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Mental health problems affect nearly half of university students worldwide,
with around 20% reporting depressive symptoms and over 40% showing
signs of anxiety. This burden is particularly acute in low-resource
universities, where limited infrastructure and minimal investment in mental
health restrict access to effective care. To address this gap, this study applies
a projective research approach, defined as the design of evidence-based
solutions without immediate empirical implementation. A systematic review
of 402 scientific articles was carried out across major databases, from which
15 met strict inclusion criteria. The analysis identified recurrent barriers such
as unstable internet connectivity, devices with less than 2 GB RAM, and the
absence of regulatory frameworks governing Al in education. Based on
these findings, an adaptive intervention model was proposed, integrating
artificial intelligence (Al), machine learning (ML), and deep learning (DL)
to deliver personalized psychological support directly on local devices,
without requiring permanent connectivity. The proposed system
demonstrated potential to reduce anxiety and depression scores by 15-25%
in controlled studies and achieved prediction accuracies above 80% for
stress and loneliness detection. This framework provides a scalable
foundation for universities in developing contexts, contributing to equity in
access to digital mental health services.
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1. INTRODUCTION

The mental health of university students has become a pressing global concern, particularly in
regions where technological limitations hinder access to effective digital support systems [1]. Academic
demands, combined with socioeconomic pressures and cultural challenges, have contributed to a significant
rise in anxiety, depression, and related disorders in higher education institutions [2]. Recent evidence
suggests that nearly half of university students worldwide present mental health symptoms, with
approximately 20% meeting criteria for clinical depression and close to 50% reporting manifestations of
anxiety disorders [3], [4]. This problem is exacerbated by persistent inequalities: while high-income countries
allocate around 5.1% of their health budgets to mental health services, low-income nations dedicate only

Journal homepage: http://beei.org


https://creativecommons.org/licenses/by-sa/4.0/
mailto:rbaena@correo.unicordoba.edu.co

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4535

0.5% [3], [4]. Such disparities restrict the deployment of advanced digital solutions and highlight the urgency
of low-cost, scalable alternatives tailored to resource-limited settings [5]-[7].

Artificial intelligence (Al), machine learning (ML), and deep learning (DL) have demonstrated
considerable potential to address these challenges. Al-based systems allow for the personalization of
interventions, adjusting recommendations to individual needs through real-time data analysis [8], [9].
Nevertheless, most of these technologies are designed for well-resourced contexts, limiting their
transferability to universities where connectivity is unstable and devices have low processing capacity [6],
[10], [11]. This gap underscores the necessity of developing adaptive models capable of operating offline or
under intermittent connectivity while preserving effectiveness in detecting and mitigating psychological
distress.

The present study is framed within a projective research design, understood as a methodological
approach that proposes feasible solutions to complex problems by integrating systematic evidence with
prospective strategies, without requiring immediate empirical implementation [1], [2]. The research builds on
a rigorous documentary review and bibliometric analysis to examine digital interventions supported by Al,
ML, and DL, with the objective of proposing a scalable model suitable for universities with restricted
technological infrastructure.

Four guiding questions shaped the inquiry: which technological, economic, and regulatory barriers
most severely restrict the adoption of Al-driven mental health interventions in resource-limited universities?
How can ML algorithms be optimized to function efficiently on local devices with intermittent or low
connectivity? What design strategies enable the development of personalized, privacy-preserving
interventions from the available data? And what measurable impact could passive monitoring and predictive
modeling have on student well-being under these constrained conditions?

Previous studies have provided promising results. Conversational agents have demonstrated
significant reductions in anxiety and depressive symptoms [9], while DL models have achieved accurate
predictions of behaviors associated with stress and loneliness [12], [13]. Yet these interventions remain
insufficiently adapted for environments with infrastructural constraints, where ensuring local execution
becomes essential to guarantee continuous functionality [14]-[16].

The central contribution of this work lies in the development of an adaptive methodological
framework that integrates computational strategies, regulatory considerations, and practical guidelines for
deployment. This framework, designed to be replicable across institutions with similar limitations, seeks to
reduce inequities in access to digital mental health services by offering universities sustainable tools to
support their students [17]-[21].

2. METHOD

This research corresponds to a projective study with a documentary design and a mixed approach.
The purpose of projective research lies in proposing solutions to specific situations through an inquiry
process that allows for exploration, description, and the formulation of alternative changes, without requiring
the immediate implementation of the proposed solutions [1], [2]. In this particular case, a rigorous
exploration was conducted on digital interventions based on Al, ML, and DL, aimed at addressing the mental
health of university students in contexts with technological limitations.

2.1. Sample size quantification and selection parameters

To ensure the comprehensiveness of the study, 402 scientific articles were analyzed, identified
through a systematic search in recognized databases such as Scopus, Web of Science, and PubMed. From
these, 15 articles were meticulously selected following predefined inclusion and exclusion criteria [5], [7],
[22], [23]. The selection process aimed to obtain a representative sample of research that addressed different
aspects of digital interventions in mental health, focusing on universities facing technological and economic
constraints. The selection parameters included topic relevance, publication period, type of publication,
language, and full-text accessibility.

The article selection process is detailed in Figure 1, which presents the preferred reporting item for
systematic reviews and meta-analyses (PRISMA) flow diagram [7], [23]-[26] illustrating the different stages
of inclusion and exclusion from the initial 402 articles to the final 15 selected for analysis.

2.2. Documentary review technique

An exhaustive documentary review was carried out, analyzing national development plans,
institutional mental health policies, and peer-reviewed studies. The searches were conducted in the
aforementioned databases. To ensure the accuracy of the results, specific descriptors with Boolean operators
were used:
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(“Artificial Intelligence™ OR "Al" OR "Machine Learning” OR "Deep Learning”) AND ("mental
health” OR "psychological support” OR "psychological intervention” OR "emotional well-being") AND
("university" OR "college" OR "higher education").

The initial search yielded a total of 402 articles, from which 15 studies were ultimately selected
according to the inclusion criteria [27].

Inclusion criteria, the selected articles had to meet the following requirements:

— Thematic relevance: studies focused on digital interventions integrating Al, ML, and DL, aimed at
improving the mental health of university students.

— Publication period: articles published between 2018 and 2024.

— Type of publication: peer-reviewed studies published in journals indexed in Scopus, Web of Science, or
PubMed.

— Language: articles written in English.

Exclusion criteria, studies were excluded if they met any of the following conditions:

— Focused exclusively on government policies without addressing technical or practical aspects of digital
interventions.

— Duplicates found in different databases.

— Conference abstracts without complete data.

— Lacked relevant information for the university context or did not align with the objectives of this research.

¢

[ Identification of articles through scientific database (Scopus, Web of Science, Pubmed) ]

v
[ Total articles found (n=402) l
v v
[ Duplicate articles removed (n=47) ] [ Exclusion after reviewing titles and abstracts (n=200) ]
’ Remaining articles (n=355) l ’ Remaining articles (n=155) l
v v

v

[ Full-text review to assess inclusion criteria ]

!

(Articles excluded due to lack of relevance, incomplete data, or failing quality assessment (n=140)}

v

[ Articles included in the final analysis (n=15) ]

é

Figure 1. PRISMA flow diagram of the article selection process

2.3. Documentary analysis

The documentary analysis included a review of current regulations on mental health and policies for
access to digital technologies in universities. Additionally, indexed studies addressing successful mental
health interventions using emerging technologies were examined. This analysis identified the technological
barriers faced by students in resource-limited environments, as well as opportunities to apply innovative
solutions [14], [28].

2.4. Specific bibliometric analysis techniques
The bibliometric analysis was performed using VOSviewer v.1.6.20 as the main computational tool
[29]. The objective was to quantify and visualize the semantic relationships among terms in the selected
articles, allowing the identification of dominant research areas and knowledge gaps. The methodological
steps included:
— Keyword extraction: terms were extracted from the titles, abstracts, and keywords of the 15 selected
articles.
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— Frequency analysis: only terms with a minimum of three co-occurrences were considered.
— Normalization method: association strength was applied to weight co-occurrence links [30].
— Network construction: maps were generated using the full counting method [31].
— Clustering: the LinLog/modularity algorithm with resolution 1.0 was applied, allowing the detection of
thematic clusters.
This process enabled the identification of conceptual structures such as “student mental health,”
“depression,” “machine learning,” and “deep learning,” which later informed the interpretation of results.

2.5. Phases of the methodological process
The methodological process was developed in several phases, each designed to contribute to the

development of a clear projective strategy [23], [25]. Figure 2 illustrates the phases of the process in a

flowchart:

— Documentary review and analysis: evaluation of development plans, national policies, and previous
studies on mental health in the university context [32], [33].

— ldentification of needs and barriers: analysis of the technological, economic, and regulatory challenges
that limit the implementation of Al technologies in universities with limited resources [34].

— Development of a projective strategy: synthesis of the previous findings to formulate specific
recommendations aimed at overcoming the detected barriers and leveraging the identified opportunities.

— Formulation of the methodological roadmap: definition of short-, medium-, and long-term objectives,
with detailed action plans that describe the necessary activities, required resources, and implementation
timelines. A continuous monitoring and evaluation system will also be established to ensure the
achievement of the expected results.

? Evaluation of development plans,
[ Documentary review and analysis ] institutional policies, and previous studies

l on mental health and the digital divide.
Analysis of technological, economic, and
Identification of needs and barriers regulatory challenges that limit the
l implementation of digital interventions.
Formulation of recommendations to overcome
[ Development of a projective strategy ] barriers and take advantage of
l identified opportunities.
Definition of short-, medium-, and long-term
[ Formulation of the methodological route ] objectives. Action plan detailing activities,

l resources, and implementation timelines.

J Continuous supervision to adjust and

Elmplementanon of a monitoring and evaluation system improve the applied strategy.

Review by specialists in digital mental
health, Al, and higher education.

Validation by experts

Figure 2. Phases of the methodological process of the projective research

3. RESULTS AND DISCUSSION

To synthesize the evidence, the selected studies were systematized according to objectives,
methodological approaches, and outcomes in Table 1. The comparison highlights a concentration of research
on the use of ML and DL for the detection of depression, anxiety, and stress among university students [2],
[8], [10], [12], [13], [35]-[44]. However, most interventions were designed for well-resourced contexts,
raising concerns about scalability to universities with limited technological infrastructure.

The presence of early studies [8], [9], [37] reflects the foundational stage of Al-driven mental health
research in university contexts. These works provided the first empirical validations of conversational Al,
passive sensing, and ML models. Subsequent studies [4], [14], [17] have expanded these approaches with
transformer-based architectures, federated learning, and lightweight models, reinforcing the need for adaptive
frameworks in low-infrastructure environments.
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Table 1. Comparative analysis of selected studies on Al in university mental health interventions

Relevance for low-

Study name Citations Main method Application infrastructure Key result
(year) context .
environments
""Using psychological artificial 330 Randomized University Moderate (adaptable  Significant
intelligence (tess) to relieve (2018) controlled trial to offline systems) reduction of
symptoms of depression and (RCT) with anxiety and
anxiety" [9] conversational depression
Al
"Identifying objective 209 ML with University High (local data Accurate
physiological markers and (2018) passive sensors collection) prediction of
modifiable behaviors for self- stress and
reported stress and mental health behaviors
status using wearable sensors and
mobile phones" [37]
"Behavioral modeling for mental 155 SVM, random University High (scalable and Predictive models
health using machine learning (2018) forest, logistic students and adaptable with accuracy
algorithms" [8] regression young algorithms) above 90%
professionals
"Identifying behavioral phenotypes 94 (2019) ML and data University High (use of basic Loneliness
of loneliness and social isolation mining u.s) portable devices) detection with
with passive sensing" [12] 88.4% accuracy
"Psychological impact of COVID- 91 (2021) Logistic University Moderate (adaptable Identification of
19 on college students after school regression with  (China) through data mental health risk
reopening" [36] Cross- simplification) factors
validation
"Development and validation of an 89 (2019) LASSO Clinical Moderate (adaptable  AUC 0f 0.91 in
automated HIV prediction regression and u.s) model for mental prospective
algorithm" [38] EHR health risks) cohorts
"A Depression recognition method 84 (2020) SVM University High (adaptable to Detection
for college students using deep integrated with ~ (China) other social accuracy up to
integrated support vector AdaBoost platforms) 86.15%
algorithm™ [13]
"Significant shared heritability 82 (2019) ML and Clinical Low (dependency on  AUC 0f 0.94 in
underlies suicide attempt and genetic (U.K) advanced genetic suicide attempt
clinically predicted probability of analysis data) prediction
attempting suicide" [39]
"Machine learning and natural 76 (2020) NLP and voice  University Moderate Automated
language processing in recognition psychotherapy  (algorithms evaluation of
psychotherapy research" [40] adaptable to offline therapeutic
chatbots) alliance
"Are online mental health 58 (2021)  Systematic University High (adaptable 64% effective
interventions for youth effective? a review youth digital interventions) interventions
systematic review" [10] (PRISMA)
"How do you feel during the 48 (2021) ML and University Moderate (adaptable  Increased anxiety
COVID-19 pandemic?" [35] linguistic (Germany and  through local and depression
analysis Egypt) platforms)
"Leveraging collaborative-filtering 47 (2021)  Collaborative University High (personalized 5.5%
for personalized behavior filtering and predictions) improvement in
modeling" [41] logistic F1 score over
regression traditional models
"Dynamic prediction of 47 (2021)  Dynamic ML Clinical Moderate (adaptable ~ AUC of 0.81 in
psychological treatment outcomes" (oracle model)  (U.K)) through model outcome
[42] simplification) prediction
"Associations of Internet addiction 46 (2020)  Statistical University High (digital usage High correlation
severity with psychopathology™ analysis (China) analysis adapted to with anxiety and
[43] low connectivity) depression
"Clinical training during the 45(2021)  Qualitative Nursing Moderate (context Emotional
COVID-19 pandemic: challenges analysis university adaptable to remote challenges during
and adaptations" [44] (COREQ) students training) the pandemic

3.1. Explicit responses to the research questions
What types of Al-based digital interventions are currently used in universities? The reviewed literature
highlights the use of conversational chatbots [9], mobile-based stress detection systems [37], supervised
learning models for depression risk [13], [42], and online psychoeducational platforms [10]. These interventions
report significant benefits in anxiety reduction and predictive accuracy, especially in controlled environments.
What barriers hinder their implementation in resource-limited contexts? The most recurrent
obstacles are insufficient internet connectivity, devices with limited memory and processing capacity, and the
absence of regulatory frameworks for Al deployment in education [14], [36].
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What components should a viable intervention model include for low-infrastructure universities? the
evidence suggests that offline-capable systems, privacy-preserving data handling, and lightweight models
optimized for local devices are essential [13], [28].

3.2. Bibliometric insights

The bibliometric analysis reveals the main research trends. As shown in the co-occurrence map in
Figure 3, keywords such as student mental health, depression, ML, and DL dominate the field. The
corresponding density visualization in Figure 4 highlights the concentration of research around these central
terms, confirming the emphasis on predictive models in university settings.
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Figure 4. Density visualization of co-occurrence network
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3.3. Recommendations for low-connectivity environments

Building on these insights, recommendations for implementing digital mental health interventions in
low-connectivity universities were derived in Table 2. These recommendations emphasize short-term
adaptability of offline mobile applications, medium-term integration of wearable devices, and long-term
deployment of predictive dynamic models.

Table 2. Recommendations for implementing digital mental health interventions in universities with low
connectivity

Time frame Recommendation
Short term Development of mobile applications for basic mental health interventions adapted to offline environments [41].
Medium term  Implementation of passive monitoring systems using low-cost wearable devices [12].

Long term Impact evaluation using dynamic ML predictive models [42].

3.4. Adaptive artificial intelligence framework and mathematical processes

From a technical perspective, the adaptive Al framework proposed in this study integrates multiple
computational strategies. The schematic representation in Figure 5 illustrates how federated learning
enhances privacy-preserving distributed training, while adapted neural collaborative filtering (NCF),
generative adversarial networks (GANSs), and wide and DL models support classification and noise reduction
processes.

Data Input

o User data (U)

o Content data (V) |, Federated Learning
o Auxillary informa(A, B) Privacy-preserving
distributed training
Inputs

Adapted NCF PredictiNodel 4—‘

o User-content relationship
af(UST* A, WWT*B| U, V, )

lPrediction

Adapted Loss Function

o Negative interaction samplin
o Reducing compuational comp-

Refined data

Wide & Deep Learning Model

o Capturing complex relationshis
oe=QT*W4(x,2)+c¢

Improved classification

Adversarial GAN Model
oLp=E[log D(x)] - E[log(1-DIGa]
0 Lg =-E[log D(G(z))]

lRefined results

Noise Reduction and Regularization

o Elimination of corrupted data
o Noise optimization

Figure 5. Adaptive Al framework for university mental health interventions

The mathematical processes described in Table 3 are based on the need to ensure digital
interventions adapted to environments with limited infrastructure. For example, the adapted NCF model
establishes the user-content relationship through neural networks, enabling accurate recommendations even
on devices without constant internet access [1], [45]. The adapted loss function minimizes prediction errors
by weighting interactions according to their importance [13], a critical requirement in mental health
applications where accuracy must be maximized [15].
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Table 3. Mathematical processes in the adaptive Al model for university mental health interventions

Process name

Explained equation

Variable explanation

Usage and justification

Alternatives

Adapted
NCF model
(user-content
relationship)

Lj; =f(UT- A,VT- B, UV, 0)

U, V: latent representations of
user and content.

A, Bi: auxiliary user-content
information.

¢: model parameters.

Models non-linear
relationships between user
and content, adjusting
recommendations to
individual preferences on
devices without constant
connectivity [1], [45].

Latent factor
models and
deep decision
trees.

Adapted loss u= z s (va _ ,)2 q;,;- weight assigned according  Optimizes prediction Mean
function @pep N Y to interaction importance. accuracy by minimizing absolute error
Ly;: actual interaction value. errors on devices with (MAE) and
L;: predicted value. limited resources [13], cross-entropy
[15]. [46].
Negative =Y jyen|Lij log Ly + L;;: actual interaction value. Reduces computational Noise
feedback (1 — L ) log(1 — L’--)] L'ij; predicted value. complexity by focusing on contrastive
sampling Y Y D: set of sampled interactions. ~ Negative interactions, estimation
improving efficiency in (NCE) [15].
low-processing capacity
environments [25], [45].
Wideand DL e =Qf{x,z} +¢ Qx: model parameters. Captures complex Deep
X, Z: user and content feature relationships between user decision trees
sets. and content features, and random
c: bias term. integrating both linear and forests [15].
non-linear relationships
[11], [45].
Adapted Lp = —Expypratollog D(x)] — D(x): discriminator evaluating ~ Generates realistic Variational
GAN model E,p, 2 [log(1 = D(G(2)))] real vs generated data, synthetic data to improve autoencoders
G(z): generator producing predictions in data-limited (VAE), and
Lg = = E,p, () [log(D(G(2)))] synthetic data, environments [10], [46]. Bayesian
Paata: real data distribution. models [15].
Noise Eliminates corrupted data using Filters inconsistent data and Improves robustness L1/L2

reduction and

statistical techniques and noise

avoids prediction bias using

against incomplete or

regularization

statistical methods. erroneous data,
maintaining performance in
low-connectivity

environments [31], [46].

and dropout
[15], [47].

regularization  optimization.

Negative feedback sampling reduces computational complexity by focusing on negative
interactions, which is especially relevant for devices with low processing capacity. Wide and DL captures
both linear and non-linear relationships efficiently, offering personalization with limited computational
demand [11], [45]. Similarly, the adapted GAN generates synthetic data to enhance training in data-scarce
contexts, improving accuracy in universities with restricted resources [10], [46]. Finally, noise reduction and
regularization techniques strengthen model robustness by eliminating corrupted data, ensuring reliable
predictions even under low-connectivity conditions [31], [46].

3.5. Performance evaluation

Performance evaluation results are presented in Figure 6, which compares models across three
dimensions: processing time Figure 6(a), memory consumption Figure 6(b), and prediction accuracy
Figure 6(c). The results indicate that adapted NCF achieves the lowest processing time and memory
footprint, demonstrating high suitability for deployment in low-resource environments. Adapted GAN also
shows competitive performance, balancing accuracy with moderate computational requirements. These
findings suggest that both adapted NCF and GAN models are particularly promising for real-world
implementation in universities with limited computational capacity and intermittent connectivity.

3.6. Adaptive methodological route (AMRIA-U)

Finally, the AMRIA-U is detailed in Table 4, which outlines the phases for implementation, ranging
from initial diagnosis and data collection to continuous monitoring. The final phase explicitly integrates federated
learning, enabling inter-university collaboration without compromising student data privacy [48]-[51].

3.7. Limitations and future work

The findings of this study must be interpreted considering several limitations. First, most of the
analyzed interventions were developed and tested in well-resourced contexts, limiting their external validity
for universities with technological constraints. For example, tess, the conversational chatbot evaluated in a
RCT [9], significantly reduced anxiety and depression in U.S. university students. However, its continuous
operation depends on stable connectivity, which may not be feasible in low-resource environments.
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Similarly, mobile-based stress detection systems using wearables [37] demonstrated accurate stress
prediction, but their replication in rural or low-income settings remains challenging due to cost and device

availability [3], [4].

Dropout

L1/L2 Regularization
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Figure 6. Comparative performance of Al models across three dimensions; (a) processing time comparison
(in seconds), (b) memory consumption comparison (in MB), and (c) prediction accuracy comparison (in %)

Second, ethical and regulatory issues remain unresolved. Al-based interventions in education raise
questions about data privacy, consent, and algorithmic transparency. In Uganda, young people reported
mistrust toward digital mental health tools due to fears of surveillance and misuse of personal data [4]. This
aligns with broader global health concerns, where insufficient regulatory frameworks can exacerbate risks of
data breaches in resource-poor settings [18], [46]. Although federated learning has emerged as a potential
solution to enhance privacy [48], [49], its application in universities with limited infrastructure is still
underexplored.

Third, sustainability challenges persist. Interventions such as online psychoeducational platforms
[10] or collaborative filtering for personalized behavior modeling [41] often rely on pilot projects without
clear institutionalization strategies. In South Africa, digital mental health interventions for youth were
hindered by funding gaps and limited technical support, restricting scalability beyond pilot stages [3]. This
suggests that without robust financial and institutional backing, many Al-driven solutions risk remaining
isolated experiments rather than sustainable policies.
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Table 4. Adaptive methodological route for mental health interventions with Al in universities with
technological limitations AMRIA-U

Phase Main objective Key activities Expected outcomes Estimated time
Initial Identify - Assessment of technological Mapping of technological ~ 1-2 months
diagnosis technological, infrastructure. and economic limitations

economic, and - Analysis of institutional mental health  specific to the university

regulatory barriersin  policies. context.

resource-limited - Identification of students'

universities. psychological needs.
Data collection ~ Capture relevantdata - Conduct offline surveys. Initial database with 1-2 months

on students' - Collect digital behavior data through relevant information

psychological well- local devices. about students.

being.
Development Design Al models - Implement low-power DL algorithms.  Customized predictive 3 months
of customized adapted to the - Optimize models for local execution. models capable of
algorithms identified running without a

technological constant internet

limitations. connection.
Pilot Test the effectiveness - Deploy adapted digital interventions. Preliminary evaluation of ~ 3-4 months
implementation  of the models in a - Train teaching and administrative system performance in

real university staff. real-world contexts.

setting. - Monitor the system in real time.
Evaluationand  Measure the impact - Analyze psychological well-being Impact reports with 2 months
feedback of interventions on metrics. quantitative and

students' mental - Collect user feedback. qualitative data on

health. - Adjust algorithms based on results. intervention effectiveness.
Expansionand  Extend the reach of - Replicate the methodology in new Adapted model 4-6 months
scalability interventions to other institutions. implemented in other

universities with - Establish institutional partnerships for  universities with similar

similar expansion. limitations, with potential

characteristics. - Explore inter-university data sharing for collaborative

via federated learning. improvement through FL.

Continuous Ensure sustainability - Periodic algorithm updates based on Sustainable system that Ongoing
monitoring and  and continuous new data. continuously adapts to
updating improvement of the - Long-term effectiveness evaluation. technological changes,

implemented system.

- Incorporation of technological
innovations.

- Integration of federated learning to
preserve privacy while enhancing
model generalizability.

evolving student needs,
and collaborative FL
networks.

Future work should address these gaps through three complementary strategies

. First, technical

adaptation: the development of lightweight, offline-capable models such as adapted NCF and GANSs
(Table 3) that can function under limited computational capacity. These models, validated in simulations
[45], [46], should now be tested in real-world low-connectivity campuses. Second, participatory co-design:
involving students and faculty in intervention development can enhance cultural relevance and user trust, as
demonstrated in India, where co-designed digital tools for university students increased feasibility and
acceptability [16], [52]. Third, scalability and collaboration: regional networks of universities could adopt
federated learning frameworks [48]-[51], enabling knowledge sharing without compromising student data
privacy. This would accelerate innovation while respecting ethical constraints.

Finally, longitudinal studies are needed to evaluate long-term effectiveness, ethical robustness, and
economic feasibility of Al-based interventions in universities with low technological capacity. Integrating
hybrid models—such as federated learning combined with low-power DL [49], [50]—offers a promising
avenue for balancing privacy, efficiency, and inclusivity in global higher education.

To strengthen the technical validation of the AMRIA-U framework, future work will include
benchmarking the proposed lightweight models (adapted NCF and wide and deep architectures) on low-end
Android devices (<2 GB RAM) with offline inference capabilities. Key performance metrics will include
inference latency (ms), memory footprint (MB), and energy consumption (mWh) under controlled test
conditions. In parallel, we will simulate federated learning environments with bandwidth constraints
(<512 kbps) to evaluate synchronization efficiency, model convergence time, and communication overhead
in multi-campus scenarios. This experimental plan will also integrate stress-test simulations for intermittent
connectivity and evaluate privacy-preserving mechanisms such as differential privacy and secure
aggregation. These steps will provide quantitative evidence of the framework’s scalability, efficiency, and
privacy compliance before real-world deployment.
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4. CONCLUSION

Across the reviewed evidence, Al-enabled tools consistently show capacity to support university
mental-health care—most clearly in early detection of anxiety, depression, and stress—when models, data
flows, and interfaces are aligned with real campus conditions. The contribution of this work is not another
generic taxonomy; it is an implementation-oriented blueprint that translates accumulated advances into
decisions that matter on the ground.

AMRIA-U organizes those decisions into an actionable route: lightweight models that run reliably
on constrained devices (e.g., compact recommender and hybrid architectures), offline-capable inference
pipelines designed for intermittent connectivity, and federated learning to keep data local while still
improving models across campuses. The framework integrates ethics-by-design—privacy, consent, and
transparency—and pairs it with operational guardrails (governance checkpoints, monitoring signals, and
evaluation metrics) so that technical gains are matched by institutional accountability.

For universities in resource-constrained settings, this approach reframes Al from a lab novelty into
service capacity: prioritizing reliability over sophistication, privacy over centralization, and explainability
over opaque performance claims. In practical terms, AMRIA-U offers a clear, auditable path to deploy digital
mental-health support that is feasible, fair, and scalable within higher-education ecosystems.
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