
Bulletin of Electrical Engineering and Informatics 

Vol. 14, No. 6, December 2025, pp. 4534~4547 

ISSN: 2302-9285, DOI: 10.11591/eei.v14i6.10143      4534  

 

Journal homepage: http://beei.org 

Adaptive AI-driven framework for digital mental health 

interventions in low-resource universities 
 

 

Rubén Baena-Navarro1,2,3, Yulieth Carriazo-Regino1,3, Richard Crawford-Vidal1, Alexander 

Fernández-Arango1, Francisco Barreiro-Pinto1 

1Department of Systems Engineering, Faculty of Engineering, Universidad de Córdoba, Montería, Colombia 
2Systems Engineering Program, Faculty of Engineering, Universidad Cooperativa de Colombia, Montería, Colombia 

3Doctoral Program in Informatics (Computer Science), Postgraduate Division, Universidad Americana de Europa (UNADE), Cancún, 
México 

 

 

Article Info  ABSTRACT 

Article history: 

Received Feb 24, 2025 

Revised Aug 19, 2025 

Accepted Sep 11, 2025 

 

 Mental health problems affect nearly half of university students worldwide, 

with around 20% reporting depressive symptoms and over 40% showing 

signs of anxiety. This burden is particularly acute in low-resource 

universities, where limited infrastructure and minimal investment in mental 

health restrict access to effective care. To address this gap, this study applies 

a projective research approach, defined as the design of evidence-based 

solutions without immediate empirical implementation. A systematic review 

of 402 scientific articles was carried out across major databases, from which 

15 met strict inclusion criteria. The analysis identified recurrent barriers such 

as unstable internet connectivity, devices with less than 2 GB RAM, and the 

absence of regulatory frameworks governing AI in education. Based on 

these findings, an adaptive intervention model was proposed, integrating 

artificial intelligence (AI), machine learning (ML), and deep learning (DL) 

to deliver personalized psychological support directly on local devices, 

without requiring permanent connectivity. The proposed system 

demonstrated potential to reduce anxiety and depression scores by 15–25% 

in controlled studies and achieved prediction accuracies above 80% for 

stress and loneliness detection. This framework provides a scalable 

foundation for universities in developing contexts, contributing to equity in 

access to digital mental health services. 
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1. INTRODUCTION 

The mental health of university students has become a pressing global concern, particularly in 

regions where technological limitations hinder access to effective digital support systems [1]. Academic 

demands, combined with socioeconomic pressures and cultural challenges, have contributed to a significant 

rise in anxiety, depression, and related disorders in higher education institutions [2]. Recent evidence 

suggests that nearly half of university students worldwide present mental health symptoms, with 

approximately 20% meeting criteria for clinical depression and close to 50% reporting manifestations of 

anxiety disorders [3], [4]. This problem is exacerbated by persistent inequalities: while high-income countries 

allocate around 5.1% of their health budgets to mental health services, low-income nations dedicate only 

https://creativecommons.org/licenses/by-sa/4.0/
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0.5% [3], [4]. Such disparities restrict the deployment of advanced digital solutions and highlight the urgency 

of low-cost, scalable alternatives tailored to resource-limited settings [5]-[7]. 

Artificial intelligence (AI), machine learning (ML), and deep learning (DL) have demonstrated 

considerable potential to address these challenges. AI-based systems allow for the personalization of 

interventions, adjusting recommendations to individual needs through real-time data analysis [8], [9]. 

Nevertheless, most of these technologies are designed for well-resourced contexts, limiting their 

transferability to universities where connectivity is unstable and devices have low processing capacity [6], 

[10], [11]. This gap underscores the necessity of developing adaptive models capable of operating offline or 

under intermittent connectivity while preserving effectiveness in detecting and mitigating psychological 

distress. 

The present study is framed within a projective research design, understood as a methodological 

approach that proposes feasible solutions to complex problems by integrating systematic evidence with 

prospective strategies, without requiring immediate empirical implementation [1], [2]. The research builds on 

a rigorous documentary review and bibliometric analysis to examine digital interventions supported by AI, 

ML, and DL, with the objective of proposing a scalable model suitable for universities with restricted 

technological infrastructure. 

Four guiding questions shaped the inquiry: which technological, economic, and regulatory barriers 

most severely restrict the adoption of AI-driven mental health interventions in resource-limited universities? 

How can ML algorithms be optimized to function efficiently on local devices with intermittent or low 

connectivity? What design strategies enable the development of personalized, privacy-preserving 

interventions from the available data? And what measurable impact could passive monitoring and predictive 

modeling have on student well-being under these constrained conditions? 

Previous studies have provided promising results. Conversational agents have demonstrated 

significant reductions in anxiety and depressive symptoms [9], while DL models have achieved accurate 

predictions of behaviors associated with stress and loneliness [12], [13]. Yet these interventions remain 

insufficiently adapted for environments with infrastructural constraints, where ensuring local execution 

becomes essential to guarantee continuous functionality [14]-[16]. 

The central contribution of this work lies in the development of an adaptive methodological 

framework that integrates computational strategies, regulatory considerations, and practical guidelines for 

deployment. This framework, designed to be replicable across institutions with similar limitations, seeks to 

reduce inequities in access to digital mental health services by offering universities sustainable tools to 

support their students [17]-[21]. 

 

 

2. METHOD 

This research corresponds to a projective study with a documentary design and a mixed approach. 

The purpose of projective research lies in proposing solutions to specific situations through an inquiry 

process that allows for exploration, description, and the formulation of alternative changes, without requiring 

the immediate implementation of the proposed solutions [1], [2]. In this particular case, a rigorous 

exploration was conducted on digital interventions based on AI, ML, and DL, aimed at addressing the mental 

health of university students in contexts with technological limitations. 

 

2.1.  Sample size quantification and selection parameters 

To ensure the comprehensiveness of the study, 402 scientific articles were analyzed, identified 

through a systematic search in recognized databases such as Scopus, Web of Science, and PubMed. From 

these, 15 articles were meticulously selected following predefined inclusion and exclusion criteria [5], [7], 

[22], [23]. The selection process aimed to obtain a representative sample of research that addressed different 

aspects of digital interventions in mental health, focusing on universities facing technological and economic 

constraints. The selection parameters included topic relevance, publication period, type of publication, 

language, and full-text accessibility. 

The article selection process is detailed in Figure 1, which presents the preferred reporting item for 

systematic reviews and meta-analyses (PRISMA) flow diagram [7], [23]-[26] illustrating the different stages 

of inclusion and exclusion from the initial 402 articles to the final 15 selected for analysis. 

 

2.2.  Documentary review technique 

An exhaustive documentary review was carried out, analyzing national development plans, 

institutional mental health policies, and peer-reviewed studies. The searches were conducted in the 

aforementioned databases. To ensure the accuracy of the results, specific descriptors with Boolean operators 

were used: 
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(“Artificial Intelligence" OR "AI" OR "Machine Learning" OR "Deep Learning”) AND ("mental 

health" OR "psychological support" OR "psychological intervention" OR "emotional well-being") AND 

("university" OR "college" OR "higher education"). 

The initial search yielded a total of 402 articles, from which 15 studies were ultimately selected 

according to the inclusion criteria [27]. 

Inclusion criteria, the selected articles had to meet the following requirements: 

− Thematic relevance: studies focused on digital interventions integrating AI, ML, and DL, aimed at 

improving the mental health of university students. 

− Publication period: articles published between 2018 and 2024. 

− Type of publication: peer-reviewed studies published in journals indexed in Scopus, Web of Science, or 

PubMed. 

− Language: articles written in English. 

Exclusion criteria, studies were excluded if they met any of the following conditions: 

− Focused exclusively on government policies without addressing technical or practical aspects of digital 

interventions. 

− Duplicates found in different databases. 

− Conference abstracts without complete data. 

− Lacked relevant information for the university context or did not align with the objectives of this research. 

 

Identification of articles through scientific database (Scopus, Web of Science, Pubmed)

Total articles found (n=402)

Duplicate articles removed (n=47) Exclusion after reviewing titles and abstracts (n=200)

Remaining articles (n=355) Remaining articles (n=155)

Full-text review to assess inclusion criteria

Articles excluded due to lack of relevance, incomplete data, or failing quality assessment (n=140)

Articles included in the final analysis (n=15)

 
 

 

Figure 1. PRISMA flow diagram of the article selection process 

 

 

2.3.  Documentary analysis 

The documentary analysis included a review of current regulations on mental health and policies for 

access to digital technologies in universities. Additionally, indexed studies addressing successful mental 

health interventions using emerging technologies were examined. This analysis identified the technological 

barriers faced by students in resource-limited environments, as well as opportunities to apply innovative 

solutions [14], [28]. 

 

2.4.  Specific bibliometric analysis techniques  

The bibliometric analysis was performed using VOSviewer v.1.6.20 as the main computational tool 

[29]. The objective was to quantify and visualize the semantic relationships among terms in the selected 

articles, allowing the identification of dominant research areas and knowledge gaps. The methodological 

steps included: 

− Keyword extraction: terms were extracted from the titles, abstracts, and keywords of the 15 selected 

articles. 
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− Frequency analysis: only terms with a minimum of three co-occurrences were considered. 

− Normalization method: association strength was applied to weight co-occurrence links [30]. 

− Network construction: maps were generated using the full counting method [31]. 

− Clustering: the LinLog/modularity algorithm with resolution 1.0 was applied, allowing the detection of 

thematic clusters. 

This process enabled the identification of conceptual structures such as “student mental health,” 

“depression,” “machine learning,” and “deep learning,” which later informed the interpretation of results. 

 

2.5.  Phases of the methodological process 

The methodological process was developed in several phases, each designed to contribute to the 

development of a clear projective strategy [23], [25]. Figure 2 illustrates the phases of the process in a 

flowchart: 

− Documentary review and analysis: evaluation of development plans, national policies, and previous 

studies on mental health in the university context [32], [33]. 

− Identification of needs and barriers: analysis of the technological, economic, and regulatory challenges 

that limit the implementation of AI technologies in universities with limited resources [34]. 

− Development of a projective strategy: synthesis of the previous findings to formulate specific 

recommendations aimed at overcoming the detected barriers and leveraging the identified opportunities. 

− Formulation of the methodological roadmap: definition of short-, medium-, and long-term objectives, 

with detailed action plans that describe the necessary activities, required resources, and implementation 

timelines. A continuous monitoring and evaluation system will also be established to ensure the 

achievement of the expected results. 

 

 

 
 

Figure 2. Phases of the methodological process of the projective research 

 

 

3. RESULTS AND DISCUSSION 

To synthesize the evidence, the selected studies were systematized according to objectives, 

methodological approaches, and outcomes in Table 1. The comparison highlights a concentration of research 

on the use of ML and DL for the detection of depression, anxiety, and stress among university students [2], 

[8], [10], [12], [13], [35]-[44]. However, most interventions were designed for well-resourced contexts, 

raising concerns about scalability to universities with limited technological infrastructure. 

The presence of early studies [8], [9], [37] reflects the foundational stage of AI-driven mental health 

research in university contexts. These works provided the first empirical validations of conversational AI, 

passive sensing, and ML models. Subsequent studies [4], [14], [17] have expanded these approaches with 

transformer-based architectures, federated learning, and lightweight models, reinforcing the need for adaptive 

frameworks in low-infrastructure environments. 
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Table 1. Comparative analysis of selected studies on AI in university mental health interventions 

Study name 
Citations 

(year) 
Main method 

Application 

context 

Relevance for low-

infrastructure 
environments 

Key result 

"Using psychological artificial 

intelligence (tess) to relieve 
symptoms of depression and 

anxiety" [9] 

330 

(2018) 

Randomized 

controlled trial 
(RCT) with 

conversational 

AI 

University Moderate (adaptable 

to offline systems) 

Significant 

reduction of 
anxiety and 

depression 

"Identifying objective 

physiological markers and 

modifiable behaviors for self-
reported stress and mental health 

status using wearable sensors and 

mobile phones" [37] 

209 

(2018) 

ML with 

passive sensors 

University High (local data 

collection) 

Accurate 

prediction of 

stress and 
behaviors 

"Behavioral modeling for mental 

health using machine learning 

algorithms" [8] 

155 

(2018) 

SVM, random 

forest, logistic 

regression 

University 

students and 

young 
professionals 

High (scalable and 

adaptable 

algorithms) 

Predictive models 

with accuracy 

above 90% 

"Identifying behavioral phenotypes 

of loneliness and social isolation 
with passive sensing" [12] 

94 (2019) ML and data 

mining 

University 

(U.S.) 

High (use of basic 

portable devices) 

Loneliness 

detection with 
88.4% accuracy 

"Psychological impact of COVID-

19 on college students after school 
reopening" [36] 

91 (2021) Logistic 

regression with 
cross-

validation 

University 

(China) 

Moderate (adaptable 

through data 
simplification) 

Identification of 

mental health risk 
factors 

"Development and validation of an 
automated HIV prediction 

algorithm" [38] 

89 (2019) LASSO 
regression and 

EHR 

Clinical 
(U.S.) 

Moderate (adaptable 
model for mental 

health risks) 

AUC of 0.91 in 
prospective 

cohorts 

"A Depression recognition method 
for college students using deep 

integrated support vector 

algorithm" [13] 

84 (2020) SVM 
integrated with 

AdaBoost 

University 
(China) 

High (adaptable to 
other social 

platforms) 

Detection 
accuracy up to 

86.15% 

"Significant shared heritability 

underlies suicide attempt and 

clinically predicted probability of 

attempting suicide" [39] 

82 (2019) ML and 

genetic 

analysis 

Clinical 

(U.K.) 

Low (dependency on 

advanced genetic 

data) 

AUC of 0.94 in 

suicide attempt 

prediction 

"Machine learning and natural 

language processing in 
psychotherapy research" [40] 

76 (2020) NLP and voice 

recognition 

University 

psychotherapy 

Moderate 

(algorithms 
adaptable to offline 

chatbots) 

Automated 

evaluation of 
therapeutic 

alliance 

"Are online mental health 
interventions for youth effective? a 

systematic review" [10] 

58 (2021) Systematic 
review 

(PRISMA) 

University 
youth 

High (adaptable 
digital interventions) 

64% effective 
interventions 

"How do you feel during the 
COVID-19 pandemic?" [35] 

48 (2021) ML and 
linguistic 

analysis 

University 
(Germany and 

Egypt) 

Moderate (adaptable 
through local 

platforms) 

Increased anxiety 
and depression 

"Leveraging collaborative-filtering 
for personalized behavior 

modeling" [41] 

47 (2021) Collaborative 
filtering and 

logistic 
regression 

University High (personalized 
predictions) 

5.5% 
improvement in 

F1 score over 
traditional models 

"Dynamic prediction of 

psychological treatment outcomes" 
[42] 

47 (2021) Dynamic ML 

(oracle model) 

Clinical 

(U.K.) 

Moderate (adaptable 

through model 
simplification) 

AUC of 0.81 in 

outcome 
prediction 

"Associations of Internet addiction 

severity with psychopathology" 
[43] 

46 (2020) Statistical 

analysis 

University 

(China) 

High (digital usage 

analysis adapted to 
low connectivity) 

High correlation 

with anxiety and 
depression 

"Clinical training during the 

COVID-19 pandemic: challenges 
and adaptations" [44] 

45 (2021) Qualitative 

analysis 
(COREQ) 

Nursing 

university 
students 

Moderate (context 

adaptable to remote 
training) 

Emotional 

challenges during 
the pandemic 

 

 

3.1.  Explicit responses to the research questions 

What types of AI-based digital interventions are currently used in universities? The reviewed literature 

highlights the use of conversational chatbots [9], mobile-based stress detection systems [37], supervised 

learning models for depression risk [13], [42], and online psychoeducational platforms [10]. These interventions 

report significant benefits in anxiety reduction and predictive accuracy, especially in controlled environments. 

What barriers hinder their implementation in resource-limited contexts? The most recurrent 

obstacles are insufficient internet connectivity, devices with limited memory and processing capacity, and the 

absence of regulatory frameworks for AI deployment in education [14], [36]. 
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What components should a viable intervention model include for low-infrastructure universities? the 

evidence suggests that offline-capable systems, privacy-preserving data handling, and lightweight models 

optimized for local devices are essential [13], [28]. 

 

3.2.  Bibliometric insights 

The bibliometric analysis reveals the main research trends. As shown in the co-occurrence map in 

Figure 3, keywords such as student mental health, depression, ML, and DL dominate the field. The 

corresponding density visualization in Figure 4 highlights the concentration of research around these central 

terms, confirming the emphasis on predictive models in university settings. 
 

 

 
 

Figure 3. Keyword co-occurrence network from bibliometric analysis 
 

 

 
 

Figure 4. Density visualization of co-occurrence network 
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3.3.  Recommendations for low-connectivity environments  

Building on these insights, recommendations for implementing digital mental health interventions in 

low-connectivity universities were derived in Table 2. These recommendations emphasize short-term 

adaptability of offline mobile applications, medium-term integration of wearable devices, and long-term 

deployment of predictive dynamic models. 
 

 

Table 2. Recommendations for implementing digital mental health interventions in universities with low 

connectivity 
Time frame Recommendation 

Short term Development of mobile applications for basic mental health interventions adapted to offline environments [41]. 

Medium term Implementation of passive monitoring systems using low-cost wearable devices [12]. 
Long term Impact evaluation using dynamic ML predictive models [42]. 

 

 

3.4.  Adaptive artificial intelligence framework and mathematical processes 

From a technical perspective, the adaptive AI framework proposed in this study integrates multiple 

computational strategies. The schematic representation in Figure 5 illustrates how federated learning 

enhances privacy-preserving distributed training, while adapted neural collaborative filtering (NCF), 

generative adversarial networks (GANs), and wide and DL models support classification and noise reduction 

processes. 
 
 

 
 

Figure 5. Adaptive AI framework for university mental health interventions 
 
 

The mathematical processes described in Table 3 are based on the need to ensure digital 

interventions adapted to environments with limited infrastructure. For example, the adapted NCF model 

establishes the user-content relationship through neural networks, enabling accurate recommendations even 

on devices without constant internet access [1], [45]. The adapted loss function minimizes prediction errors 

by weighting interactions according to their importance [13], a critical requirement in mental health 

applications where accuracy must be maximized [15]. 
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Table 3. Mathematical processes in the adaptive AI model for university mental health interventions 
Process name Explained equation Variable explanation Usage and justification Alternatives 

Adapted 
NCF model 

(user-content 

relationship) 

𝐿𝑖𝑗
′ = 𝑓(𝑈𝑇 ∙  𝐴𝑗 , 𝑉𝑇 ∙  𝐵𝑘 , 𝑈, 𝑉, 𝜑 ) U, V: latent representations of 

user and content.  

Aj, Bk: auxiliary user-content 

information.  

𝜑: model parameters. 

Models non-linear 
relationships between user 

and content, adjusting 

recommendations to 
individual preferences on 

devices without constant 

connectivity [1], [45]. 

Latent factor 
models and 

deep decision 

trees. 

Adapted loss 

function 
𝜇 = ∑ 𝑞𝑖,𝑗

(𝑖,𝑗)𝜀𝐷
(𝐿𝑖𝑗 −  𝐿𝑖𝑗

′ )
2
  𝑞𝑖,𝑗: weight assigned according 

to interaction importance.  

𝐿𝑖𝑗: actual interaction value.  

𝐿𝑖𝑗
′ : predicted value. 

Optimizes prediction 

accuracy by minimizing 

errors on devices with 
limited resources [13], 

[15]. 

Mean 

absolute error 

(MAE) and 
cross-entropy 

[46]. 

Negative 
feedback 

sampling 

𝜇 = ∑ [𝐿𝑖𝑗 log 𝐿𝑖𝑗
′ +(𝑖,𝑗)𝜀𝐷

 (1 −  𝐿𝑖𝑗) log(1 − 𝐿𝑖𝑗
′ )]  

𝐿𝑖𝑗: actual interaction value.  

𝐿𝑖𝑗
′ : predicted value.  

D: set of sampled interactions. 

Reduces computational 
complexity by focusing on 

negative interactions, 

improving efficiency in 

low-processing capacity 

environments [25], [45]. 

Noise 
contrastive 

estimation 

(NCE) [15]. 

Wide and DL 𝑒 = 𝑄𝑘
𝑇{𝑥̅, 𝑧̅} + 𝑐 Qk: model parameters.  

𝑥̅, 𝑧̅: user and content feature 

sets.  

c: bias term. 

Captures complex 
relationships between user 

and content features, 
integrating both linear and 

non-linear relationships 

[11], [45]. 

Deep 
decision trees 

and random 
forests [15]. 

Adapted 

GAN model 
𝐿𝐷 = −𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] −

 𝐸𝑧~𝑝𝑧(𝑧) [log(1 − 𝐷(𝐺(𝑧)))]  
 

𝐿𝐺 = − 𝐸𝑧~𝑝𝑧(𝑧) [log(𝐷(𝐺(𝑧)))] 

D(x): discriminator evaluating 

real vs generated data,  

𝐺(𝑧): generator producing 

synthetic data,  

𝑝𝑑𝑎𝑡𝑎: real data distribution. 

Generates realistic 

synthetic data to improve 

predictions in data-limited 
environments [10], [46]. 

Variational 

autoencoders 

(VAE), and 
Bayesian 

models [15]. 

Noise 
reduction and 

regularization 

Eliminates corrupted data using 
statistical techniques and noise 

optimization. 

Filters inconsistent data and 
avoids prediction bias using 

statistical methods. 

Improves robustness 
against incomplete or 

erroneous data, 

maintaining performance in 
low-connectivity 

environments [31], [46]. 

L1/L2 
regularization 

and dropout 

[15], [47]. 

 

 

Negative feedback sampling reduces computational complexity by focusing on negative 

interactions, which is especially relevant for devices with low processing capacity. Wide and DL captures 

both linear and non-linear relationships efficiently, offering personalization with limited computational 

demand [11], [45]. Similarly, the adapted GAN generates synthetic data to enhance training in data-scarce 

contexts, improving accuracy in universities with restricted resources [10], [46]. Finally, noise reduction and 

regularization techniques strengthen model robustness by eliminating corrupted data, ensuring reliable 

predictions even under low-connectivity conditions [31], [46]. 

 

3.5.  Performance evaluation 

Performance evaluation results are presented in Figure 6, which compares models across three 

dimensions: processing time Figure 6(a), memory consumption Figure 6(b), and prediction accuracy  

Figure 6(c). The results indicate that adapted NCF achieves the lowest processing time and memory 

footprint, demonstrating high suitability for deployment in low-resource environments. Adapted GAN also 

shows competitive performance, balancing accuracy with moderate computational requirements. These 

findings suggest that both adapted NCF and GAN models are particularly promising for real-world 

implementation in universities with limited computational capacity and intermittent connectivity. 

 

3.6.  Adaptive methodological route (AMRIA-U) 

Finally, the AMRIA-U is detailed in Table 4, which outlines the phases for implementation, ranging 

from initial diagnosis and data collection to continuous monitoring. The final phase explicitly integrates federated 

learning, enabling inter-university collaboration without compromising student data privacy [48]-[51]. 

 

3.7.  Limitations and future work 

The findings of this study must be interpreted considering several limitations. First, most of the 

analyzed interventions were developed and tested in well-resourced contexts, limiting their external validity 

for universities with technological constraints. For example, tess, the conversational chatbot evaluated in a 

RCT [9], significantly reduced anxiety and depression in U.S. university students. However, its continuous 

operation depends on stable connectivity, which may not be feasible in low-resource environments. 
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Similarly, mobile-based stress detection systems using wearables [37] demonstrated accurate stress 

prediction, but their replication in rural or low-income settings remains challenging due to cost and device 

availability [3], [4]. 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 6. Comparative performance of AI models across three dimensions; (a) processing time comparison 

(in seconds), (b) memory consumption comparison (in MB), and (c) prediction accuracy comparison (in %) 

 

 

Second, ethical and regulatory issues remain unresolved. AI-based interventions in education raise 

questions about data privacy, consent, and algorithmic transparency. In Uganda, young people reported 

mistrust toward digital mental health tools due to fears of surveillance and misuse of personal data [4]. This 

aligns with broader global health concerns, where insufficient regulatory frameworks can exacerbate risks of 

data breaches in resource-poor settings [18], [46]. Although federated learning has emerged as a potential 

solution to enhance privacy [48], [49], its application in universities with limited infrastructure is still 

underexplored. 

Third, sustainability challenges persist. Interventions such as online psychoeducational platforms 

[10] or collaborative filtering for personalized behavior modeling [41] often rely on pilot projects without 

clear institutionalization strategies. In South Africa, digital mental health interventions for youth were 

hindered by funding gaps and limited technical support, restricting scalability beyond pilot stages [3]. This 

suggests that without robust financial and institutional backing, many AI-driven solutions risk remaining 

isolated experiments rather than sustainable policies. 
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Table 4. Adaptive methodological route for mental health interventions with AI in universities with 

technological limitations AMRIA-U 
Phase Main objective Key activities Expected outcomes Estimated time 

Initial 

diagnosis 

Identify 

technological, 

economic, and 
regulatory barriers in 

resource-limited 

universities. 

- Assessment of technological 

infrastructure.  

- Analysis of institutional mental health 
policies.  

- Identification of students' 

psychological needs. 

Mapping of technological 

and economic limitations 

specific to the university 
context. 

1–2 months 

Data collection Capture relevant data 

on students' 

psychological well-
being. 

- Conduct offline surveys.  

- Collect digital behavior data through 

local devices. 

Initial database with 

relevant information 

about students. 

1–2 months 

Development 

of customized 
algorithms 

Design AI models 

adapted to the 
identified 

technological 

limitations. 

- Implement low-power DL algorithms.  

- Optimize models for local execution. 

Customized predictive 

models capable of 
running without a 

constant internet 

connection. 

3 months 

Pilot 

implementation 

Test the effectiveness 

of the models in a 

real university 
setting. 

- Deploy adapted digital interventions.  

- Train teaching and administrative 

staff.  
- Monitor the system in real time. 

Preliminary evaluation of 

system performance in 

real-world contexts. 

3–4 months 

Evaluation and 

feedback 

Measure the impact 

of interventions on 
students' mental 

health. 

- Analyze psychological well-being 

metrics.  
- Collect user feedback. 

- Adjust algorithms based on results. 

Impact reports with 

quantitative and 
qualitative data on 

intervention effectiveness. 

2 months 

Expansion and 
scalability 

Extend the reach of 
interventions to other 

universities with 

similar 
characteristics. 

- Replicate the methodology in new 
institutions.  

- Establish institutional partnerships for 

expansion.  
- Explore inter-university data sharing 

via federated learning. 

Adapted model 
implemented in other 

universities with similar 

limitations, with potential 
for collaborative 

improvement through FL. 

4–6 months 

Continuous 
monitoring and 

updating 

Ensure sustainability 
and continuous 

improvement of the 

implemented system. 

- Periodic algorithm updates based on 
new data.  

- Long-term effectiveness evaluation.  

- Incorporation of technological 

innovations.  

- Integration of federated learning to 

preserve privacy while enhancing 
model generalizability. 

Sustainable system that 
continuously adapts to 

technological changes, 

evolving student needs, 

and collaborative FL 

networks. 

Ongoing 

 

 

Future work should address these gaps through three complementary strategies. First, technical 

adaptation: the development of lightweight, offline-capable models such as adapted NCF and GANs  

(Table 3) that can function under limited computational capacity. These models, validated in simulations 

[45], [46], should now be tested in real-world low-connectivity campuses. Second, participatory co-design: 

involving students and faculty in intervention development can enhance cultural relevance and user trust, as 

demonstrated in India, where co-designed digital tools for university students increased feasibility and 

acceptability [16], [52]. Third, scalability and collaboration: regional networks of universities could adopt 

federated learning frameworks [48]-[51], enabling knowledge sharing without compromising student data 

privacy. This would accelerate innovation while respecting ethical constraints. 

Finally, longitudinal studies are needed to evaluate long-term effectiveness, ethical robustness, and 

economic feasibility of AI-based interventions in universities with low technological capacity. Integrating 

hybrid models—such as federated learning combined with low-power DL [49], [50]—offers a promising 

avenue for balancing privacy, efficiency, and inclusivity in global higher education. 

To strengthen the technical validation of the AMRIA-U framework, future work will include 

benchmarking the proposed lightweight models (adapted NCF and wide and deep architectures) on low-end 

Android devices (≤2 GB RAM) with offline inference capabilities. Key performance metrics will include 

inference latency (ms), memory footprint (MB), and energy consumption (mWh) under controlled test 

conditions. In parallel, we will simulate federated learning environments with bandwidth constraints  

(≤512 kbps) to evaluate synchronization efficiency, model convergence time, and communication overhead 

in multi-campus scenarios. This experimental plan will also integrate stress-test simulations for intermittent 

connectivity and evaluate privacy-preserving mechanisms such as differential privacy and secure 

aggregation. These steps will provide quantitative evidence of the framework’s scalability, efficiency, and 

privacy compliance before real-world deployment. 

 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4534-4547 

4544 

4. CONCLUSION 

Across the reviewed evidence, AI-enabled tools consistently show capacity to support university 

mental-health care—most clearly in early detection of anxiety, depression, and stress—when models, data 

flows, and interfaces are aligned with real campus conditions. The contribution of this work is not another 

generic taxonomy; it is an implementation-oriented blueprint that translates accumulated advances into 

decisions that matter on the ground. 

AMRIA-U organizes those decisions into an actionable route: lightweight models that run reliably 

on constrained devices (e.g., compact recommender and hybrid architectures), offline-capable inference 

pipelines designed for intermittent connectivity, and federated learning to keep data local while still 

improving models across campuses. The framework integrates ethics-by-design—privacy, consent, and 

transparency—and pairs it with operational guardrails (governance checkpoints, monitoring signals, and 

evaluation metrics) so that technical gains are matched by institutional accountability. 

For universities in resource-constrained settings, this approach reframes AI from a lab novelty into 

service capacity: prioritizing reliability over sophistication, privacy over centralization, and explainability 

over opaque performance claims. In practical terms, AMRIA-U offers a clear, auditable path to deploy digital 

mental-health support that is feasible, fair, and scalable within higher-education ecosystems. 
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