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 This study introduces an internet of things-based agricultural wastewater 

monitoring system (IoT-AWMS) designed to enhance water management 

through real-time monitoring and advanced sensor integration. The system 

employs a Raspberry Pi for centralized control, node-RED for automation, 

InfluxDB for data storage, and Grafana for visualization. A key innovation is 

the integration of an alternative sensing approach for estimating electrical 

conductivity (EC), complementing conventional sensors for total dissolved 

solids (TDS), water temperature (DS18B20), and ambient conditions 

(DHT11). The system achieves over 85% accuracy in estimating EC across 

diverse water samples, including drinking water, agricultural runoff, and 

fertilizer-enriched solutions. Compared with conventional approaches, IoT-

AWMS demonstrates superior accuracy, scalability, and cost-effectiveness. 

Its modular design supports applications in nutrient runoff detection, 

contamination monitoring, and optimized water resource utilization, with 

broader potential in precision farming and environmental monitoring. This 

work contributes a robust, adaptable IoT framework for sustainable 

agricultural water management. 
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1. INTRODUCTION 

Agricultural practices, particularly the excessive use of fertilizers, have become a major contributor 

to global water pollution. Fertilizers, which are rich in nitrogen and phosphorus, often leach into water 

systems from agricultural fields, causing nutrient pollution that leads to eutrophication, a process that reduces 

oxygen levels in water bodies, harming aquatic life and reducing biodiversity. This issue is especially 

common in areas with intensive farming, where fertilizer runoff contaminates groundwater and nearby rivers 

and lakes, rendering them unsafe for drinking and other uses, and often leading to water cuts due to the 

presence of pollutants [1], [2]. According to the World Wildlife Fund, agriculture consumes nearly 70% of 

the world’s accessible freshwater, with approximately 60% wasted due to inefficient irrigation and poor 

https://creativecommons.org/licenses/by-sa/4.0/
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water management practices. In recent years, overuse has burdened global water supplies and caused 

significant contamination of freshwater systems with fertilizers and pesticides, posing risks to human and 

ecological health [3]. The environmental and health risks posed by fertilizer runoff are further exacerbated in 

developing countries, where limited access to sustainable agricultural practices and weak regulatory 

enforcement often result in the unchecked use of chemical inputs [4]. As detailed by recent studies [5], the 

assessment of the Karasu River revealed notable seasonal fluctuations in parameters such as electrical 

conductivity (EC) and heavy metal concentrations, highlighting the urgent need for continuous, real-time 

water quality monitoring. Eutrophication and contamination from both point and non-point sources have been 

consistently documented, emphasizing the broader environmental impact of agricultural runoff [4]. 

Internet of things (IoT) technologies have recently emerged as a promising solution for real-time 

environmental monitoring. For instance, the concept of a smart campus as a digital twin integrates IoT-based 

wireless sensor networks with cloud computing to enable real-time tracking of environmental parameters, 

ultimately improving comfort and energy efficiency [6]. Inspired by such developments, the IoT-based 

agricultural wastewater monitoring system (IoT-AWMS) presented in this project similarly adopts a real-time 

sensing and cloud-based visualization approach, utilizing Raspberry Pi, Node-RED, InfluxDB, and Grafana 

to provide actionable insights for sustainable agricultural water management. Furthermore, previous works 

on IoT-enabled environmental toxicology monitoring for air pollution demonstrate the potential of using 

cloud servers and advanced analytics, including artificial intelligence (AI), to predict contamination levels 

[7]-[9]. This suggests future expansions for IoT-AWMS could incorporate predictive models to proactively 

detect fertilizer runoff risks. Additionally, aligning with green smart city initiatives, the IoT-AWMS 

contributes to sustainable practices by optimizing water and fertilizer usage, reducing environmental impact, 

and supporting resource conservation [10]. Prior work has demonstrated the use of Arduino-based systems to 

monitor industrial wastewater [11], [12], and other implementations have demonstrated the practicality of 

monitoring parameters such as pH and EC for the detection of water contamination [13], [14]. However, 

many existing systems lack scalability, offer limited parameter monitoring, or fail to provide advanced data 

visualization and integration capabilities [15]. 

To address these limitations, this study proposes an IoT-AWMS, tailored specifically for real-time 

assessment of agricultural wastewater quality. This system is centered on a Raspberry Pi platform, which 

collects and processes data from various sensors placed at agricultural runoff sites [16]-[18]. It monitors key 

water quality indicators, including EC, total dissolved solids (TDS), and water temperature, while also 

capturing surrounding air temperature and humidity. Notably, the system integrates a custom-developed 

plastic optical fiber (POF) sensor to measure fertilizer concentration through voltage output, addressing the 

need for more precise detection of nutrient pollutants. 

Data acquisition and processing are automated via Node-RED, with time-series data stored in 

InfluxDB and visualized through Grafana [19]. InfluxDB, an open-source, time-series database, supports IoT 

applications by enabling low-latency queries and using Flux for advanced data analysis and query execution 

[20]. Grafana, also open-source, enhances data monitoring by allowing the creation of custom dashboards to 

track water quality metrics over time [21]. This integration of IoT technology into agriculture represents a 

practical and cost-effective solution for real-time water quality monitoring [22]-[24]. This seamless 

integration supports low-latency analysis and customizable dashboards for real-time monitoring. By 

equipping farmers and stakeholders with actionable insights, the IoT-AWMS system promotes sustainable 

farming practices and resource optimization. Furthermore, its modular, scalable architecture enhances its 

adaptability for broader applications in precision agriculture and environmental management, bridging the 

gap left by existing solutions. 

 

 

2. SYSTEM ARCHITECTURE AND ELECTRONIC COMPONENTS 

The IoT-AWMS system shown in Figure 1 is designed to continuously monitor agricultural 

wastewater using a flexible IoT setup. The Raspberry Pi acts as the main controller of the system. It gathers 

data from several sensors, including TDS sensor for dissolved solids, a water temperature sensor (DS18B20), 

and DHT11 sensor for ambient conditions. The analog signals from the sensors are converted into digital 

form using the MCP3008 ADC, allowing the Raspberry Pi to process and analyze the data in real time. After 

that, the data passes through Node-RED, which organizes and manages how the information flows, and is 

then saved in InfluxDB, a time-series database optimized for handling large volumes of sensor data. The final 

step involves utilizing Grafana to generate visually engaging dashboards, enabling the real-time visualization 

of environmental data. By integrating sensor data with cloud-based monitoring, this flow ensures complete 

and up-to-date insights into the water quality. 

Figures 2 and 3 illustrate the physical implementation and visualization interface of the system, 

showcasing the integration of the Raspberry Pi with sensor circuitry and the customized Grafana dashboard. 
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This configuration allows users to remotely monitor water quality metrics in real time, enhancing the 

system's practical application in precision agriculture. Overall, the IoT-AWMS provides a cost-effective and 

scalable solution to address water management challenges in agriculture, promoting sustainability and 

efficiency. 

 

 

 
 

Figure 1. Block diagram 
 

 

 
 

Figure 2. System architecture for IoT water quality monitoring 
 
 

 
 

Figure 3. Connection of Raspberry Pi to through-hole circuit board 

 

 

The integration framework of the Raspberry Pi with Node-RED for sensor communication is 

illustrated in Figure 4, followed by InfluxDB and Grafana. Figure 4(a) shows that the Raspberry Pi 4 Model 

B was configured with Raspbian OS and enabled with SSH and VNC for remote access. SPI communication 

was activated using raspi-config. MCP3008 ADC was interfaced via SPI0. Node-RED was installed using 

npm install -g --unsafe-perm node-red, and flows were deployed via the default port (1880). Once the 

interfaces are enabled, the user can use Node-RED to develop the IoT-AWMS framework programming flow 

as shown in Figure 4(b).  
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(a) (b) 

 

Figure 4. Integration of Raspberry Pi with Node-RED for sensor communication; (a) configuration of 

Raspberry Pi communication with Node-RED and (b) programming flow for Raspberry Pi 

 

 

Figure 5 shows configuration for communication between Node-RED and Grafana can be enabled 

by enter “influx” in Raspberry Pi terminal so that Node-RED and Grafana can access the database created in 

InfluxDB v1, and then created the dashboard. Next, go to the "Dashboard" menu in the side tab and create a 

new dashboard. Click on "Add visualization" and select the data source to display on the dashboard. Finally, 

add visualizations such as time series or bar charts according to your preferences. There are numerous 

options for visualizations that can be selected. After selecting the visualization types, configure the dashboard 

based on the data that stored in the database (InfluxDB). 
 

 

 
 

Figure 5. Configuration for Raspberry Pi to communicate with InfluxDB v1 
 
 

To ensure the stability of IoT-AWMS, system testing will be conducted to analyze its operation and 

performance for a longer duration. Sensor accuracy has been chosen as the key metric for performance 

evaluation. Firstly, sensor accuracy is crucial for a water quality monitoring system as it directly reflects the 

water's condition. TDS value and water temperature data have been collected by the respective sensors to 

indicate the main framework's environment. If any unusual values are detected in the water, the responsible 

person can monitor the situation in real-time and have sufficient time to respond to the incident. 

All data from sensors is collected in Grafana, and displayed in a dashboard as in Figure 6 (in 

Appendix), which presents the dashboard displaying data from 9 ml A+B fertilizer stored in InfluxDB. 

Figure 6(a) display the humidity and temperature readings from the DHT11 sensor, Figure 6(b) shows the 

temperature data from the DS18B20 sensor, and Figure 6(c) shows the TDS value from the TDS sensor. 

Multiple solution conditions were evaluated to compare sensor responses. To examine and compare the 

differences between them, a variety of solutions from various scenarios are used. The entire collection of data 

is shown on the Grafana dashboard, which is connected to an InfluxDB database for storage. InfluxDB is 

preferable compared to traditional relational databases such as MySQL. This is due to its superior 

performance in handling time-series data. Unlike MySQL, InfluxDB provides built-in functions optimized 

for real-time aggregation for IoT applications with high-frequency sensor inputs. 

 

 

3. PREPARATION OF SAMPLE: DRINKING WATER, AGRICULTURAL WASTEWATER, 

AND FERTILIZER WATER 

Various samples from drinking water, agricultural wastewater, and fertilizer water are used to test 

the developed IoT-AWMS. These diverse samples will support the evaluation of the system's accuracy and 

reliability for measuring various water quality parameters at different conditions. At first, two sources of 

drinking water (tap water and filtered water) are used as a reference or baseline for comparison to agricultural 

wastewater and fertilizer water. Figure 7 shows the actual location of collected agricultural wastewater 

samples at the corn farm at Universiti Teknikal Malaysia Melaka (UTeM). UTeM is in Melaka on the west 

coast of Peninsular Malaysia, which records peak rainfall every year [25]. Due to heavy rainfall, fertilizers 

are expected to flow into nearby drainage systems and rivers. Therefore, these samples were collected at 

three different locations, and labeled as subsurface drainage, agricultural drainage, and water reservoir pond. 

For the water reservoir pond, the contamination level is expected to be nearly zero, and the water profile is 

almost identical to drinking water. 
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Figure 7. Top-view image of the agricultural wastewater location for three different water samples: 

subsurface drainage, agricultural drainage, and water reservoir pond 

 

 

Fertilizer characterization work is important to identify the traces of fertilizer in wastewater. These 

fertilizers are commercially available, water-soluble formulations designed for cocopeat and hydroponic 

systems. The fertilizer samples were prepared based on the EC value, which determines the concentration of 

fertilizer. The unit of EC value is ms/cm, and for each volume concentration (3 ml, 6 ml, and 9 ml) was 

measured using a commercial sensor, TDS sensor and DS18B20 sensor. The value from TDS sensor and 

DS18B20 is used to calculate EC values by substituting TDS value (TDS sensor) and the water temperature 

value (DS18B20 sensor). Next, EC value is also measured by using EC meter from Hanna Instrument for 

comparing the accuracy of the EC value that is calculated and measured. The typical fertilizer parameters 

based on farmers’ practice will be measured from these prepared samples. 

 

 

4. SENSOR PERFORMANCE OF IOT-AWMS 

Based on farmers’ practices in Malaysia, a typical method to identify fertilizer concentration is by 

using the commercial EC meter. At the start, the EC meter by Hanna Instrument is used to measure EC value 

for drinking water, agricultural wastewater, and fertilizer water. The measurement has been conducted in the 

laboratory environment with a room temperature varying from 20 oC to 25 oC with 65% to 75% humidity for 

a day (24 hours). For water security applications, EC value can also be used to measure the excess fertilizer 

from agricultural sites that drains to the nearby river or water flow. The TDS sensor data reflect the 

concentration of TDS, and the DS18B20 data indicate the water temperature variations across the samples. 

The EC value, TDS value, and water temperature are measured simultaneously, then the massive data is 

uploaded to the cloud database at 1-minute intervals. Data from the meter and sensors were continuously 

recorded at one-minute intervals over a period exceeding one month. The data in Table 1 from EC meter 

(measured EC), TDS sensor (TDS value), and DS18B20 sensor (water temperature) are in average values.  

 

 

Table 1. Average data of EC values, TDS values, and water temperature 

Samples 
Measured EC 

(𝑚𝑆 𝑐𝑚−1) 

Calculated EC 

(𝑚𝑆 𝑐𝑚−1) 

TDS value 
(ppm) 

Water temperature 

(oC) 

Drinking 
water 

Tap water 0.15 0.17 34.70 24.93 
Filtered water 0.13 0.15 30.70 24.96 

Agriculture 

wastewater 

Water reservoir pond 0.07 0.06 13.10 24.69 

Subsurface drainage 0.37 0.30 95.20 23.72 
Agricultural drainage 0.25 0.41 129.50 20.42 

Fertilizer 

water 

3 ml hydroponic 0.83 0.70 232.70 25.54 

6 ml hydroponic 1.29 1.20 367.90 21.64 
9 ml hydroponic 1.91 2.03 626.10 21.96 

3 ml A+B 1.88 1.68 435.80 22.65 

6 ml A+B 3.42 3.25 532.60 25.05 
9 ml A+B 4.94 5.25 535.10 24.74 
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From measured TDS and water temperature values in Table 1, the EC value is mathematically 

derived. The calculated EC value is then compared to the EC value obtained from the EC meter by Hanna 

Instrument. So, this can ensure that the equation used in this system is reliable and precise. Hence, each 

sensor performed in varying conditions, showcasing the consistency and reliability of the measurements. By 

comparing these sensor readings, this confirms that the developed IoT-AWMS can be effectively integrated 

with TDS and DS18B20 sensors for real-time agricultural wastewater monitoring. Moreover, this analysis 

helped in understanding the impact of different water sources and fertilizer concentrations on overall water 

quality, ensuring the system can provide accurate and useful information for agricultural wastewater 

management. The IoT-AWMS enables farmers to monitor water quality in near real-time, allowing them to 

adjust irrigation practices, reduce fertilizer wastage, and avoid contamination of nearby water bodies. Early 

alerts on excessive EC levels help prevent crop damage and promote compliance with environmental 

standards. 

 

4.1.  Data collection of total dissolved solids sensor  

The data collection process for monitoring TDS value using a commercially available TDS sensor. 

The data was extracted from the Grafana dashboard and organized into an Excel spreadsheet for analysis. 

Measurements were taken every 10 minutes over a span of 100 minutes, providing a comprehensive set of 

data points in evaluating the water quality accurately. This regular sampling allows for precise tracking of 

TDS levels, ensuring the reliability and responsiveness of the monitoring system in detecting any fluctuations 

in water quality. Drinking water is used as a reference for uncontaminated water. Figure 8 provides a 

comprehensive comparison of TDS levels across drinking water, agricultural wastewater, and fertilizer water 

that is enriched with nutrients and monitored over time through IoT-AWMS.  

In Figure 8(a), the TDS values are compared between drinking water and agricultural wastewater. 

These samples were observed over a 100-minute interval, and the results reveal stable TDS levels throughout 

the duration. Agriculture, drainage and subsurface drainage recorded high TDS values with 90 to 140 ppm. 

Thus, determine the presence of fertilizer in these samples. For the water reservoir pond, the EC value is 

lower than 40 ppm and is almost like tap water and filtered water parameters. Figure 8(b) shows the TDS 

value for fertilizer water under different fertilizer concentrations (3 ml, 6 ml, and 9 ml). Drinking water is 

used as a baseline to differentiate between uncontaminated and contaminated water. From the figure, TDS 

value for the hydroponics fertilizer and A+B fertilizer is above 200 ppm. The TDS levels in fertilizer water 

are considerably higher than those observed in drinking water. Notably, TDS values rise with increasing 

fertilizer concentrations, peaking in the 9 ml hydroponic and 9 ml A+B fertilizer samples. This pattern 

confirms that the addition of fertilizer significantly elevates the concentration of dissolved solids, with 

greater amounts of fertilizer leading to proportionally higher TDS levels. This correlation between fertilizer 

concentration and TDS suggests that TDS measurements can be an effective indicator for monitoring the 

concentration of dissolved substances in fertilizer water.  

Figure 8(c) shows a summary of the mean TDS levels across all sample types, offering a visual 

comparison that highlights the differences between uncontaminated and contaminated water. Drinking water 

exhibits relatively low TDS values, approximately less than 40 ppm. Contaminated water (agricultural 

wastewater and fertilizer water) has TDS values above 90 ppm. For water reservoir pond at UTeM, the TDS 

value is identical to the tap water and filtered water. Hence, this water reservoir pond does not contain any 

fertilizer traces. High EC value exceeding 500 ppm has been obtained from 9 ml hydroponic fertilizer and  

9 ml A+B fertilizer, confirming the EC value is proportional to fertilizer concentration. By looking into the 

average TDS values over all the sample fertilizers, the effectiveness of different TDS values can distinguish 

between untreated water and water enriched with fertilizer. So, the data demonstrates that as fertilizer 

concentration increases, so does the TDS value. Confidently making TDS a reliable metric for assessing 

dissolved solid content, particularly in Agricultural Wastewater and other fertilizer-intensive systems.  

 

4.2. Data collection of water temperature by using DS18B20 sensor 

The water temperature used in this work is a commercially available DS18B20 sensor. Figure 9 

shows the data collection for water temperature at 100-minute intervals. This overview highlights the 

relatively uniform temperatures of the drinking water, agricultural wastewater, and fertilizer water samples. 

The temperature data was extracted from the Grafana dashboard and compiled into an Excel spreadsheet for 

thorough analysis. This consistent sampling allows for accurate tracking of temperature changes, ensuring the 

monitoring system can reliably detect and respond to any variations in the environmental conditions. Next, 

the obtained average water temperature and TDS value is used to determine the EC value. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 8. Performance of TDS sensor; (a) agricultural wastewater, (b) fertilizer water, and (c) average value 

for various water samples 
 

 

 
 

Figure 9. Performance of water temperature using DS18B20 sensor for 100 minutes 
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4.3.  Data collection of electrical conductivity sensor  

This section describes the calculation process for determining the EC using collected data. The EC 

value is calculated using (1): 
 

𝐸𝐶 = (
𝑇𝐷𝑆 × 

5

4095

1+0.02 ×( 𝑊𝑎𝑡𝑒𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 −25 )
) × 2.5 (1) 

 

TDS values and temperature readings from the DS18B20 sensor are incorporated into (1), which 

compensates for temperature effects, transforms the raw measurements, and scales the output to provide a 

precise estimation of EC as an indicator of water quality. 

Figure 10 (in Appendix) illustrates the EC values (𝑚𝑆 𝑐𝑚−1) derived from the equation for different 

water samples in 100-minute duration. Agricultural wastewater and fertilizer water samples are always 

compared to drinking water to determine the difference between contaminated and uncontaminated water. 

The water reservoir pond has identical EC values to drinking water (tap water and filtered water), which is 

under 0.20 𝑚𝑆 𝑐𝑚−1. For agricultural wastewater, Figure 10(a) shows that subsurface drainage and 

agricultural drainage have high EC values of above 0.45 𝑚𝑆 𝑐𝑚−1 compared to tap water, filtered water, and 

water reservoir pond. Throughout the monitoring work, the EC values for each type of water remain less 

varied of data, indicating consistent water quality. Fertilizer water, as depicted in Figure 10(b), has a 

minimum EC value of 0.70 𝑚𝑆 𝑐𝑚−1, which is above the drinking water EC value. The Fertilizer Water has 

EC values ranging from 0.7 𝑚𝑆 𝑐𝑚−1 and up to 5.26 𝑚𝑆 𝑐𝑚−1. The concentration of fertilizer affects the EC 

value reading. For instance, hydroponics fertilizer and A+B fertilizer with 3 ml concentration have a lower 

EC value compared to 9 ml concentration. Another important observation is 3 ml A+B fertilizer has a near 

EC value to 9 ml hydroponic fertilizer. This indicates the A+B fertilizer has a strong fertilizer concentration 

compared to the hydroponic fertilizer.  

The average EC value for all samples is shown in Figure 10(c). The uncontaminated water has less 

than 0.20 𝑚𝑆 𝑐𝑚−1 EC value, and contaminated water has EC value of 0.30 𝑚𝑆 𝑐𝑚−1. At UTeM agricultural 

site, agricultural wastewater has a higher EC value of 0.41 𝑚𝑆 𝑐𝑚−1 compared to subsurface drainage. Thus, 

suggesting the presence of more dissolved substances compared to the other samples. This higher EC value is 

likely due to the exposure of agricultural drainage to fertilizers used in the surrounding agricultural areas, 

which increases the concentration of dissolved solids in the water, as well as the in-situ measurement 

temperature. Despite the elevated levels, the stability of the EC values indicates consistent water quality 

conditions throughout the testing period. Overall, the graph demonstrates the stability of EC values in all 

samples, highlighting the impact of agricultural activities on water quality, particularly in agricultural 

drainage. 

 

4.4.  Percentage accuracy (%) for EC sensor 

This section of the project focuses on assessing the accuracy of the EC values obtained compared to 

reference values from an EC Hanna device, as shown in Table 2.  

 

 

Table 2. Percentage accuracy of EC value compared to the calculated value and EC Hanna 

Samples 
Measured EC 

(𝑚𝑆 𝑐𝑚−1) 

Calculated EC 

(𝑚𝑆 𝑐𝑚−1) 

Standard deviation 

(𝑚𝑆 𝑐𝑚−1) 

Percentage 
error 

(%) 

Percentage 
accuracy 

(%) 

Drinking 
water 

Tap water 0.15 0.17 0.002 11.62 88.38 
Filtered water 0.13 0.15 0.004 13.37 86.63 

Agriculture 

wastewater 

Water reservoir pond 0.07 0.06 0.002 8.73 91.27 

Subsurface drainage 0.37 0.3 0.01 24.06 75.94 
Agricultural drainage 0.25 0.41 0.027 38.76 61.24 

Fertilizer 

water 

3 ml hydroponic 0.83 0.7 0.009 18.11 81.89 

6 ml hydroponic 1.29 1.2 0.036 7.15 92.85 

9 ml hydroponic 1.91 2.03 0.061 6.14 93.86 

3 ml A+B 1.88 1.68 0.05 12.23 87.77 

6 ml A+B 3.42 3.25 0.009 5.29 94.71 

9 ml A+B 4.94 5.25 0.011 5.9 94.1 

 

 

Initially, the percentage difference of EC values is calculated using (2): 
 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%) = | 
(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝐶−𝐸𝐶 𝐻𝑎𝑛𝑛𝑎 𝑣𝑎𝑙𝑢𝑒)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝐶
| × 100 (2) 
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This calculation determines how closely the average EC values derived from the project's monitoring system 

align with those measured by the EC Hanna device. Subsequently, the percent error for accuracy is computed 

using (3): 
 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = 100 − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%) (3) 

 

From Table 2, this percentage error quantifies the accuracy of the project's EC measurements 

relative to the reference values provided by the EC Hanna device. Analyzing this data provides insights into 

the reliability and precision of the monitoring system in assessing water EC, essential for ensuring the 

system's effectiveness in agricultural applications. 

For drinking water, the system achieved moderate accuracy, with values of 88.38% and 86.63% for 

tap and filtered water, respectively, and percentage errors of 11.62% and 13.37%. In agricultural wastewater, 

water reservoir pond exhibited a higher accuracy of 91.27% with an error of 8.73%, while subsurface 

drainage and agricultural drainage samples showed reduced accuracy of 75.94% and 61.24%, respectively, 

accompanied by higher percentage errors of 24.06% and 38.76%. The fertilizer water category demonstrated 

a progressive increase in accuracy with higher fertilizer concentrations. For instance, 6 ml and 9 ml 

hydroponic fertilizer yielded accuracies of 92.85% and 93.86%, respectively, with low percentage errors of 

7.15% and 6.14%. A combination of A+B fertilizer further highlighted the system's capability, achieving the 

highest accuracy of 94.10% for 9 ml A+B fertilizer, with a minimal error of 5.90%. These findings validate 

the system's high reliability, particularly for high-concentration fertilizer, while identifying areas for 

refinement in more complex or diluted water matrices, such as agricultural drainage. 

The lower accuracy observed in agricultural drainage (61.24%) compared to fertilizer water, which 

is up to 94.1% may be attributed to the presence of non-fertilizer dissolved solids, variable organic content, 

and temperature fluctuations due to open environmental exposure. These factors introduce inconsistency that 

affects EC calculations, as compared to controlled fertilizer solutions with predictable ion concentrations. 

Despite these temperature variations, the majority of the EC values for both systems exceeded the 85% 

accuracy target. In addition to accuracy, the standard deviation of each sample was analyzed over a 24-hour 

period. For instance, the 9 ml hydroponic fertilizer sample has a standard deviation of ±0.061 𝑚𝑆 𝑐𝑚−1, 

reflecting stable and repeatable EC measurements. This outcome underscores the system's integration as 

accurate and reliable for monitoring EC in varying environmental conditions. 
 

 

5. CONCLUSION 

This study successfully demonstrated an IoT-AWMS, achieving over 85% accuracy in EC 

estimation across diverse water samples. By integrating Raspberry Pi, Node-RED, InfluxDB, and Grafana 

with low-cost sensors, the system addresses key limitations in agricultural monitoring, including the absence 

of continuous insights and delayed response to water quality changes. Importantly, this work addresses 

current limitations in agricultural monitoring, such as the absence of continuous data insights and delayed 

response to water quality degradation. The robust integration of hardware and software components enhances 

automation and decision-making, contributing directly to resource efficiency and environmental protection in 

agriculture. Advancing this work further, future studies could leverage AI and machine learning to enhance 

the system’s capability in forecasting water quality variations and proactively detecting irregularities. 

Furthermore, the modular design ensures scalability, cost-effectiveness, and adaptability, making it suitable 

for precision farming such as corn farming and broader environmental monitoring. This research contributes 

a robust framework that can be extended through future work on calibration optimization, wider field 

validation, and integration into sustainable agricultural water management systems. Despite challenges such 

as limited plantation knowledge, environmental conditions, and network connectivity, the project overcame 

these hurdles to deliver a functional and effective monitoring solution. In conclusion, IoT-AWMS not only 

contributes to the advancement of agricultural technology but also offers a practical solution for improving 

crop production efficiency and sustainability. 
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APPENDIX 
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Figure 6. Dashboard displaying data from 9 ml A+B fertilizer stored in InfluxDB; (a) DHT11 sensor,  

(b) DS18B20 sensor, and (c) TDS sensor 
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Figure 10. Performance of EC sensor; (a) agriculture wastewater, (b) fertilizer water, and (c) average value 

for various water samples 
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