
information embedded in different URL components. The key contributions of this work are summarized as
follows and validated through extensive empirical evaluation:

— To strengthen real-time security and safeguard user information—particularly in online financial
transactions—a browser extension was developed in JavaScript and integrated into Chrome. Rather than
embedding a DL model directly, the approach was advanced into a verification pipeline that combines
cloud-based blacklist/whitelist checks via Firestore with an inspection mechanism using a pre-trained
bidirectional gated recurrent unit (BiGRU) model to assess previously unseen URLS.

— The browser extension was further enhanced with the Ratcliff-Obershelp algorithm, which computes
string similarity by recursively identifying the longest common subsequences between two input strings.
This algorithm verifies URLs against two datasets: a whitelist of 3,000 benign URLs [16] and a blacklist
of 2,500 phishing URLs [17]. Both datasets are hosted on the Cloud Firestore platform and shared with
the cybersecurity community for collaborative use [18]. Communication with the endpoint is handled
automatically through a REST API, enabling efficient real-time URL evaluation. This approach addresses
several limitations noted in [3], [4] by moving beyond traditional blacklist—whitelist methods.

— Extends the character-level vocabulary from 270 [19] to 366 symbols and evaluates five deep learning
(DL) models artificial neural network (ANN), CNN, LSTM, gated recurrent unit (GRU), and BiIGRU—on

Real-time browser-integrated phishing uniform resource locator detection via deep ... (Dam Minh Linh)

4878 O3 ISSN: 2302-9285

the academic dataset PhiUSIIL [20], which contains 235,795 URLs (134,850 benign and 100,945
phishing). Multiple train—test splits (5:5, 6:4, 7:3, 8:2, and 9:1) were applied to determine the optimal
configuration for maximizing accuracy and minimizing misclassification.

— Addresses the limitations in [10], [14], [15]—including small dataset sizes, limited sequential modeling
capacity, and insufficient evaluation diversity—by highlighting the superior performance of BiGRU.
Capturing bidirectional sequence context, BiIGRU outperformed the other models, achieving 99.82%
testing accuracy at the 6:4 split and consistently exceeding 99.8% across all configurations when assessed
with accuracy, precision, F1-score, loss, and confusion matrix.

The structure of the paper is as follows: section 2 presents the proposed algorithm, which combines
Firestore URL management with a hybrid inspection procedure. Section 3 describes the evaluation methods
and dataset, while section 4 reports and discusses the experimental results. Finally, section 5 concludes the
study, followed by the acknowledgments and references.

2. PROPOSED ALGORITHM
2.1. Proposed batch URL bulk Firestore algorithm for Firestore URL management

To enable scalable and efficient management of phishing-related URL datasets, the batch URL bulk
Firestore algorithm (BUBFA) is proposed. The algorithm automates batched ingestion of labeled URLSs into
Firestore collections, ensuring centralized storage of blacklist and whitelist entries. Firestore, a scalable
NoSQL cloud database by Google, is widely used for real-time synchronization across web and mobile
platforms. BUBFA accepts a newline-separated string of URLSs, performs parsing and sanitization, and
uploads them in bounded batches via HTTP POST requests. To comply with Firestore API rate limits, short
delays are inserted between transmissions. Designed for real-time phishing detection frameworks, this
mechanism ensures reliable, modular, and efficient integration of threat intelligence into a centralized
repository.

BUBFA provides a structured mechanism for ingesting large sets of labeled URLSs into Firestore in a
reliable and rate-limited manner. It groups incoming URLs into bounded batches, performs sequential
uploads, and ensures stable synchronization with the cloud database. Algorithm 1 presents the complete
pseudocode of the proposed batching procedure.

Algorithm 1. Batch URL bulk Firestore algorithm
Input: A raw text string rawText containing newline-separated URLS
Output: URLs inserted into a Firestore collection, where collection € {blacklist_urls, whitelist_urls}
1: urls « Split rawText by newline characters, trim each entry, and remove empty lines
2: collection «— “blacklist_urls” or “whitelist_urls” — selected based on the dataset type
3: project_id « “ptit-url-guardian”
4: firestore_url«—“https://firestore.googleapis.com/v1/projects/”+project_id+*“/databases/(default)/documents/
”+collection
5: for i « 0 to length(urls) step 50 do
6: batch «— urls[i : 1+ 50]
7: Call Send_Batch(batch)
8: Print “Uploaded i + batch.length of urls.length”
9: Sleep for 400 milliseconds — to avoid Firestore API rate limiting
10: end for
11: Print “Completed upload to Firestore collection:”, collection
Procedure: Send_Batch(batch)
1: for each url in batch do
2: body « {
3: fields: {
4: url: { stringValue: url }

ol

6:
7: Send an HTTP POST request to firestore_url with body as payload
8: end for

a. Initialization phase (lines 1-4): the input string rawText is parsed into a list of trimmed, non-empty
URLs. Depending on the labeling context, either the blacklist_urls or whitelist_urls Firestore collection is
selected. In deployment, the whitelist contains approximately 3,000 URLSs, while the blacklist holds about
2,500.

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4876-4889

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4879

b. Batch processing and upload loop (lines 5-11): the cleaned URL list is partitioned into batches of 50. For
each batch, the Send_Batch() procedure uploads the URLs to Firestore. To comply with Firestore API
rate limits and avoid throttling, a fixed delay of 400 ms is introduced between consecutive uploads.

c. Send_Batch procedure (lines 1-8): the procedure iterates through each URL in the batch, creating a JSON
document with the URL as a string field. Each document is uploaded to Firestore via an HTTP POST
request. This stateless design ensures scalability and seamless integration of labeled threat data.

2.2. Hybrid URL inspection procedure

By leveraging a lightweight Chrome extension, the detection process starts by retrieving whitelist
and blacklist data from Firestore. URLSs are first checked using exact matching; if no direct match is found,
the Ratcliff-Obershelp algorithm computes a similarity score through recursive pattern recognition of the
longest common substrings, effectively identifying obfuscated or intentionally misspelled phishing URLs.
Based on the similarity score and a predefined threshold, the URL is classified as either phishing or benign.
When classification remains inconclusive, a BiIGRU-based DL model provides the final decision. Real-time
browser notifications then alert users, ensuring robust phishing protection directly at the point of access.

MSPGA coordinates multi-stage phishing detection directly within the browser by integrating
whitelist/blacklist retrieval, fuzzy similarity scoring, and deep-learning-based URL classification. The
mechanism continuously monitors browser navigation events, evaluates each URL through exact and fuzzy
matching, and invokes a BIGRU model when a decision cannot be reached deterministically. Algorithm 2
presents the full pseudocode describing the operational flow of the MSPGA procedure.

Algorithm 2. MSPGA-multi-stage PhishGuard algorithm
Input: URL events captured from browser navigation and tab updates
Output: URL label € {phishing, benign}
1: Initialize Firebase App with ptit-url-guardian credentials
: Initialize db «— Firestore instance
: Set threshold « 0.85 for similarity-based phishing classification
: Register listeners for onBeforeNavigate and onUpdated browser events
: for each detected event do
: url « Extract URL from browser event
. Call analyzeURL (url)
. end for
Procedure: analyzeURL (url)
1: Print “Checking URL:”, url

0O ~NONO B W

2: {blacklist, whitelist} « fetchURLsFromFirebase()
3:if url € blacklist then

4: notifyUser(“phishing”, url)

S5:return

6: end if

7: if url € whitelist then

8: notifyUser(“benign”, url)

9: return

10: end if

11: Print “No exact match — computing fuzzy similarity”

12: score_phish « safeMaxScore(url, blacklist, “phishing”)

13: score_benign «— safeMaxScore(url, whitelist, “whitelist”)

14: Print scores for debugging

15: if score_phish > threshold and score phish > score benign then
16: notifyUser(“phishing”, url, isSimilar=true)

17: else if score_benign > threshold and score benign > score_phish then
18: notifyUser(“benign”, url, isSimilar=true)

19: else

20: prediction = predictWithDeepModel(url)

21: notifyUser(prediction.label, url, modelUsed = true)

22:end if

Procedure: fetchURLsFromFirebase()

1: Start timer

2: phishing_snap « db.collection(“blacklist_urls”).get()

3: whitelist_snap « db.collection(“whitelist_urls”).get()

4: phishing «— Extract URL field from phishing_snap

Real-time browser-integrated phishing uniform resource locator detection via deep ... (Dam Minh Linh)

4880 O ISSN: 2302-9285

5: whitelist «— Extract URL field from whitelist snap
6: End timer

7: return {phishing, whitelist}

Procedure: safeMaxScore(url, list, label)

: maxScore < 0.0

: for each itemin list do

: score «— ratcliffObershelp(url, item)

: Print score between url and item

. if score > maxScore then

: maxScore «— score

cend if

: end for

> return maxScore

Procedure: ratcliffObershelp(si, s2)

1: if s1 or s2 is empty then return 0.0

2: les « longestCommonSubstring(s1, s2)

3: if Ics is empty then return 0.0

4. Calculate left and right segments excluding Ics
5: Recursively compute similarity on segments

6: Return normalized score based on LCS and recursion
Procedure: predictWithDeepModel(url)

1: vectorized url « preprocessURL(url)

: prediction < deepModel.predict(vectorized_url)
: if prediction > 0.5 then

: return {label: “phishing”}

s else

6: return {label: “benign”}

Procedure: notifyUser(status, url, isSimilar=false)
1: if status = “phishing” then

2: Set badge «— “1”, red

3: Show Chrome notification with warning

OO0 ~NONO1T B WN —

g1 B~ W N

a. Initialization phase (lines 1-4): the detection module initializes a Firebase App instance with the ptit-url-
guardian project credentials and establishes a Firestore database connection. A similarity threshold of
0.85 is defined for fuzzy-matching classification. Event listeners are then registered for two browser
APlIs—onBeforeNavigate and onUpdated—enabling the system to capture URL events during both page
navigations and tab updates.

b. URL event handling loop (lines 5-8): for each detected browser URL event, the system extracts the
current URL and invokes the main analysis procedure analyzeURL (url) to perform classification.

¢. URL analysis procedure (lines 1-22):

— The procedure begins by logging the inspected URL and retrieving the latest blacklist and whitelist
collections from Firestore via fetchURLsFromFirebase(). It then performs exact matching: if the URL is
found in the blacklist, it is immediately flagged as phishing and the process terminates; if it appears in the
whitelist, it is labeled as benign and terminates. When no exact match is found, the procedure computes
fuzzy similarity scores using the safeMaxScore function, which applies the Ratcliff-Obershelp algorithm
to compare the input URL against both lists. Finally, the computed similarity scores for phishing and
benign categories are printed for debugging.

— If the phishing similarity score exceeds the threshold and is greater than the benign score, the URL is
flagged as phishing with isSimilar set to true. Conversely, if the benign score meets the threshold and
surpasses the phishing score, the URL is classified as benign. When neither score provides a definitive
decision, the algorithm invokes the DL model predictWithDeepModel(url) based on the BiGRU
architecture to predict the label. The final result is then returned to the user, together with an indication
that the model was applied.

— Procedure: fetchURLsFromFirebase () (lines 1-7): this procedure starts a timer and retrieves
snapshots from the blacklist_urls and whitelist_urls collections in Firestore. The extracted URLs are
stored in two lists representing phishing and benign entries. Once completed, the timer stops and both
lists are returned, ensuring the system operates with the most recent remote data.

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4876-4889

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4881

d. Procedure: safeMaxScore (url, 1list, label) (lines 1-9): this function computes the
maximum similarity score between the input URL and all entries in a given reference list using the
Ratcliff-Obershelp algorithm. It initializes maxScore to zero, iterates through the list, and prints
each computed score for debugging. After all comparisons, it returns the maximum score, reflecting how
closely the URL matches known entries.

e. Procedure: ratcliffObershelp(sl, s2) (lines 1-6): this recursive function implements the
Ratcliff—Obershelp algorithm for string similarity. It returns zero if either input string is empty or if no
longest common substring (LCS) is found. Otherwise, it recursively calculates similarity scores for
segments adjacent to the LCS. The final score is normalized to reflect structural similarity, making the
method effective for detecting obfuscated or misspelled phishing URLSs.

f. Procedure: predictWithDeepModel (url) (lines 1-6): this procedure preprocesses and vectorizes
the input URL for a trained BiGRU-based DL model. The model outputs a phishing likelihood score,
which is compared against a 0.5 threshold to assign a phishing or benign label. It classifies previously
unseen URLs, thereby improving detection robustness.

g. Procedure: notifyUser (status, wurl, isSimilar=false) (lines 1-3): based on the
classification result, this procedure updates the browser interface to inform the user. For URLS labeled as
phishing, a red badge with an exclamation mark (“!”) is set, and a Chrome notification with a warning
message is displayed in real time to enhance user awareness and security.

3. EVALUATION METHODS AND DATASET
3.1. Hyperparameter selection for deep neural networks

To control for architectural bias and isolate the impact of different sequence modeling mechanisms,
five DL models—ANN, CNN, LSTM, GRU, and the proposed BiGRU —were systematically designed
under harmonized hyperparameter constraints. All models received the same character-level input with a
fixed sequence length of 54, derived from a unified vocabulary of 366 tokens. Each model incorporated a
128-dimensional embedding layer to ensure consistent input representation. The primary architectural
differences lie in their sequential and convolutional processing components. Table 1 summarizes the internal
structure of each model.

Table 1. Summary of the neural network architectures and hyperparameters

Model Input layer Core layers Dropout rate (s) Dense layer (s) Output layer
ANN Embedding Flatten—Dense(256)—Dense(128)—Dense(64) 0.4—0.3—0.2 3 layers (ReLU) Dense(1,
(128-dim) Sigmoid)
CNN Embedding Conv1D(256, k=3)—Conv1D(128, 0.3—0.3—0.4 Dense(128, ReLU) Dense(1,
(128-dim) k=3)—GlobalMaxPooling1 D Sigmoid)
LSTM Embedding LSTM(128) 0.3—0.2 Dense(64, ReLU) Dense(1,
(128-dim) Sigmoid)
GRU Embedding GRU(128, 0.3—0.4—0.4 Dense(128, ReLU) Dense(1,
(128-dim) return_sequences=True)—>GRU(128) Sigmoid)
BiGRU Embedding Bidirectional GRU(128, 0.3—0.3 Dense(64, Dense(1,
(128-dim) return_sequences=true)—bidirectional ReLU)—Dense(32, Sigmoid)
GRU(128, return_sequences=true)—attention ReLU)
layer

All models were trained using the Adam optimizer and binary cross-entropy loss, with early
stopping applied at a patience of 5. A fixed batch size of 32 was used, and the output layer of each model
employed a sigmoid activation function for binary classification between phishing and benign URLSs. These
standardized hyperparameters ensured a controlled and unbiased experimental setup, enabling rigorous and
fair comparisons across all neural network architectures.

3.2. Extended character vocabulary and indexing method
The 270-character encoder is expanded by incorporating 96 additional symbols, yielding a total of
366 unique character encodings. These are organized into three functional categories to capture common
obfuscation and semantic patterns in phishing URLs, as illustrated in Figure 1. This targeted expansion
enhances the model’s ability to generalize across multilingual, encoded, and adversarial URL structures.
a. URL-specific special characters (codes 271-291; 21 characters): include commonly used symbols in
obfuscated or malicious URLs, such as \, », ~, ©, x, +, and other extended Unicode punctuation. These
characters enable the model to capture structural manipulations within path or parameter segments.

Real-time browser-integrated phishing uniform resource locator detection via deep ... (Dam Minh Linh)

4882 O3 ISSN: 2302-9285

b. Multilingual and semantic characters (codes 292-345; 54 characters): consist of characters from Cyrillic,
Chinese, Japanese (Kana), and Korean scripts, as well as extended Latin symbols (e.g., i, °F, B, and €)
and invisible Unicode modifiers (\uO0AO, \u200B, and \u2060). This allows the model to detect IDN-
based spoofing and cross-script phishing attacks.

c. Cybersecurity-relevant keywords and domains (codes 346—366; 21 characters): contain domain suffixes
(e.g., .com, .php, and .html) and query tokens (e.g., auth=, form=, and submit=) that frequently appear in
phishing payloads or redirection URLSs.

{\W:271,": 272, '~': 273,M:274,"'0": 275,'®": 276, "™:.277, '§': 278, 'n': 279, ' 280, '+': 281, "": 282,
'x': 283, '+': 284, 'A": 285, 'B'": 286, 'B": 287, 'T": 288, '/I': 289, 'E": 290, K": 291, '3": 292, 'U": 293, "
294, 'K': 295, 'JI': 296, 'M': 297, 'H'": 298, '0': 299, 'IT": 300, 'P': 301, 'C": 302, 'T": 303, 'Y": 304, 'd'": 305,
'X": 306, 11 307, '4": 308, UX': 309, 'F': 310, "WV 311, " B 312, 'AV: 313,48 314,'H 2 315,'F

328, '°C': 329, "B": 330, '£'": 331, "W": 332, '¥": 333, '€": 334, "u00A0': 335, "\u200B": 336, "\u2060': 337,
'.com'": 338, ".net": 339, ".org" 340, ".gov": 341, "edu": 342, ".io": 343, ".php": 344, ".asp": 345, ".html": 346,
'aspx': 347, 'api=" 348, 'auth=": 349, 'session=" 350, 'key=": 351, "action=": 352, 'submit=": 353, 'form="
354, 'secure=" 355, 'url=" 356, 'ref=": 357, 'click=": 358, 'next=": 359, 'from=": 360, 'to=": 361, 'path="
362, 'dest=": 363, 'redir=": 364, 'access=": 365, reset=": 366}

Figure 1. Character vocabulary indexing scheme

3.3. Evaluation methodology

Model effectiveness is quantitatively assessed using a comprehensive set of evaluation metrics,
including the confusion matrix (CMa), accuracy (Acc), precision (Pre), Fl-score (F1), and loss (Los), as
referenced in [21]-[24]. The confusion matrix, defined in (1), captures the relationship between predicted and
actual class labels. Together, these metrics provide a holistic view of classification performance, enabling
rigorous evaluation of both ML and DL models.

CMa =

[TN FP 1)

FN TP

Here, TP denotes a true positive, i.e., phishing URLs correctly classified as phishing; TN denotes a
true negative, i.e., benign URLSs correctly classified as benign; FP refers to a false positive, i.e., benign URLs
incorrectly classified as phishing; and FN refers to a false negative, i.e., phishing URLSs incorrectly classified
as benign. The remaining evaluation metrics are defined as (2)-(5):

Acc = —TPFTN)
TP + TN + FP + FN
TP
Pre = TP + FP ®)
TP
Rec = TP + FN “)
Fl=2 x Pre X Rec (5)
Pre X Rec

Here, Acc represents the proportion of correct predictions relative to the total number of samples,
while Pre is defined as the ratio of TP to the sum of TP + FP. When Pre equals 1, the numerator and
denominator are identical (TP = TP + FP), implying that FP=0. An increase in FP enlarges the
denominator, thereby reducing precision. F1 is the harmonic mean of Pre and Rec, where a higher F1 value
indicates that both Pre and Rec are high, reflecting improved classification performance, particularly when
Rec approaches 1. Cross-entropy loss (Los) is a widely adopted objective function for binary classification
tasks, including phishing versus legitimate URL detection [25]-[27]. Its mathematical formulation is given as

(6):

Los = =<3, [yilog) + (1 — y,) log(1 —)] (6)

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4876-4889

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4883

Here, N denotes the total number of samples, y; is the ground-truth label of the i" sample (1 for
legitimate, 0 for phishing), and 7, is the predicted probability, typically generated by a sigmoid or softmax
function. The logarithmic function uses the natural base e. Los quantifies the discrepancy between the actual
and predicted labels, serving as the optimization objective during training. A lower Los indicates better
model performance, whereas a higher Los suggests the need for further parameter tuning to enhance
predictive accuracy.

3.4. Benchmark dataset and evaluation setup

This study employs the PhiUSIIL dataset [20], a benchmark specifically designed for classifying
phishing and benign URLs. Published in a reputable cybersecurity journal (ISI Q1, impact factor=5.4,
CiteScore=13.3), the dataset contains 235,795 URLSs, including 134,850 benign and 100,945 phishing
samples. The URLs were collected from diverse and credible sources to ensure both label accuracy and
dataset representativeness.

To assess the impact of training data volume on model performance, the PhiUSIIL dataset is
partitioned into five training-testing ratios ranging from 0.5 to 0.9. The test proportion in each case is
calculated as Testing (i) = 1 — Training (i), where i denotes the iteration. As shown in Table 2,
increasing the training fraction reduces the test set size, enabling evaluation of model performance under
varying levels of training data availability.

Table 2. Training—testing splits for the PhiUSIIL dataset containing 235,795 URLS
Simulation iteration (i) Training fraction Training URLs Testing fraction Testing URLs Training—testing ratio

1 0.5 117,897 0.5 117,898 55
2 0.6 141,476 0.4 94,319 6:4
3 0.7 164,924 0.3 70,871 73
4 0.8 188,402 0.2 47,393 8:2
5 0.9 211,880 0.1 23,915 9:1

4. RESULTS AND DISCUSSION

All empirical evaluations were conducted on a high-performance server equipped with dual Intel
Xeon E5-2696 v3 processors (2.30 GHz, 36 cores, and 72 threads), 64 GB DDR4 RAM, and an NVIDIA
RTX 3090 XC3 Ultra Hybrid GPU (24 GB GDDR6X, 10,496 CUDA cores). To minimize implementation
variance and ensure consistency, all models were executed in a standardized computing environment. Model
performance was assessed using four quantitative metrics—accuracy, precision, Fl-score, and loss—
providing a comprehensive evaluation of predictive effectiveness and classification quality across ANN,
CNN, LSTM, GRU, and the proposed BiGRU.

4.1. Real-time response detection in browser extensions

The browser extension, implemented in JavaScript, is enhanced into a lightweight Chrome tool for
real-time phishing detection. It retrieves whitelist and blacklist data from Firestore, performs exact URL
matching, and applies the Ratcliff-Obershelp algorithm for similarity scoring to identify obfuscated or
deceptively modified phishing URLs. Figure 2 illustrates a browser-based security warning triggered when
accessing a suspected phishing website. The notification, titled “website blocked warning”, labels the site as
“Phishing” in red, indicating potential malicious intent. The examined URL, https://celcom-life.weebly.com/,
is flagged for possible impersonation aimed at stealing personal information. A red triangular icon with an
exclamation mark reinforces the alert, accompanied by a cautionary message advising the user to return.

~ A Website Blocked Warning x + - a X

« C @ D) Rawift-Obershelp chrome-extensiony/glhblogbphpeedacpomea.. ¢ £ @ i

Website status: Phishing

https://celcom-life.weebly.com/

Security Alert: This website could be involved in phishing or fraudulent
activities.

Figure 2. Browser extension supporting unsafe URL detection

Real-time browser-integrated phishing uniform resource locator detection via deep ... (Dam Minh Linh)

4884 O3 ISSN: 2302-9285

Figure 3 illustrates the process of verifying a suspicious URL using the developed browser
extension. The system queries the blacklist and whitelist from Firestore, and when no exact match is found,
the fuzzy matching algorithm is triggered, producing similarity scores of 0.3836 with the phishing list and
0.2424 with the benign list. The total processing time is 1975.716 ms, demonstrating the system’s capability
to detect phishing URLSs in near real-time directly within the browser.

@ DevTools — |

Console Sources Network Performance Memory Application 533

[@ ©@backgroundjs v @ Y Filter Default levels v No Issues £83
Page loaded: background.js:176 -~

chrome-extension://glhblogbphpeedacpomeakpafalehkoe/index.html?phish_url=https#%3A%2F%2Fcelcom-1life.w..

Checking URL: background. js:182
chrome-extension://glhblogbphpeedacpomeakpafalehkoe/index. html?phish_url=https¥3A%2F%¥2Fcelcom-1ife.w..

Cj Timestamp of Firebase access at 2025-87-27T10:18:00.7867: 1975.716864453125 ms background.js:73

[Fuzzy-match] No exact match - computing similarity score... background. js:121
Q, Similarity [phishing] between * background.js:96
chrome-extension://glhblogbphpeedacpomeakpafalehkoe/index.html?phish_url=https#3A%2F%2Fcelcom-1ife.w..
" e "https://twcbcindexhtml.weebly.com/™ = @.3836

Q, Similarity [whitelist] between " background.js:96

chrome-extension://glhblogbphpeedacpomeakpafalehkoe/index.html?phish_url=https#%3A%2F%2Fcelcom-1life.w..
" e "https://glendale.edu” = ©.2424

Fuzzy Score - Phishing: ©.3836, Benign: ©.2424 background.js:125

Figure 3. Console log illustrating the phishing detection process

4.2. Effectiveness of multi-model assessment

Table 3 shows that BiGRU consistently delivers high testing accuracy across all training—testing
ratios, while ANN performs slightly lower. At the 6:4 ratio, BiIGRU achieves the highest testing accuracy of
99.82%, compared to 99.81% for GRU, 99.80% for LSTM, and 99.79% for both ANN and CNN. From 5:5
to 9:1, BiGRU maintains a stable and superior accuracy trend, whereas CNN and ANN exhibit slight declines
as the training portion increases. As illustrated in Figure 4, BiGRU demonstrates the best test accuracy
distribution, reflected by its taller and more concentrated violin plot, while CNN records the lowest accuracy
with a shorter and more dispersed distribution.

Table 3. Post-training and testing accuracies of the five algorithms evaluated on the PhiUSIIL dataset

Training—testing ANN CNN LSTM GRU BiGRU
ratio Train Test Train Test Train Test Train Test Train Test
5:5 0.99841 0.99783 0.99821 0.99804 0.99801 0.99787 0.99832 0.99785 0.99841 0.99802
6:4 0.99831 0.99795 0.99797 0.99787 0.99855 0.99808 0.99836 0.99810 0.99843 0.99819
7:3 0.99833 0.99790 0.99810 0.99802 0.99883 0.99819 0.99835 0.99820 0.99842 0.99809
8:2 0.99823 0.99773 0.99804 0.99775 0.99856 0.99798 0.99839 0.99796 0.99851 0.99802
9:1 0.99828 0.99770 0.99810 0.99770 0.99865 0.99783 0.99818 0.99792 0.99862 0.99796

0.9984
0.9983 A
7 N
A]
0.9982 | /\ J \
L AN ()
2 \ . A\
g 0.9981 1 / L \\ \ ‘\\ / / _‘U/,/
<) N \‘ /‘l A /
1 0.99801 / Y
A AV
f c‘ v
0.9979 | \ / N

-7 @

0.9977

ANN CNN LSTM GRU BiGRU
Model

Figure 4. Violin plot of test accuracy distribution across models at a training—testing ratio of 6:4

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4876-4889

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4885

Table 4 shows that the precision of all models remains generally stable across different training—
testing ratios, with BiGRU and LSTM consistently yielding superior results. At the 6:4 ratio, BiGRU
achieves the highest test precision at 99.7%, followed by LSTM and GRU at 99.694% and 99.691%,
respectively, while ANN and CNN record the lowest values at 99.645% and 99.634%. As presented in
Table 5, at the 7:3 training—testing ratio, GRU and LSTM achieve test F1-scores of 99.843% and 99.842%,
respectively. BIGRU maintains consistently high performance across all ratios, peaking at 99.842% at the 6:4
split. In contrast, CNN and ANN exhibit slightly lower but more stable results, with F1-scores consistently
around 99.8% across configurations.

Table 4. Precision of the five algorithms evaluated on the PhiUSIIL dataset

Training-testing ANN CNN LSTM GRU BiGRU
ratio Train Test Train Test Train Test Train Test Train Test
5:5 0.99723 0.99645 0.99688 0.99665 0.99654 0.99630 0.99754 0.99717 0.99772 0.99718
6:4 0.99705 0.99645 0.99646 0.99634 0.99749 0.99694 0.99718 0.99691 0.99728 0.99700
7:3 0.99711 0.99645 0.99715 0.99691 0.99801 0.99704 0.99713 0.99699 0.99733 0.99691
8:2 0.99694 0.99615 0.99672 0.99630 0.99750 0.99682 0.99722 0.99648 0.99783 0.99693
9:1 0.99700 0.99615 0.99678 0.99608 0.99787 0.99659 0.99682 0.99637 0.99764 0.99659

Table 5. F1-scores of the five algorithms evaluated on the PhiUSIIL dataset

Training—testing ANN CNN LSTM GRU BiGRU
ratio Train Test Train Test Train Test Train Test Train Test
5:5 0.99861 0.99811 0.99843 0.99828 0.99826 0.99814 0.99854 0.99812 0.99861 0.99827
6:4 0.99852 0.99821 0.99822 0.99814 0.99874 0.99832 0.99857 0.99834 0.99862 0.99842
7:3 0.99855 0.99817 0.99834 0.99827 0.99897 0.99842 0.99856 0.99843 0.99862 0.99833
8:2 0.99846 0.99802 0.99829 0.99803 0.99874 0.99824 0.99859 0.99822 0.99870 0.99827
9:1 0.99849 0.99800 0.99834 0.99800 0.99882 0.99811 0.99841 0.99818 0.99879 0.99822

Table 6 shows that BiIGRU achieves the lowest test loss at the 6:4 training—testing ratio, with a value
of 0.01114, indicating superior generalization capability. At the same ratio, LSTM records the lowest training
loss of 0.00761; however, its test loss reaches 0.01235, which is slightly higher than that of BiGRU. In
contrast, CNN consistently produces higher test losses across all configurations—for example, 0.01427 at the
6:4 ratio—reflecting poorer learning performance compared to the other models.

Table 6. Loss of the five algorithms evaluated on the PhiUSIIL dataset

Training—testing ANN CNN LSTM GRU BiGRU
ratio Train Test Train Test Train Test Train Test Train Test
5:5 0.01026 0.01387 0.01110 0.01296 0.01092 0.01260 0.01023 0.01298 0.00858 0.01285
6:4 0.01074 0.01316 0.01228 0.01427 0.00761 0.01235 0.00942 0.01166 0.00984 0.01114
7:3 0.01054 0.01319 0.01200 0.01366 0.00552 0.01255 0.00940 0.01166 0.01102 0.01293
8:2 0.01148 0.01535 0.01253 0.01417 0.00785 0.01267 0.00917 0.01221 0.00763 0.01294
9:1 0.01086 0.01406 0.01200 0.01440 0.00772 0.01420 0.01121 0.01437 0.00750 0.01359

In Figure 5, at the 6:4 training—testing ratio, the ANN model achieves the best classification
performance, misclassifying only 1 phishing URL and 192 benign URLs. The BiGRU model follows closely,
with 8 phishing and 162 benign misclassifications, demonstrating strong discriminatory capability between
the two classes. In contrast, the LSTM and GRU models show weaker performance, misclassifying 16
phishing and 165 benign URLSs, and 12 phishing and 167 benign URLSs, respectively.

4.3. Discussion

Although phishing attacks via deceptive URLSs are not a new cybersecurity issue, their increasing
sophistication—particularly in financial transactions and online payment platforms—renders detection
significantly more challenging, necessitating the development of intelligent and real-time adaptive solutions.

Accordingly, this study evaluates five DL models—ANN, CNN, LSTM, GRU, and BiGRU —using
the PhiUSIIL dataset [20]. The dataset contains 235,795 URLs, including 134,850 benign and 100,945
phishing samples, and is divided into multiple training—testing ratios to identify the optimal split that
maximizes classification accuracy while minimizing misclassification. This experimental design provides a
consistent basis for comparing model effectiveness and identifying the most reliable architecture for phishing
URL detection.

Real-time browser-integrated phishing uniform resource locator detection via deep ... (Dam Minh Linh)

4886 O ISSN: 2302-9285

CNN

Actual
Actual

- 20000

16

10030

Fhishing

Phishing
N

Phishing

Benign Phishing Beriign Phishing Benign Phishing
Predicted Predicted Predicted

GRU

40211 167 162

\\\\\

Actual
Actual

2 2
£ 12 £ 53932
= £
o o
Benign Phishing Benign Phishing
Predicted Predicted

Figure 5. Misclassifications by the models at the 6:4 training—testing ratio

To ensure fairness and reproducibility, all models are implemented with the same configuration,
including standardized inputs, architectures, and outputs (Table 1). Model performance is compared using
multiple metrics: confusion matrix, accuracy, precision, F1-score, and loss. At the 6:4 split, BIGRU achieves
the highest testing accuracy of 99.82%, surpassing GRU (99.81%), LSTM (99.80%), ANN (99.79%), and
CNN (99.787%). BiGRU also maintains a stable accuracy trend above 99.8% across a wide range of splits
(5:5 to 8:2), whereas the other models exhibit less consistent performance. Moreover, BiGRU outperforms its
counterparts on other metrics at the 6:4 split, attaining a precision of 99.7% and an F1-score of 99.842%.
Notably, it also achieves the lowest test loss of 0.01114, confirming its robustness and predictive efficiency.
Therefore, BIGRU is recommended as the most reliable model for phishing URL classification.

For strengthening security and improving user convenience in real-time environments, particularly
for financial transactions, a browser extension is developed in JavaScript and integrated into Chrome. This
tool expands the character set from 270 to 366 symbols, enhancing the model’s ability to detect unseen
phishing URLs. The extension integrates the Ratcliff-Obershelp algorithm for fuzzy matching against two
datasets—approximately 3,000 benign and 2,500 phishing URLs—stored in Cloud Firestore, with
communication handled via REST API to ensure efficient real-time evaluation. The URL inspection process
retrieves whitelist and blacklist data from Firestore, performs exact matching, and applies similarity scoring
against stored entries with a predefined threshold. If the score is inconclusive, the pre-trained BiGRU model
assigns the final label.

5. CONCLUSION

This study presents a comprehensive evaluation of DL models for phishing URL detection,
identifying the BIGRU as the most effective architecture in terms of accuracy, precision, F1-score, and test
loss across multiple training—testing ratios. BiGRU consistently achieved stable and superior results, with
peak testing accuracy of 99.82% at the 6:4 split. To strengthen real-time phishing detection, the proposed
framework integrates BiGRU into a lightweight Chrome extension, augmented with a 366-character
encoding scheme and the Ratcliff-Obershelp similarity algorithm. This hybrid design combines similarity-
based filtering with DL classification to detect even previously unseen URLs. Overall, the framework
delivers a robust, efficient, and scalable solution for mitigating phishing threats in online environments.

The current study is limited to classifying URLs into phishing and benign categories, without
addressing other attack vectors such as malware or scams. Future work will expand the dataset to include
more diverse labels and investigate advanced models such as Transformer, BERT, and federated learning.

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4876-4889

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4887

Furthermore, data augmentation techniques will be refined for pretraining to mitigate class imbalance,
thereby improving the accuracy and reliability of real-time URL classification.

ACKNOWLEDGMENTS

The authors sincerely thank the Editor-in-Chief, the reviewers, and the Associate Editor for their
constructive and valuable feedback. This research was financially supported by the Posts and
Telecommunications Institute of Technology, under the Ministry of Information and Communications of
Vietnam. Additional support was also provided by other external funding sources.

FUNDING INFORMATION
This paper is supported by Posts and Telecommunications Institute of Technology under grant
number 10-2025-HV-CNTT2.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo | R D O E Vi Su P Fu
Dam Minh Linh v v v v v v v v v v v
Han Minh Chau v v v
Huynh Trong Thua v v

Tran Cong Hung v v v v v v v v
C . Conceptualization I Investigation Vi : Visualization

M : Methodology R : Resources Su : Supervision

So : Software D : Data Curation P : Project administration

Va : Validation O : writing - Original Draft Fu : Funding acquisition

Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
Authors state no conflict of interest.

DATA AVAILABILITY
The data that support the findings of this study have been previously published and are openly
available at GitHub: https://github.com/MinhLinhEdu/ptit-url-guardian.

REFERENCES

[1] APWG, “Phishing Activity Trends Report, Q2 2024, Anti-Phishing Working Group, [Online]. Available:
https://docs.apwg.org/reports/apwg_trends_report_q2_2024.pdf.

[2] E. Kovacs, “SecurityWeek,” Securityweek, Feb. 29, 2024 [Online]. Available: https://www.securityweek.com/discount-retail-
giant-pepco-loses-e15-million-to-cybercriminals/. (Accessed: Jan. 26, 2025).

[31 N. A Azeez, S. Misra, |. A. Margaret, L. Fernandez-Sanz, and S. M. Abdulhamid, “Adopting automated whitelist approach for
detecting phishing attacks,” Computers and Security, vol. 108, p. 102328, 2021, doi: 10.1016/j.cose.2021.102328.

[4] S. E. Elgharbi, M. A. Yahia, and S. Ouchani, “Online Phishing Detection: A Heuristic-Based Machine Learning Framework,” in
2024 13th Mediterranean Conference on Embedded Computing (MECO), IEEE, Jun. 2024, pp. 1-4, doi:
10.1109/MEC062516.2024.10577848.

[5] M. Sabahno and F. Safara, “ISHO: improved spotted hyena optimization algorithm for phishing website detection,” Multimedia
Tools and Applications, vol. 81, no. 24, pp. 3467734696, 2022, doi: 10.1007/s11042-021-10678-6.

[6] I. Kara, M. Ok, and A. Ozaday, “Characteristics of Understanding URLs and Domain Names Features: The Detection of Phishing
Websites with Machine Learning Methods,” |EEE Access, vol. 10, pp. 124420-124428, 2022, doi:
10.1109/ACCESS.2022.3223111.

[71 A. Awasthi and N. Goel, “Phishing website prediction using base and ensemble classifier techniques with cross-validation,”
Cybersecurity, vol. 5, no. 1, pp. 1-23, 2022, doi: 10.1186/s42400-022-00126-9.

[8] M. Aljabri et al., “An Assessment of Lexical, Network, and Content-Based Features for Detecting Malicious URLs Using
Machine Learning and Deep Learning Models,” Computational Intelligence and Neuroscience, pp. 1-14, Aug. 2022, doi:
10.1155/2022/3241216.

Real-time browser-integrated phishing uniform resource locator detection via deep ... (Dam Minh Linh)

4888 O ISSN: 2302-9285

[91 H. Algahtani et al., “Evolutionary Algorithm with Deep Auto Encoder Network Based Website Phishing Detection and
Classification,” Applied Sciences, vol. 12, no. 15, pp. 1-16, Jul. 2022, doi: 10.3390/app12157441.

[10] M. Bahaghighat, M. Ghasemi, and F. Ozen, “A high-accuracy phishing website detection method based on machine learning,”
Journal of Information Security and Applications, vol. 77, p. 103553, Sep. 2023, doi: 10.1016/j.jisa.2023.103553.

[11] B. V. Pavani, D. Mahitha, and B. U. Maheswari, “Enhancing Online Safety: Phishing URL Detection Using Machine Learning
and Explainable AL” in 2024 15th International Conference on Computing Communication and Networking Technologies
(ICCCNT), IEEE, Jun. 2024, pp. 1-6, doi: 10.1109/ICCCNT61001.2024.10723976.

[12] L. R. Kalabarige, R. S. Rao, A. R. Pais, and L. A. Gabralla, “A Boosting-Based Hybrid Feature Selection and Multi-Layer
Stacked Ensemble Learning Model to Detect Phishing Websites,” IEEE Access, vol. 11, pp. 71180-71193, 2023, doi:
10.1109/ACCESS.2023.3293649.

[13] T. Asifetal., “RPCP-PURI: A robust and precise computational predictor for Phishing Uniform Resource Identification,” Journal
of Information Security and Applications, vol. 89, p. 103953, Mar. 2025, doi: 10.1016/j.jisa.2024.103953.

[14] H. Algahtani and A. Abu-Khadrah, “Enhance the accuracy of malicious uniform resource locator detection based on effective
machine learning approach,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 6, pp. 4422—4429, Dec. 2024, doi:
10.11591/eei.v13i6.7797.

[15] S. J. Buu and S. B. Cho, “A Transformer network calibrated with fuzzy logic for phishing URL detection,” Fuzzy Sets and
Systems, vol. 517, p. 109474, Oct. 2025, doi: 10.1016/j.fss.2025.109474.

[16] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski, and W. Joosen, “TRANCO: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation,” arXiv preprint, 2019, doi: 10.14722/ndss.2019.23386.

[17] PhishTank, “phishtank,” Cisco Talos Intelligence Group, [Online]. Available: https://phishtank.org/. (Accessed: Jan. 28, 2025).

[18] D. M. Linh, "ptit-url-guardian," Github, [Online]. Available: https://github.com/MinhLinhEdu/ptit-url-guardian. (Accessed: Feb.
16, 2025).

[19] D. M. Linh, H. D. Hung, H. M. Chau, Q. S. Vu, and T. N. Tran, “Real-time phishing detection using deep learning methods by
extensions,” International Journal of Electrical and Computer Engineering, vol. 14, no. 3, pp. 3021-3035, Jun. 2024, doi:
10.11591/ijece.v14i3.pp3021-3035.

[20] A. Prasad and S. Chandra, “PhiUSIIL: A diverse security profile empowered phishing URL detection framework based on
similarity index and incremental learning,” Computers and Security, vol. 136, p. 103545, Jan. 2024, doi:
10.1016/j.cose.2023.103545.

[21] O. Rainio, J. Teuho, and R. Klén, “Evaluation metrics and statistical tests for machine learning,” Scientific Reports, vol. 14, no. 1,
pp. 1-14, 2024, doi: 10.1038/541598-024-56706-X.

[22] Z. Huang, T. Ban, and Y. Zhang, “A novel approach for malicious URL detection using RoBERTa and sparse autoencoder,”
Journal of Information Security and Applications, vol. 94, p. 104214, Nov. 2025, doi: 10.1016/j.jisa.2025.104214.

[23] F. Rashid, B. Doyle, S. C. Han, and S. Seneviratne, “Phishing URL detection generalisation using Unsupervised Domain
Adaptation,” Computer Networks, vol. 245, pp. 1-14, May 2024, doi: 10.1016/j.comnet.2024.110398.

[24] C. Wang and Y. Chen, “TCURL: Exploring hybrid transformer and convolutional neural network on phishing URL detection,”
Knowledge-Based Systems, vol. 258, p. 109955, Dec. 2022, doi: 10.1016/j.knosys.2022.109955.

[25] 1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Cambridge, MA, USA: The MIT Press, 2016.

[26] M. Wang, L. Song, L. Li, Y. Zhu, and J. Li, “Phishing webpage detection based on global and local visual similarity,” Expert
Systems with Applications, vol. 252, p. 124120, Oct. 2024, doi: 10.1016/j.eswa.2024.124120.

[27] A. Connolly and H. F. Atlam, “Effective ensemble learning phishing detection system using hybrid feature selection,” Journal of
Network and Computer Applications, vol. 242, p. 104251, Oct. 2025, doi: 10.1016/j.jnca.2025.104251.

BIOGRAPHIES OF AUTHORS

Dam Minh Linh © B4 B € was born in 1982 in Tay Ninh province, Vietnam. He received
his engineering degree in Information Technology in 2010 and his M.Sc. degree in
Information Systems in 2016, both from the Posts and Telecommunications Institute of
Technology. He is currently a lecturer at the Faculty of Information Technology 2 and a
member of the Information Security Technology Lab at the Posts and Telecommunications
Institute of Technology, Ho Chi Minh City, Vietnam. His research interests include anti-
phishing solutions, cyber threat intelligence, deep learning with transformer models, natural
language processing, information retrieval (IR), and computer vision. Since 2024, he has been
a Ph.D. student in Information Systems at the Posts and Telecommunications Institute of
Technology, Vietnam. His current research focuses on applying transformer-based deep
learning techniques to combinatorial optimization, particularly in cybersecurity and network
security domains. He can be contacted at email: linhdm@ptit.edu.vn.

Han Minh Chau © EJE3 © was born in Vietnam in 1980. He is currently the Head of the
Department of Computer Networks, Faculty of Information Technology, HUTECH
University, Ho Chi Minh City, Vietnam. He received a Bachelor’s degree in Information
Technology from Hanoi University of Science and Technology and a Master’s degree in
Computer Science from the Ho Chi Minh City University of Information Technology,
Vietnam National University at Ho Chi Minh City. His main research interests include
network security, machine learning, computer vision, cloud computing platforms, and artificial
intelligence. He can be contacted at email: hm.chau80@hutech.edu.vn.

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4876-4889

https://orcid.org/0009-0000-9104-5770
https://scholar.google.com/citations?hl=en&user=VOdgxT0AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58996767100
https://www.webofscience.com/wos/author/record/JHS-4028-2023
https://orcid.org/0009-0003-0400-5175
https://scholar.google.com/citations?hl=en&user=ANf6TvMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58996019300
https://www.webofscience.com/wos/author/record/JHS-7124-2023

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4889

Huynh Trong Thua B s currently the head in the Department of Information
Security, Faculty of Information Technology 2, at the Posts and Telecommunications Institute
of Technology (PTIT), Vietnam. He received a bachelor's degree in information technology
from Ho Chi Minh City University of Natural Sciences, a master's degree in computer
engineering from Kyung Hee University, Korea, and a Ph.D. degree in computer science from
the Ho Chi Minh City University of Technology, Vietnam National University at Ho Chi Minh
City. His key areas of research include cybersecurity, Al and big data, and intelligent
information systems. He can be contacted at email: thuaht@ptit.edu.vn.

Tran Cong Hung By 2 was born in Vietnam in 1961. He received a B.E. in
Electronics and Telecommunication Engineering with first-class honors from Ho Chi Minh
University of Technology in 1987. He received a B.E. in Informatics and Computer
Engineering from Ho Chi Minh University of Technology in 1995. He earned a Master of
Engineering degree in Telecommunications Engineering from the Postgraduate Department of
Hanoi University of Technology in 1998. He received a Ph.D. from Hanoi University of
Technology in 2004. His main research areas include B-ISDN performance parameters and
measurement methods, QoS in high-speed networks, and MPLS. Currently, he is an associate
professor at the Department of Computer Science and Engineering, Saigon International
University in Ho Chi Minh City, Vietnam. He can be contacted at email:
tranconghung@siu.edu.vn; https://tranconghung.com.

Real-time browser-integrated phishing uniform resource locator detection via deep ... (Dam Minh Linh)

https://orcid.org/0000-0003-3934-1067
https://scholar.google.com/citations?hl=en&view_op=list_works&user=RTaD9TYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=9736458600
https://www.webofscience.com/wos/author/record/MDT-8954-2025
https://orcid.org/0009-0001-1698-2673
https://scholar.google.com/citations?user=VNXsguYAAAAJ&hl=fr

