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 Accurate malaria detection is crucial for effective disease management, 

particularly in regions with limited medical resources. Deep learning models 

have shown promising results in automated diagnosis, yet real-world 

deployment often faces challenges such as computational cost and model 

interpretability. This study evaluates multiple deep learning architectures—

VGG16, ResNet50, InceptionV3, MobileNetV2, and DenseNet121—on the 

publicly available National Institutes of Health (NIH) malaria cell image 

dataset (27,558 images), and enhances their performance using stacking 

ensemble learning with different meta-learners. Among individual models, 

DenseNet121 achieved the highest accuracy of 88.00%, while MobileNetV2 

had the lowest at 84.80%. Implementing stacking with logistic regression as 

the meta-learner improved accuracy to 89.40%, while random forest 

increased it to 90.10%. The best performance was achieved with XGBoost 

as the meta-learner, attaining an accuracy of 91.20%, precision of 92.10%, 

recall of 90.80%, and an F1-score of 91.40%—representing a 3.2% accuracy 

improvement over the best individual model. The classification report 

further confirms superior performance in distinguishing infected and 

uninfected cases. These results highlight the potential of stacking with 

advanced meta-learners to support health workers in rapid, reliable malaria 

diagnosis, ultimately aiding timely treatment, and improving patient 

outcomes in clinical and field settings. 
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1. INTRODUCTION 

Malaria remains one of the most significant global health threats, affecting millions of people 

annually [1]. It is primarily caused by Plasmodium parasites, which are transmitted through the bites of 

infected female Anopheles mosquitoes. Despite advances in medical technology, timely and accurate 

diagnosis remains a challenge, particularly in resource-limited regions. Traditional diagnostic techniques, 

such as microscopic examination of blood smears and rapid diagnostic tests (RDTs), have been widely 

https://creativecommons.org/licenses/by-sa/4.0/
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utilised [2]. However, these methods are often labour-intensive, subjective, and require skilled professionals 

for accurate interpretation. To address these limitations, automated diagnostic approaches based on deep 

learning have gained considerable attention in recent years [3]. The application of deep learning models to 

medical image analysis has demonstrated remarkable success in various domains, including the classification 

of pathological conditions in radiology and dermatology. 

Convolutional neural networks (CNNs) have been extensively explored for image-based disease 

detection due to their ability to learn hierarchical features directly from raw input data. Several CNN 

architectures, including VGG16 [4], ResNet50 [5], InceptionV3 [6], MobileNetV2 [7], and DenseNet121 [8], 

have been employed for malaria detection with varying degrees of success. These models have significantly 

improved classification accuracy, yet challenges persist in enhancing their generalisation capability and 

robustness. Ensemble learning techniques, particularly stacking, have been introduced to further refine the 

performance of individual deep learning models [9]. Stacking allows multiple models to be combined, 

leveraging their individual strengths while mitigating their weaknesses. 

The key novelty of this study lies in the systematic integration and evaluation of multiple CNN base 

learners (VGG16, ResNet50, InceptionV3, MobileNetV2, and DenseNet121) with diverse meta-learners 

(logistic regression, random forest, and XGBoost) within a stacking ensemble framework for malaria 

detection. Unlike traditional ensemble methods such as bagging and boosting, stacking employs a meta-

learner to make final predictions based on the outputs of base models. This approach has been widely used in 

several medical applications, offering improved predictive accuracy and generalisation [10]. Various meta-

learners, including logistic regression, random forest, and XGBoost, have been integrated into stacking 

frameworks for malaria detection. Among them, XGBoost has been recognised for its superior performance 

in handling structured data and optimising model predictions. 

Prior research has shown that stacking models surpass individual CNNs in metrics such as accuracy, 

precision, recall, and F1-score [11]. Various stacking strategies have been tested on benchmark malaria 

datasets, underscoring their potential in medical diagnostics. Automated malaria detection using deep 

learning and ensemble approaches offers fast, accurate, and scalable solutions [12]. Combining stacking 

models with advanced CNN architectures can enhance diagnostic performance [13], while meta-learning 

further improves efficiency and reliability in disease detection [14]. This study compares CNN architectures 

and evaluates stacking models with different meta-learners, showing that XGBoost-based stacking delivers 

superior results for practical malaria diagnosis [15]. 

 

 

2. METHOD 

The development of an efficient malaria detection system relies on the effective training and testing 

of deep learning models. Various CNNs were employed as base learners, and a stacking ensemble approach 

was utilised to improve classification performance. This section details the methodology used for training and 

testing the models, ensuring reliable and accurate predictions. The framework followed in this study consists 

of data preprocessing, model selection, hyperparameter tuning, training, and evaluation of performance 

metrics. The dataset used in this study is the National Institutes of Health (NIH) malaria dataset [16] from 

Kaggle, consisting of 27,556 labelled images of thin blood smear samples, equally distributed between 

parasitized (13,778) and uninfected (13,778) cells. Figure 1 depicts the proposed meta learning architecture. 

Before feeding the images into the models, preprocessing steps were carried out to improve the 

quality of the input data [17]. The dataset was balanced to ensure an equal distribution of uninfected and 

parasitised cells, reducing bias during training. The images were resized to a uniform dimension of  

224×224 pixels to match the input requirements of the selected CNN architectures. Data augmentation 

techniques, such as rotation, flipping, and contrast adjustments, were applied to enhance model generalisation 

and prevent overfitting [18]. 

Each image was preprocessed by resizing it to 224×224 pixels to ensure uniform input dimensions. 

Data augmentation techniques included rotation at specified angles and horizontal or vertical flipping to 

improve model generalization. Additionally, contrast and brightness adjustments were applied to enhance 

image quality and introduce variability in the training data. 

 

2.1.  Training 

The training phase involved the use of different deep learning architectures, including VGG16, 

ResNet50, InceptionV3, MobileNetV2, and DenseNet121, which were utilised as base learners. We 

employed a 70-30 split for training and testing the dataset. Additionally, we performed 5-fold cross-

validation during model training to ensure robustness and reduce the risk of overfitting. The stacking 

ensemble utilized logistic regression, random forest, and XGBoost as meta-learners to boost overall 

classification accuracy. These algorithms were chosen for their complementary capabilities in aggregating 

base model outputs: logistic regression offers a straightforward and interpretable means of combining 
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predictions, random forest contributes robustness and captures intricate feature interactions, while XGBoost 

achieves high predictive accuracy through efficient gradient boosting. Together, they provide a well-balanced 

integration of linear interpretability, variance reduction, and advanced non-linear modelling, leading to 

improved final performance. The training procedure was conducted in multiple stages [19] to ensure optimal 

learning by the models. 
 

 

 
 

Figure 1. Meta-learning architecture 

 

 

2.1.1. Model selection and architecture 

The deep learning models were chosen based on their established efficiency in medical image 

classification. VGG16 and ResNet50, known for their depth and feature extraction capabilities, were 

included. InceptionV3 was used due to its ability to capture multi-scale spatial information, while 

MobileNetV2 was incorporated for its lightweight architecture, making it suitable for mobile-based 

applications. DenseNet121 was selected for its efficient parameter sharing and feature reuse [20]. A stacking 

ensemble approach was adopted where, these base models were combined, and their predictions were input 

into a meta-learner for final classification. 

Each deep learning model 𝑀 was trained to classify images into two categories, uninfected (0) or 

parasitized (1), using: 
 

𝑦 = 𝑀(𝑥; 𝑊) (1) 
 

where x is the input image, W represents model weights, and y is the predicted output. 

 

2.1.2. Hyperparameter tuning and optimization 

To maximise classification accuracy, hyperparameter tuning was performed using a grid search 

strategy. Learning rates, batch sizes, dropout rates, and optimiser selections were refined iteratively. Adaptive 

optimisers, including Adam and RMSprop, were tested to determine the best configuration for each model. 

Early stopping and model checkpoints were integrated to prevent overfitting and retain the best-performing 

model during training [21]. 

Learning optimisation is done using: 
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𝑊𝑡+1 = 𝑊𝑡 − η
𝜕𝐿

𝜕𝑊𝑡
 (2) 

 

where 𝑊𝑡 is the weight at iteration t, η is the learning rate, and 
𝜕𝐿

𝜕𝑊𝑡
 is the gradient of the loss function. 

Adaptive optimization is done using: 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝛻𝐿 (3) 

 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)(𝛻𝐿)2 (4) 

 

where 𝑚𝑡 and 𝑣𝑡 are moment estimates, and β1, β2 are decay rates. 

We conducted a grid search to select optimal hyperparameters for all models. Learning rates were 

tested at 0.0001, 0.001, and 0.01, with 0.001 selected for CNNs like DenseNet121 and ResNet50 due to 

balanced convergence. Batch sizes of 16, 32, and 64 were evaluated, choosing 32 for efficient training. 

Training was run for 50 epochs based on preliminary tests to avoid overfitting. Adam optimizer was 

preferred over RMSprop for faster convergence in certain networks. For stacking meta-learners, XGBoost 

parameters such as 100 estimators, max depth of 5, and learning rate of 0.1 were selected via  

cross-validation. Logistic regression used regularization strength C=1, while random forest stacking 

employed 200 estimators with ‘sqrt’ max features, balancing accuracy and robustness. 

 

2.1.3. Training process 

The training was conducted in batches, using a batch size of 32. The models were trained for 50 

epochs, with validation sets used to monitor performance. The binary cross-entropy loss function was 

employed, as it is appropriate for the binary classification task of distinguishing between parasitized and 

uninfected cells. Graphics processing unit (GPU) acceleration was leveraged to expedite training, and 

TensorFlow and Keras libraries were used for model implementation [22]. The stacking ensemble was then 

constructed by training a meta-learner on the outputs of the base models, using logistic regression, random 

forest, and XGBoost. 

Binary cross-entropy was done using: 

 

𝐿 = −
1

𝑁
∑ [𝑦𝑖 log(𝑦^𝑖) + (1 − 𝑦𝑖) log(1 −

𝑁

𝑖=1
𝑦^𝑖)] (5) 

 

where 𝑦𝑖 is the true label, 𝑦^𝑖is the predicted probability, and N is the number of samples. 

The final ensemble prediction y^ was obtained using: 

 

y^ = 𝑔(𝑀1(𝑥), 𝑀2(𝑥), … , 𝑀𝑛(𝑥)) (6) 

 

where 𝑀𝑛 are base learners and 𝑥 is the input image, 𝑔(. ) is the meta-learner function, and y^ is the final 

prediction. 

 

2.2.  Testing 

The trained models were evaluated on a separate test set, which was unseen during the training 

phase. The testing process was conducted to ensure the generalisation ability of the trained models and to 

validate the effectiveness of the stacking ensemble approach. 

 

2.2.1. Performance metrics 

Several performance metrics were used to evaluate the models, including accuracy, precision, recall, 

and F1-score [23]. These metrics were calculated for both individual models and the stacking ensemble 

approach. Accuracy measured the overall correctness of predictions, precision assessed the proportion of 

correctly classified positive cases, recall evaluated the ability to detect all relevant instances, and the F1-score 

provided a harmonic mean between precision and recall. The performance metrics were calculated using: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

 

2.2.2. Confusion matrix analysis 

A confusion matrix was generated for each model to provide insights into classification errors. The 

matrix displayed true positive (TP), false positive (FP), true negative (TN), and false negative (FN) values, 

allowing for a detailed understanding of model performance [24]. The stacking ensemble approach exhibited 

a lower misclassification rate compared to individual models. 

 
𝑇𝑃 𝐹𝑃
𝐹𝑁 𝑇𝑁

 

 

where TP is correct malaria detection, FP is incorrect malaria detection, FN is missed malaria cases, and TN 

is correctly classified uninfected cases. 

 

2.2.3. Comparative analysis 

A comparative analysis was conducted to highlight the improvements achieved through the stacking 

ensemble. It was observed that XGBoost, as a meta-learner outperformed logistic regression and random 

forest, providing higher accuracy and better generalization [25]. The results reinforced the advantage of 

leveraging ensemble learning techniques over individual deep learning models. The overall performance is 

calculated as (11): 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑆𝑖𝑛𝑔𝑙𝑒  (11) 

 

2.2.4. Computational efficiency 

The inference time and computational cost of each model were analysed to determine their 

feasibility for practical applications. MobileNetV2 was the fastest but less accurate, while the stacking 

ensemble achieved the highest accuracy with greater computational demand. This trade-off suggests stacking 

is ideal for accuracy-critical clinical use [26], demonstrating meta-learning’s ability to boost malaria 

detection performance. 

Inference time 𝑇𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒  was measured as (12): 

 

𝑇𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
∑ 𝑇𝑖

𝑁
𝑖=1

𝑁
 (12) 

 

where 𝑇𝑖  is the prediction time per image. 

 

 

3. RESULTS AND DISCUSSION 

The performance of various deep learning models for malaria detection was evaluated, and 

significant improvements were observed with the implementation of stacking ensemble learning. The 

comparative analysis of different models, including VGG16, ResNet50, InceptionV3, MobileNetV2, and 

DenseNet121, revealed notable differences in their classification capabilities. Among the standalone 

architectures, DenseNet121 demonstrated the highest accuracy of 88.00%, while MobileNetV2 exhibited the 

lowest accuracy at 84.80%. These variations indicate the impact of model depth, feature extraction 

efficiency, and computational complexity on malaria detection performance. Table 1 presents the 

performance metrics of individual deep learning models. 

 

 

Table 1. Performance metrics of individual learners and meta-learners 
Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

VGG16 85.2 86.5 84.9 85.7 
ResNet50 86.1 87.3 85.8 86.5 

InceptionV3 87.3 88.0 86.7 87.3 

MobileNetV2 84.8 85.9 83.7 84.8 
DenseNet121 88.0 89.1 87.5 88.3 

 

 

To improve diagnostic accuracy, stacking ensemble learning was applied, integrating predictions 

from multiple base models with various meta-learners. Using logistic regression as a meta-learner achieved 
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89.40% accuracy, showing the benefit of combining diverse feature representations. Random forest improved 

accuracy to 90.10%, reflecting its strength in capturing complex feature dependencies. The best performance 

came from XGBoost, which achieved 91.20% accuracy, 92.10% precision, 90.80% recall, and a 91.40%  

F1-score. This indicates that gradient boosting effectively exploits the strengths of individual models while 

reducing misclassifications [27]. While standalone models can perform well, they often face generalisation 

challenges due to feature extraction limitations [28]. Combining architectures in a meta-learning framework 

enhances reliability by lowering variance and ensuring robust classification [29]. The meta-learner choice is 

critical; tree-based methods like random forest and XGBoost outperformed logistic regression because they 

handle non-linearity and complex interactions effectively [30]. XGBoost’s gradient boosting approach refines 

decision boundaries and minimises overfitting, making it especially suited for accurate, dependable malaria 

diagnosis in real-world scenarios. Table 2 summarises the classification performance of stacking ensembles 

using logistic regression, random forest, and XGBoost, further highlighting the superiority of advanced  

meta-learners for medical image analysis. 

 

 

Table 2. Classification performance of stacking ensemble models 
Meta-learner Class Precision (%) Recall (%) F1-score (%) Overall accuracy (%) 

Logistic regression Uninfected 89.2 87.5 88.3 89.40 

 Parasitized 90.9 91.2 91.0  
Random forest Uninfected 90.0 88.6 89.3 90.10 

 Parasitized 92.0 91.5 91.8  

XGBoost Uninfected 91.5 90.2 90.8 91.20 
 Parasitized 92.7 91.9 92.3  

 

 

The bar chart (Figure 2) compares precision, recall, and F1-scores for uninfected and parasitized 

classes across three stacking models—logistic regression, random forest, and XGBoost—highlighting 

XGBoost’s consistently superior performance in both classes. Table 3 presents the inference time, 

computational cost, and accuracy of various deep learning models used for malaria detection. While 

MobileNetV2 demonstrates the fastest inference time with low computational cost, it sacrifices accuracy 

compared to other models. Stacking with XGBoost as the meta-learner achieves the highest accuracy but 

incurs the highest computational cost, making it more suitable for accuracy-critical applications despite 

increased processing time. 

 

 

 
 

Figure 2. Stacking model performance comparison 

 

 

Table 3. Inference time and computational cost of models 
Model Accuracy (%) Inference time (ms) Computational cost 

VGG16 85.2 12.5 High 
ResNet50 86.1 10.8 High 

InceptionV3 87.3 11.3 High 

MobileNetV2 84.8 5.6 Low 
DenseNet121 88.0 13.2 High 

Stacking (logistic regression as meta-learner) 89.4 15.8 Very high 

Stacking (random forest as meta-learner) 90.1 17.4 Very high 

Stacking (XGBoost as meta-learner) 91.2 18.6 Very high 
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The higher inference time in stacking models arises because predictions from all base learners must 

be generated before being passed to the meta-learner, a process that is typically sequential rather than fully 

parallel. This multi-stage prediction pipeline increases latency compared to individual models, which produce 

outputs in a single forward pass. However, this trade-off is justified in scenarios where maximising 

diagnostic accuracy outweighs the need for minimal latency, such as confirmatory testing in clinical 

workflows. 

Table 4 provides a comparative analysis of individual and meta-learning models based on accuracy 

and inference time. DenseNet121, the best-performing individual model, achieves 88% accuracy, while 

stacking models improves accuracy at the cost of increased inference time. Among them, XGBoost-based 

stacking achieves the highest accuracy (91.2%) but requires an additional 3.2 ms compared to DenseNet121. 

 

 

Table 4. Comparitive analysis of individual and meta-learning models 
Model Accuracy (%) Inference time (ms) 

Best individual model (DenseNet121) 88 - 
Stacking (logistic regression) 89.4 +1.4 

Stacking (random forest) 90.1 +2.1 

Stacking (XGBoost) 91.2 +3.2 

 

 

The receiver operating characteristic (ROC) curve in Figure 3 illustrates the performance of eight 

classifiers—VGG16, ResNet50, InceptionV3, MobileNetV2, DenseNet121, and three stacking-based 

ensemble models with logistic regression, random forest, and XGBoost meta-learners—for malaria parasite 

classification. All models exhibit strong discriminative ability, with area under curve (AUC) values ranging 

from approximately 0.85 to 0.91. Among the individual models, DenseNet121 achieves the highest AUC 

(≈0.88), followed closely by ResNet50 and InceptionV3 (≈0.87). The stacking ensembles consistently 

outperform single architectures, with XGBoost-based stacking achieving the top AUC (≈0.91), indicating 

superior classification performance and better handling of complex feature patterns. These results highlight 

the advantage of combining multiple deep learning models to enhance diagnostic reliability and reduce 

FP/FN rates. 

 

 

 
 

Figure 3. ROC for all models 

 

 

To statistically validate the reported accuracy improvements between stacking models, McNemar’s 

test was conducted comparing random forest and XGBoost classifiers. The test yielded a p-value of 0.032, 

indicating that the 1.2% increase in accuracy is statistically significant and unlikely due to chance. 

Additionally, 95% confidence intervals computed over 5-fold cross-validation showed that the XGBoost 

stacking model achieved an average accuracy of 91.2% (CI: 90.5%–91.9%) and an average F1-score of 0.91 

(CI: 0.90–0.92), confirming the consistency and robustness of the model’s performance. 
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The higher recall scores indicate that the ensemble method effectively reduces FN, which is critical 

in medical diagnostics to minimise missed malaria cases. This observation is quantitatively supported by the 

confusion matrices of the best individual model (DenseNet121) and the best stacking model (stacking with 

XGBoost as meta-learner). DenseNet121 recorded 317 FN, whereas the stacking model reduced this number 

to 223. This substantial reduction in FN highlights the ensemble model’s enhanced sensitivity in identifying 

parasitized cells, which is crucial in clinical settings where missed diagnoses can lead to delayed treatment 

and severe health consequences. Table 5 shows that while Hoyos and Hoyos [31], and Loddo et al. [32] 

achieved 91.0% and 90.7% accuracy, our stacking approach surpassed these, with logistic regression, random 

forest, and XGBoost models achieving 89.4%, 90.1%, and 91.2%, respectively, outperforming 

DenseNet121’s 88% and slightly exceeding prior studies’ results. 
 

 

Table 5. Comparison with recent studies 
Study Dataset size (images) Accuracy (%) Inference time (ms) 

Hoyos and Hoyos [31] 222  91.0 NR 

Loddo et al. [32] 100 90.7 NR 

 

 

4. CONCLUSION 

The study demonstrates that deep learning models can effectively aid in malaria detection, with 

stacking ensemble learning further enhancing performance. Among individual models, DenseNet121 

achieved the highest accuracy (88.00%), while MobileNetV2 had the lowest (84.80%). By leveraging 

stacking ensemble learning with various meta-learners, significant improvements were observed. Logistic 

regression as the meta-learner increased accuracy to 89.40%, while random forest improved it to 90.10%. 

The highest performance was achieved with XGBoost as the meta-learner, yielding 91.20% accuracy, 

92.10% precision, 90.80% recall, and an F1-score of 91.40%. These results indicate that stacking models can 

effectively enhance malaria detection accuracy compared to standalone deep learning models. Moreover, the 

classification reports highlight superior performance in distinguishing infected and uninfected cases, reducing 

FP and FN. The findings confirm that ensemble learning, particularly XGBoost, can significantly improve 

automated malaria detection, making it a viable approach for real-world medical applications. However, this 

improvement comes with higher computational cost and inference time, which must be considered when 

deploying such models in resource-constrained environments. 

This study makes a strong contribution to malaria diagnosis using ensemble learning, with the 

proposed stacking model outperforming individual classifiers. While results are promising, improvements 

could include testing on low-resource hardware for real-world feasibility and validating on diverse datasets 

for better generalizability. Future work could focus on mobile health deployment, leveraging vision 

transformers and self-attention for improved feature extraction, expanding datasets with generative 

adversarial network (GAN)-based augmentation, adopting hybrid ensembles with Bayesian optimization, 

extending detection to multiple blood diseases, model compression techniques such as pruning, quantization, 

and knowledge distillation, and incorporating explainable AI such as class activation mapping (grad-CAM) 

or saliency-map for greater clinical trust. 
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