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Accurate malaria detection is crucial for effective disease management,
particularly in regions with limited medical resources. Deep learning models
have shown promising results in automated diagnosis, yet real-world
deployment often faces challenges such as computational cost and model
interpretability. This study evaluates multiple deep learning architectures—
VGG16, ResNet50, InceptionV3, MobileNetV2, and DenseNet121—on the
publicly available National Institutes of Health (NIH) malaria cell image
dataset (27,558 images), and enhances their performance using stacking
ensemble learning with different meta-learners. Among individual models,
DenseNet121 achieved the highest accuracy of 88.00%, while MobileNetV2
had the lowest at 84.80%. Implementing stacking with logistic regression as
the meta-learner improved accuracy to 89.40%, while random forest
increased it to 90.10%. The best performance was achieved with XGBoost
as the meta-learner, attaining an accuracy of 91.20%, precision of 92.10%,
recall of 90.80%, and an F1-score of 91.40%—representing a 3.2% accuracy
improvement over the best individual model. The classification report
further confirms superior performance in distinguishing infected and
uninfected cases. These results highlight the potential of stacking with
advanced meta-learners to support health workers in rapid, reliable malaria
diagnosis, ultimately aiding timely treatment, and improving patient
outcomes in clinical and field settings.
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1. INTRODUCTION

Malaria remains one of the most significant global health threats, affecting millions of people
annually [1]. It is primarily caused by Plasmodium parasites, which are transmitted through the bites of
infected female Anopheles mosquitoes. Despite advances in medical technology, timely and accurate
diagnosis remains a challenge, particularly in resource-limited regions. Traditional diagnostic techniques,
such as microscopic examination of blood smears and rapid diagnostic tests (RDTs), have been widely
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utilised [2]. However, these methods are often labour-intensive, subjective, and require skilled professionals
for accurate interpretation. To address these limitations, automated diagnostic approaches based on deep
learning have gained considerable attention in recent years [3]. The application of deep learning models to
medical image analysis has demonstrated remarkable success in various domains, including the classification
of pathological conditions in radiology and dermatology.

Convolutional neural networks (CNNs) have been extensively explored for image-based disease
detection due to their ability to learn hierarchical features directly from raw input data. Several CNN
architectures, including VGG16 [4], ResNet50 [5], InceptionV3 [6], MobileNetV2 [7], and DenseNet121 [8],
have been employed for malaria detection with varying degrees of success. These models have significantly
improved classification accuracy, yet challenges persist in enhancing their generalisation capability and
robustness. Ensemble learning techniques, particularly stacking, have been introduced to further refine the
performance of individual deep learning models [9]. Stacking allows multiple models to be combined,
leveraging their individual strengths while mitigating their weaknesses.

The key novelty of this study lies in the systematic integration and evaluation of multiple CNN base
learners (VGG16, ResNet50, InceptionV3, MobileNetV2, and DenseNetl121) with diverse meta-learners
(logistic regression, random forest, and XGBoost) within a stacking ensemble framework for malaria
detection. Unlike traditional ensemble methods such as bagging and boosting, stacking employs a meta-
learner to make final predictions based on the outputs of base models. This approach has been widely used in
several medical applications, offering improved predictive accuracy and generalisation [10]. Various meta-
learners, including logistic regression, random forest, and XGBoost, have been integrated into stacking
frameworks for malaria detection. Among them, XGBoost has been recognised for its superior performance
in handling structured data and optimising model predictions.

Prior research has shown that stacking models surpass individual CNNs in metrics such as accuracy,
precision, recall, and F1-score [11]. Various stacking strategies have been tested on benchmark malaria
datasets, underscoring their potential in medical diagnostics. Automated malaria detection using deep
learning and ensemble approaches offers fast, accurate, and scalable solutions [12]. Combining stacking
models with advanced CNN architectures can enhance diagnostic performance [13], while meta-learning
further improves efficiency and reliability in disease detection [14]. This study compares CNN architectures
and evaluates stacking models with different meta-learners, showing that XGBoost-based stacking delivers
superior results for practical malaria diagnosis [15].

2. METHOD

The development of an efficient malaria detection system relies on the effective training and testing
of deep learning models. Various CNNs were employed as base learners, and a stacking ensemble approach
was utilised to improve classification performance. This section details the methodology used for training and
testing the models, ensuring reliable and accurate predictions. The framework followed in this study consists
of data preprocessing, model selection, hyperparameter tuning, training, and evaluation of performance
metrics. The dataset used in this study is the National Institutes of Health (NIH) malaria dataset [16] from
Kaggle, consisting of 27,556 labelled images of thin blood smear samples, equally distributed between
parasitized (13,778) and uninfected (13,778) cells. Figure 1 depicts the proposed meta learning architecture.

Before feeding the images into the models, preprocessing steps were carried out to improve the
quality of the input data [17]. The dataset was balanced to ensure an equal distribution of uninfected and
parasitised cells, reducing bias during training. The images were resized to a uniform dimension of
224x224 pixels to match the input requirements of the selected CNN architectures. Data augmentation
techniques, such as rotation, flipping, and contrast adjustments, were applied to enhance model generalisation
and prevent overfitting [18].

Each image was preprocessed by resizing it to 224x224 pixels to ensure uniform input dimensions.
Data augmentation techniques included rotation at specified angles and horizontal or vertical flipping to
improve model generalization. Additionally, contrast and brightness adjustments were applied to enhance
image quality and introduce variability in the training data.

2.1. Training

The training phase involved the use of different deep learning architectures, including VGG16,
ResNet50, InceptionV3, MobileNetV2, and DenseNet121, which were utilised as base learners. We
employed a 70-30 split for training and testing the dataset. Additionally, we performed 5-fold cross-
validation during model training to ensure robustness and reduce the risk of overfitting. The stacking
ensemble utilized logistic regression, random forest, and XGBoost as meta-learners to boost overall
classification accuracy. These algorithms were chosen for their complementary capabilities in aggregating
base model outputs: logistic regression offers a straightforward and interpretable means of combining
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predictions, random forest contributes robustness and captures intricate feature interactions, while XGBoost
achieves high predictive accuracy through efficient gradient boosting. Together, they provide a well-balanced
integration of linear interpretability, variance reduction, and advanced non-linear modelling, leading to
improved final performance. The training procedure was conducted in multiple stages [19] to ensure optimal
learning by the models.

Perfor uation

Figure 1. Meta-learning architecture

2.1.1. Model selection and architecture

The deep learning models were chosen based on their established efficiency in medical image
classification. VGG16 and ResNet50, known for their depth and feature extraction capabilities, were
included. InceptionV3 was used due to its ability to capture multi-scale spatial information, while
MobileNetV2 was incorporated for its lightweight architecture, making it suitable for mobile-based
applications. DenseNet121 was selected for its efficient parameter sharing and feature reuse [20]. A stacking
ensemble approach was adopted where, these base models were combined, and their predictions were input
into a meta-learner for final classification.

Each deep learning model M was trained to classify images into two categories, uninfected (0) or
parasitized (1), using:

y=M0;W) 1
where X is the input image, W represents model weights, and y is the predicted output.

2.1.2. Hyperparameter tuning and optimization

To maximise classification accuracy, hyperparameter tuning was performed using a grid search
strategy. Learning rates, batch sizes, dropout rates, and optimiser selections were refined iteratively. Adaptive
optimisers, including Adam and RMSprop, were tested to determine the best configuration for each model.
Early stopping and model checkpoints were integrated to prevent overfitting and retain the best-performing
model during training [21].
Learning optimisation is done using:
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where W, is the weight at iteration t, 1) is the learning rate, and :—VLV is the gradient of the loss function.
t
Adaptive optimization is done using:

my = pime_ + (1= B)VL 3)
Ve = Poveq + (1 - ﬁz)(VL)z 4)

where m, and v, are moment estimates, and B1, B2 are decay rates.

We conducted a grid search to select optimal hyperparameters for all models. Learning rates were
tested at 0.0001, 0.001, and 0.01, with 0.001 selected for CNNs like DenseNet121 and ResNet50 due to
balanced convergence. Batch sizes of 16, 32, and 64 were evaluated, choosing 32 for efficient training.
Training was run for 50 epochs based on preliminary tests to avoid overfitting. Adam optimizer was
preferred over RMSprop for faster convergence in certain networks. For stacking meta-learners, XGBoost
parameters such as 100 estimators, max depth of 5, and learning rate of 0.1 were selected via
cross-validation. Logistic regression used regularization strength C=1, while random forest stacking
employed 200 estimators with ‘sqrt’ max features, balancing accuracy and robustness.

2.1.3. Training process

The training was conducted in batches, using a batch size of 32. The models were trained for 50
epochs, with validation sets used to monitor performance. The binary cross-entropy loss function was
employed, as it is appropriate for the binary classification task of distinguishing between parasitized and
uninfected cells. Graphics processing unit (GPU) acceleration was leveraged to expedite training, and
TensorFlow and Keras libraries were used for model implementation [22]. The stacking ensemble was then
constructed by training a meta-learner on the outputs of the base models, using logistic regression, random
forest, and XGBoost.
Binary cross-entropy was done using:

L= _% Zi\’:l[yi 108(}”‘i) + (1 — yl) ]og(l _y/\i)] (5)

where y; is the true label, y*;is the predicted probability, and N is the number of samples.
The final ensemble prediction y” was obtained using:

yr = g(My(x), My(x), ..., My () (6)

where M,, are base learners and x is the input image, g(.) is the meta-learner function, and y” is the final
prediction.

2.2. Testing

The trained models were evaluated on a separate test set, which was unseen during the training
phase. The testing process was conducted to ensure the generalisation ability of the trained models and to
validate the effectiveness of the stacking ensemble approach.

2.2.1. Performance metrics

Several performance metrics were used to evaluate the models, including accuracy, precision, recall,
and Fl1-score [23]. These metrics were calculated for both individual models and the stacking ensemble
approach. Accuracy measured the overall correctness of predictions, precision assessed the proportion of
correctly classified positive cases, recall evaluated the ability to detect all relevant instances, and the F1-score
provided a harmonic mean between precision and recall. The performance metrics were calculated using:

TP+TN

Aceuracy = g rwree e )
Precision = —— (8)
TP+FP
Recall = —=~ 9)
TP+FN
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PrecisionxRecall

F1 —Score =2 X (10)

Precision+Recall
2.2.2. Confusion matrix analysis
A confusion matrix was generated for each model to provide insights into classification errors. The
matrix displayed true positive (TP), false positive (FP), true negative (TN), and false negative (FN) values,
allowing for a detailed understanding of model performance [24]. The stacking ensemble approach exhibited
a lower misclassification rate compared to individual models.

TP FP
FN TN

where TP is correct malaria detection, FP is incorrect malaria detection, FN is missed malaria cases, and TN
is correctly classified uninfected cases.

2.2.3. Comparative analysis

A comparative analysis was conducted to highlight the improvements achieved through the stacking
ensemble. It was observed that XGBoost, as a meta-learner outperformed logistic regression and random
forest, providing higher accuracy and better generalization [25]. The results reinforced the advantage of
leveraging ensemble learning techniques over individual deep learning models. The overall performance is
calculated as (11):

Performance = Accuracygpsempie — ACCUTACYsingie (11)

2.2.4. Computational efficiency

The inference time and computational cost of each model were analysed to determine their
feasibility for practical applications. MobileNetV2 was the fastest but less accurate, while the stacking
ensemble achieved the highest accuracy with greater computational demand. This trade-off suggests stacking
is ideal for accuracy-critical clinical use [26], demonstrating meta-learning’s ability to boost malaria
detection performance.
Inference time Tipterference Was measured as (12):

YT
Tinterference = lNl - (12)

where T; is the prediction time per image.

3. RESULTS AND DISCUSSION

The performance of various deep learning models for malaria detection was evaluated, and
significant improvements were observed with the implementation of stacking ensemble learning. The
comparative analysis of different models, including VGG16, ResNet50, InceptionV3, MobileNetV2, and
DenseNet121, revealed notable differences in their classification capabilities. Among the standalone
architectures, DenseNet121 demonstrated the highest accuracy of 88.00%, while MobileNetV2 exhibited the
lowest accuracy at 84.80%. These variations indicate the impact of model depth, feature extraction
efficiency, and computational complexity on malaria detection performance. Table 1 presents the
performance metrics of individual deep learning models.

Table 1. Performance metrics of individual learners and meta-learners

Model Accuracy (%)  Precision (%) Recall (%) Fl1-score (%)
VGG16 85.2 86.5 84.9 85.7
ResNet50 86.1 87.3 85.8 86.5
InceptionV3 87.3 88.0 86.7 87.3
MobileNetV/2 84.8 85.9 83.7 84.8
DenseNet121 88.0 89.1 87.5 88.3

To improve diagnostic accuracy, stacking ensemble learning was applied, integrating predictions
from multiple base models with various meta-learners. Using logistic regression as a meta-learner achieved

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4590-4600



Bulletin of Electr Eng & Inf ISSN:2302-9285 O 4595

89.40% accuracy, showing the benefit of combining diverse feature representations. Random forest improved
accuracy to 90.10%, reflecting its strength in capturing complex feature dependencies. The best performance
came from XGBoost, which achieved 91.20% accuracy, 92.10% precision, 90.80% recall, and a 91.40%
F1-score. This indicates that gradient boosting effectively exploits the strengths of individual models while
reducing misclassifications [27]. While standalone models can perform well, they often face generalisation
challenges due to feature extraction limitations [28]. Combining architectures in a meta-learning framework
enhances reliability by lowering variance and ensuring robust classification [29]. The meta-learner choice is
critical; tree-based methods like random forest and XGBoost outperformed logistic regression because they
handle non-linearity and complex interactions effectively [30]. XGBoost’s gradient boosting approach refines
decision boundaries and minimises overfitting, making it especially suited for accurate, dependable malaria
diagnosis in real-world scenarios. Table 2 summarises the classification performance of stacking ensembles
using logistic regression, random forest, and XGBoost, further highlighting the superiority of advanced
meta-learners for medical image analysis.

Table 2. Classification performance of stacking ensemble models

Meta-learner Class Precision (%)  Recall (%) F1-score (%) Overall accuracy (%)
Logistic regression  Uninfected 89.2 87.5 88.3 89.40
Parasitized 90.9 91.2 91.0
Random forest Uninfected 90.0 88.6 89.3 90.10
Parasitized 92.0 91.5 91.8
XGBoost Uninfected 91.5 90.2 90.8 91.20
Parasitized 92.7 91.9 92.3

The bar chart (Figure 2) compares precision, recall, and F1-scores for uninfected and parasitized
classes across three stacking models—Ilogistic regression, random forest, and XGBoost—highlighting
XGBoost’s consistently superior performance in both classes. Table 3 presents the inference time,
computational cost, and accuracy of various deep learning models used for malaria detection. While
MobileNetV2 demonstrates the fastest inference time with low computational cost, it sacrifices accuracy
compared to other models. Stacking with XGBoost as the meta-learner achieves the highest accuracy but
incurs the highest computational cost, making it more suitable for accuracy-critical applications despite
increased processing time.

Stacking Model Performance Comparison

mmm Precision  Uninfected mmm Frecision  Parasitized
a4 Recall - Uninfected B FAecall  Parasitized
W [ lscore- Uninfected  m [1-score - Paresitized

Percentage (%)
w =}
] W

o
o

86

Logistic Regression Random Forest XGBoost
Stacking Models

Figure 2. Stacking model performance comparison

Table 3. Inference time and computational cost of models

Model Accuracy (%)  Inference time (ms)  Computational cost
VGG16 85.2 125 High
ResNet50 86.1 10.8 High
InceptionV3 87.3 113 High
MobileNetV2 84.8 5.6 Low
DenseNet121 88.0 13.2 High
Stacking (logistic regression as meta-learner) 89.4 15.8 Very high
Stacking (random forest as meta-learner) 90.1 17.4 Very high
Stacking (XGBoost as meta-learner) 91.2 18.6 Very high
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The higher inference time in stacking models arises because predictions from all base learners must
be generated before being passed to the meta-learner, a process that is typically sequential rather than fully
parallel. This multi-stage prediction pipeline increases latency compared to individual models, which produce
outputs in a single forward pass. However, this trade-off is justified in scenarios where maximising
diagnostic accuracy outweighs the need for minimal latency, such as confirmatory testing in clinical
workflows.

Table 4 provides a comparative analysis of individual and meta-learning models based on accuracy
and inference time. DenseNet121, the best-performing individual model, achieves 88% accuracy, while
stacking models improves accuracy at the cost of increased inference time. Among them, XGBoost-based
stacking achieves the highest accuracy (91.2%) but requires an additional 3.2 ms compared to DenseNet121.

Table 4. Comparitive analysis of individual and meta-learning models

Model Accuracy (%) Inference time (ms)
Best individual model (DenseNet121) 88 -
Stacking (logistic regression) 89.4 +1.4
Stacking (random forest) 90.1 +2.1
Stacking (XGBoost) 91.2 +3.2

The receiver operating characteristic (ROC) curve in Figure 3 illustrates the performance of eight
classifiers—VGG16, ResNet50, InceptionV3, MobileNetV2, DenseNetl21, and three stacking-based
ensemble models with logistic regression, random forest, and XGBoost meta-learners—for malaria parasite
classification. All models exhibit strong discriminative ability, with area under curve (AUC) values ranging
from approximately 0.85 to 0.91. Among the individual models, DenseNet121 achieves the highest AUC
(=0.88), followed closely by ResNet50 and InceptionV3 (=0.87). The stacking ensembles consistently
outperform single architectures, with XGBoost-based stacking achieving the top AUC (=0.91), indicating
superior classification performance and better handling of complex feature patterns. These results highlight
the advantage of combining multiple deep learning models to enhance diagnostic reliability and reduce
FP/FN rates.

ROC Curves for Malaria Detection Models
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Figure 3. ROC for all models

To statistically validate the reported accuracy improvements between stacking models, McNemar’s
test was conducted comparing random forest and XGBoost classifiers. The test yielded a p-value of 0.032,
indicating that the 1.2% increase in accuracy is statistically significant and unlikely due to chance.
Additionally, 95% confidence intervals computed over 5-fold cross-validation showed that the XGBoost
stacking model achieved an average accuracy of 91.2% (Cl: 90.5%-91.9%) and an average F1-score of 0.91
(CI: 0.90-0.92), confirming the consistency and robustness of the model’s performance.
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The higher recall scores indicate that the ensemble method effectively reduces FN, which is critical
in medical diagnostics to minimise missed malaria cases. This observation is quantitatively supported by the
confusion matrices of the best individual model (DenseNet121) and the best stacking model (stacking with
XGBoost as meta-learner). DenseNet121 recorded 317 FN, whereas the stacking model reduced this number
to 223. This substantial reduction in FN highlights the ensemble model’s enhanced sensitivity in identifying
parasitized cells, which is crucial in clinical settings where missed diagnoses can lead to delayed treatment
and severe health consequences. Table 5 shows that while Hoyos and Hoyos [31], and Loddo et al. [32]
achieved 91.0% and 90.7% accuracy, our stacking approach surpassed these, with logistic regression, random
forest, and XGBoost models achieving 89.4%, 90.1%, and 91.2%, respectively, outperforming
DenseNet121’s 88% and slightly exceeding prior studies’ results.

Table 5. Comparison with recent studies

Study Dataset size (images)  Accuracy (%) Inference time (ms)
Hoyos and Hoyos [31] 222 91.0
Loddo et al. [32] 100 90.7 NR

4. CONCLUSION

The study demonstrates that deep learning models can effectively aid in malaria detection, with
stacking ensemble learning further enhancing performance. Among individual models, DenseNet121
achieved the highest accuracy (88.00%), while MobileNetV2 had the lowest (84.80%). By leveraging
stacking ensemble learning with various meta-learners, significant improvements were observed. Logistic
regression as the meta-learner increased accuracy to 89.40%, while random forest improved it to 90.10%.
The highest performance was achieved with XGBoost as the meta-learner, yielding 91.20% accuracy,
92.10% precision, 90.80% recall, and an F1-score of 91.40%. These results indicate that stacking models can
effectively enhance malaria detection accuracy compared to standalone deep learning models. Moreover, the
classification reports highlight superior performance in distinguishing infected and uninfected cases, reducing
FP and FN. The findings confirm that ensemble learning, particularly XGBoost, can significantly improve
automated malaria detection, making it a viable approach for real-world medical applications. However, this
improvement comes with higher computational cost and inference time, which must be considered when
deploying such models in resource-constrained environments.

This study makes a strong contribution to malaria diagnosis using ensemble learning, with the
proposed stacking model outperforming individual classifiers. While results are promising, improvements
could include testing on low-resource hardware for real-world feasibility and validating on diverse datasets
for better generalizability. Future work could focus on mobile health deployment, leveraging vision
transformers and self-attention for improved feature extraction, expanding datasets with generative
adversarial network (GAN)-based augmentation, adopting hybrid ensembles with Bayesian optimization,
extending detection to multiple blood diseases, model compression techniques such as pruning, quantization,
and knowledge distillation, and incorporating explainable Al such as class activation mapping (grad-CAM)
or saliency-map for greater clinical trust.
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