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This study introduces an internet of things-based agricultural wastewater
monitoring system (loT-AWMS) designed to enhance water management
through real-time monitoring and advanced sensor integration. The system
employs a Raspberry Pi for centralized control, node-RED for automation,
InfluxDB for data storage, and Grafana for visualization. A key innovation is
the integration of an alternative sensing approach for estimating electrical
conductivity (EC), complementing conventional sensors for total dissolved
solids (TDS), water temperature (DS18B20), and ambient conditions
(DHT11). The system achieves over 85% accuracy in estimating EC across
diverse water samples, including drinking water, agricultural runoff, and
fertilizer-enriched solutions. Compared with conventional approaches, 10T-
AWMS demonstrates superior accuracy, scalability, and cost-effectiveness.
Its modular design supports applications in nutrient runoff detection,
contamination monitoring, and optimized water resource utilization, with
broader potential in precision farming and environmental monitoring. This

work contributes a robust, adaptable loT framework for sustainable
agricultural water management.
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1. INTRODUCTION

Agricultural practices, particularly the excessive use of fertilizers, have become a major contributor
to global water pollution. Fertilizers, which are rich in nitrogen and phosphorus, often leach into water
systems from agricultural fields, causing nutrient pollution that leads to eutrophication, a process that reduces
oxygen levels in water bodies, harming aquatic life and reducing biodiversity. This issue is especially
common in areas with intensive farming, where fertilizer runoff contaminates groundwater and nearby rivers
and lakes, rendering them unsafe for drinking and other uses, and often leading to water cuts due to the
presence of pollutants [1], [2]. According to the World Wildlife Fund, agriculture consumes nearly 70% of
the world’s accessible freshwater, with approximately 60% wasted due to inefficient irrigation and poor
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water management practices. In recent years, overuse has burdened global water supplies and caused
significant contamination of freshwater systems with fertilizers and pesticides, posing risks to human and
ecological health [3]. The environmental and health risks posed by fertilizer runoff are further exacerbated in
developing countries, where limited access to sustainable agricultural practices and weak regulatory
enforcement often result in the unchecked use of chemical inputs [4]. As detailed by recent studies [5], the
assessment of the Karasu River revealed notable seasonal fluctuations in parameters such as electrical
conductivity (EC) and heavy metal concentrations, highlighting the urgent need for continuous, real-time
water quality monitoring. Eutrophication and contamination from both point and non-point sources have been
consistently documented, emphasizing the broader environmental impact of agricultural runoff [4].

Internet of things (IoT) technologies have recently emerged as a promising solution for real-time
environmental monitoring. For instance, the concept of a smart campus as a digital twin integrates 10T -based
wireless sensor networks with cloud computing to enable real-time tracking of environmental parameters,
ultimately improving comfort and energy efficiency [6]. Inspired by such developments, the loT-based
agricultural wastewater monitoring system (loT-AWMS) presented in this project similarly adopts a real-time
sensing and cloud-based visualization approach, utilizing Raspberry Pi, Node-RED, InfluxDB, and Grafana
to provide actionable insights for sustainable agricultural water management. Furthermore, previous works
on loT-enabled environmental toxicology monitoring for air pollution demonstrate the potential of using
cloud servers and advanced analytics, including artificial intelligence (Al), to predict contamination levels
[71-[9]. This suggests future expansions for lI0T-AWMS could incorporate predictive models to proactively
detect fertilizer runoff risks. Additionally, aligning with green smart city initiatives, the loT-AWMS
contributes to sustainable practices by optimizing water and fertilizer usage, reducing environmental impact,
and supporting resource conservation [10]. Prior work has demonstrated the use of Arduino-based systems to
monitor industrial wastewater [11], [12], and other implementations have demonstrated the practicality of
monitoring parameters such as pH and EC for the detection of water contamination [13], [14]. However,
many existing systems lack scalability, offer limited parameter monitoring, or fail to provide advanced data
visualization and integration capabilities [15].

To address these limitations, this study proposes an 1oT-AWMS, tailored specifically for real-time
assessment of agricultural wastewater quality. This system is centered on a Raspberry Pi platform, which
collects and processes data from various sensors placed at agricultural runoff sites [16]-[18]. It monitors key
water quality indicators, including EC, total dissolved solids (TDS), and water temperature, while also
capturing surrounding air temperature and humidity. Notably, the system integrates a custom-developed
plastic optical fiber (POF) sensor to measure fertilizer concentration through voltage output, addressing the
need for more precise detection of nutrient pollutants.

Data acquisition and processing are automated via Node-RED, with time-series data stored in
InfluxDB and visualized through Grafana [19]. InfluxDB, an open-source, time-series database, supports loT
applications by enabling low-latency queries and using Flux for advanced data analysis and query execution
[20]. Grafana, also open-source, enhances data monitoring by allowing the creation of custom dashboards to
track water quality metrics over time [21]. This integration of 10T technology into agriculture represents a
practical and cost-effective solution for real-time water quality monitoring [22]-[24]. This seamless
integration supports low-latency analysis and customizable dashboards for real-time monitoring. By
equipping farmers and stakeholders with actionable insights, the 10T-AWMS system promotes sustainable
farming practices and resource optimization. Furthermore, its modular, scalable architecture enhances its
adaptability for broader applications in precision agriculture and environmental management, bridging the
gap left by existing solutions.

2. SYSTEM ARCHITECTURE AND ELECTRONIC COMPONENTS

The l1oT-AWMS system shown in Figure 1 is designed to continuously monitor agricultural
wastewater using a flexible 10T setup. The Raspberry Pi acts as the main controller of the system. It gathers
data from several sensors, including TDS sensor for dissolved solids, a water temperature sensor (DS18B20),
and DHT11 sensor for ambient conditions. The analog signals from the sensors are converted into digital
form using the MCP3008 ADC, allowing the Raspberry Pi to process and analyze the data in real time. After
that, the data passes through Node-RED, which organizes and manages how the information flows, and is
then saved in InfluxDB, a time-series database optimized for handling large volumes of sensor data. The final
step involves utilizing Grafana to generate visually engaging dashboards, enabling the real-time visualization
of environmental data. By integrating sensor data with cloud-based monitoring, this flow ensures complete
and up-to-date insights into the water quality.

Figures 2 and 3 illustrate the physical implementation and visualization interface of the system,
showecasing the integration of the Raspberry Pi with sensor circuitry and the customized Grafana dashboard.
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This configuration allows users to remotely monitor water quality metrics in real time, enhancing the
system's practical application in precision agriculture. Overall, the loT-AWMS provides a cost-effective and
scalable solution to address water management challenges in agriculture, promoting sustainability and
efficiency.

Analog-to-Digital
Conversion
(MCP3008)

Raspberry Pi
(Data Collection &
Processing)

Sensors
(TDS, DS18B20, POF,
DHT11)

Node-RED InfluxDB Grafana
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Figure 1. Block diagram
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Figure 2. System architecture for loT water quality monitoring
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Figure 3. Connection of Raspberry Pi to through-hole circuit board

The integration framework of the Raspberry Pi with Node-RED for sensor communication is
illustrated in Figure 4, followed by InfluxDB and Grafana. Figure 4(a) shows that the Raspberry Pi 4 Model
B was configured with Raspbian OS and enabled with SSH and VNC for remote access. SPI communication
was activated using raspi-config. MCP3008 ADC was interfaced via SPI0. Node-RED was installed using
npm install -g --unsafe-perm node-red, and flows were deployed via the default port (1880). Once the
interfaces are enabled, the user can use Node-RED to develop the 1oT-AWMS framework programming flow
as shown in Figure 4(b).
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Figure 5 shows configuration for communication between Node-RED and Grafana can be enabled
by enter “influx” in Raspberry Pi terminal so that Node-RED and Grafana can access the database created in
InfluxDB v1, and then created the dashboard. Next, go to the "Dashboard” menu in the side tab and create a
new dashboard. Click on "Add visualization" and select the data source to display on the dashboard. Finally,
add visualizations such as time series or bar charts according to your preferences. There are numerous
options for visualizations that can be selected. After selecting the visualization types, configure the dashboard
based on the data that stored in the database (InfluxDB).

File Edit Tabs Help

Figure 5. Configuration for Raspberry Pi to communicate with InfluxDB v1

To ensure the stability of loT-AWMS, system testing will be conducted to analyze its operation and
performance for a longer duration. Sensor accuracy has been chosen as the key metric for performance
evaluation. Firstly, sensor accuracy is crucial for a water quality monitoring system as it directly reflects the
water's condition. TDS value and water temperature data have been collected by the respective sensors to
indicate the main framework's environment. If any unusual values are detected in the water, the responsible
person can monitor the situation in real-time and have sufficient time to respond to the incident.

All data from sensors is collected in Grafana, and displayed in a dashboard as in Figure 6 (in
Appendix), which presents the dashboard displaying data from 9 ml A+B fertilizer stored in InfluxDB.
Figure 6(a) display the humidity and temperature readings from the DHT11 sensor, Figure 6(b) shows the
temperature data from the DS18B20 sensor, and Figure 6(c) shows the TDS value from the TDS sensor.
Multiple solution conditions were evaluated to compare sensor responses. To examine and compare the
differences between them, a variety of solutions from various scenarios are used. The entire collection of data
is shown on the Grafana dashboard, which is connected to an InfluxDB database for storage. InfluxDB is
preferable compared to traditional relational databases such as MySQL. This is due to its superior
performance in handling time-series data. Unlike MySQL, InfluxDB provides built-in functions optimized
for real-time aggregation for 10T applications with high-frequency sensor inputs.

3. PREPARATION OF SAMPLE: DRINKING WATER, AGRICULTURAL WASTEWATER,
AND FERTILIZER WATER

Various samples from drinking water, agricultural wastewater, and fertilizer water are used to test
the developed I0T-AWMS. These diverse samples will support the evaluation of the system's accuracy and
reliability for measuring various water quality parameters at different conditions. At first, two sources of
drinking water (tap water and filtered water) are used as a reference or baseline for comparison to agricultural
wastewater and fertilizer water. Figure 7 shows the actual location of collected agricultural wastewater
samples at the corn farm at Universiti Teknikal Malaysia Melaka (UTeM). UTeM is in Melaka on the west
coast of Peninsular Malaysia, which records peak rainfall every year [25]. Due to heavy rainfall, fertilizers
are expected to flow into nearby drainage systems and rivers. Therefore, these samples were collected at
three different locations, and labeled as subsurface drainage, agricultural drainage, and water reservoir pond.
For the water reservoir pond, the contamination level is expected to be nearly zero, and the water profile is
almost identical to drinking water.
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Figure 7. Top-view image of the agricultural wastewater location for three different water samples:
subsurface drainage, agricultural drainage, and water reservoir pond

Fertilizer characterization work is important to identify the traces of fertilizer in wastewater. These
fertilizers are commercially available, water-soluble formulations designed for cocopeat and hydroponic
systems. The fertilizer samples were prepared based on the EC value, which determines the concentration of
fertilizer. The unit of EC value is ms/cm, and for each volume concentration (3 ml, 6 ml, and 9 ml) was
measured using a commercial sensor, TDS sensor and DS18B20 sensor. The value from TDS sensor and
DS18B20 is used to calculate EC values by substituting TDS value (TDS sensor) and the water temperature
value (DS18B20 sensor). Next, EC value is also measured by using EC meter from Hanna Instrument for
comparing the accuracy of the EC value that is calculated and measured. The typical fertilizer parameters
based on farmers’ practice will be measured from these prepared samples.

4.  SENSOR PERFORMANCE OF IOT-AWMS

Based on farmers’ practices in Malaysia, a typical method to identify fertilizer concentration is by
using the commercial EC meter. At the start, the EC meter by Hanna Instrument is used to measure EC value
for drinking water, agricultural wastewater, and fertilizer water. The measurement has been conducted in the
laboratory environment with a room temperature varying from 20 °C to 25 °C with 65% to 75% humidity for
a day (24 hours). For water security applications, EC value can also be used to measure the excess fertilizer
from agricultural sites that drains to the nearby river or water flow. The TDS sensor data reflect the
concentration of TDS, and the DS18B20 data indicate the water temperature variations across the samples.
The EC value, TDS value, and water temperature are measured simultaneously, then the massive data is
uploaded to the cloud database at 1-minute intervals. Data from the meter and sensors were continuously
recorded at one-minute intervals over a period exceeding one month. The data in Table 1 from EC meter
(measured EC), TDS sensor (TDS value), and DS18B20 sensor (water temperature) are in average values.

Table 1. Average data of EC values, TDS values, and water temperature
Measured EC ~ Calculated EC ~ TDSvalue = Water temperature

Samples (mSem™)  (mScm™) (ppm) C)

Drinking Tap water 0.15 0.17 34.70 24.93
water Filtered water 0.13 0.15 30.70 24.96
Agriculture Water reservoir pond 0.07 0.06 13.10 24.69
wastewater Subsurface drainage 0.37 0.30 95.20 23.72
Agricultural drainage 0.25 0.41 129.50 20.42

Fertilizer 3 ml hydroponic 0.83 0.70 232.70 25.54
water 6 ml hydroponic 1.29 1.20 367.90 21.64
9 ml hydroponic 191 2.03 626.10 21.96

3ml A+B 1.88 1.68 435.80 22.65

6 ml A+B 3.42 3.25 532.60 25.05

9ml A+B 4.94 5.25 535.10 24.74
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From measured TDS and water temperature values in Table 1, the EC value is mathematically
derived. The calculated EC value is then compared to the EC value obtained from the EC meter by Hanna
Instrument. So, this can ensure that the equation used in this system is reliable and precise. Hence, each
sensor performed in varying conditions, showcasing the consistency and reliability of the measurements. By
comparing these sensor readings, this confirms that the developed Io0T-AWMS can be effectively integrated
with TDS and DS18B20 sensors for real-time agricultural wastewater monitoring. Moreover, this analysis
helped in understanding the impact of different water sources and fertilizer concentrations on overall water
quality, ensuring the system can provide accurate and useful information for agricultural wastewater
management. The 1oT-AWMS enables farmers to monitor water quality in near real-time, allowing them to
adjust irrigation practices, reduce fertilizer wastage, and avoid contamination of nearby water bodies. Early
alerts on excessive EC levels help prevent crop damage and promote compliance with environmental
standards.

4.1. Data collection of total dissolved solids sensor

The data collection process for monitoring TDS value using a commercially available TDS sensor.
The data was extracted from the Grafana dashboard and organized into an Excel spreadsheet for analysis.
Measurements were taken every 10 minutes over a span of 100 minutes, providing a comprehensive set of
data points in evaluating the water quality accurately. This regular sampling allows for precise tracking of
TDS levels, ensuring the reliability and responsiveness of the monitoring system in detecting any fluctuations
in water quality. Drinking water is used as a reference for uncontaminated water. Figure 8 provides a
comprehensive comparison of TDS levels across drinking water, agricultural wastewater, and fertilizer water
that is enriched with nutrients and monitored over time through loT-AWMS.

In Figure 8(a), the TDS values are compared between drinking water and agricultural wastewater.
These samples were observed over a 100-minute interval, and the results reveal stable TDS levels throughout
the duration. Agriculture, drainage and subsurface drainage recorded high TDS values with 90 to 140 ppm.
Thus, determine the presence of fertilizer in these samples. For the water reservoir pond, the EC value is
lower than 40 ppm and is almost like tap water and filtered water parameters. Figure 8(b) shows the TDS
value for fertilizer water under different fertilizer concentrations (3 ml, 6 ml, and 9 ml). Drinking water is
used as a baseline to differentiate between uncontaminated and contaminated water. From the figure, TDS
value for the hydroponics fertilizer and A+B fertilizer is above 200 ppm. The TDS levels in fertilizer water
are considerably higher than those observed in drinking water. Notably, TDS values rise with increasing
fertilizer concentrations, peaking in the 9 ml hydroponic and 9 ml A+B fertilizer samples. This pattern
confirms that the addition of fertilizer significantly elevates the concentration of dissolved solids, with
greater amounts of fertilizer leading to proportionally higher TDS levels. This correlation between fertilizer
concentration and TDS suggests that TDS measurements can be an effective indicator for monitoring the
concentration of dissolved substances in fertilizer water.

Figure 8(c) shows a summary of the mean TDS levels across all sample types, offering a visual
comparison that highlights the differences between uncontaminated and contaminated water. Drinking water
exhibits relatively low TDS values, approximately less than 40 ppm. Contaminated water (agricultural
wastewater and fertilizer water) has TDS values above 90 ppm. For water reservoir pond at UTeM, the TDS
value is identical to the tap water and filtered water. Hence, this water reservoir pond does not contain any
fertilizer traces. High EC value exceeding 500 ppm has been obtained from 9 ml hydroponic fertilizer and
9 ml A+B fertilizer, confirming the EC value is proportional to fertilizer concentration. By looking into the
average TDS values over all the sample fertilizers, the effectiveness of different TDS values can distinguish
between untreated water and water enriched with fertilizer. So, the data demonstrates that as fertilizer
concentration increases, so does the TDS value. Confidently making TDS a reliable metric for assessing
dissolved solid content, particularly in Agricultural Wastewater and other fertilizer-intensive systems.

4.2. Data collection of water temperature by using DS18B20 sensor

The water temperature used in this work is a commercially available DS18B20 sensor. Figure 9
shows the data collection for water temperature at 100-minute intervals. This overview highlights the
relatively uniform temperatures of the drinking water, agricultural wastewater, and fertilizer water samples.
The temperature data was extracted from the Grafana dashboard and compiled into an Excel spreadsheet for
thorough analysis. This consistent sampling allows for accurate tracking of temperature changes, ensuring the
monitoring system can reliably detect and respond to any variations in the environmental conditions. Next,
the obtained average water temperature and TDS value is used to determine the EC value.
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4.3. Data collection of electrical conductivity sensor
This section describes the calculation process for determining the EC using collected data. The EC
value is calculated using (1):

EC = ( DS X 358 ) X 2.5 1)

140.02 x( Water Temperature —25)

TDS values and temperature readings from the DS18B20 sensor are incorporated into (1), which
compensates for temperature effects, transforms the raw measurements, and scales the output to provide a
precise estimation of EC as an indicator of water quality.

Figure 10 (in Appendix) illustrates the EC values (mS cm™1) derived from the equation for different
water samples in 100-minute duration. Agricultural wastewater and fertilizer water samples are always
compared to drinking water to determine the difference between contaminated and uncontaminated water.
The water reservoir pond has identical EC values to drinking water (tap water and filtered water), which is
under 0.20 mS cm™t. For agricultural wastewater, Figure 10(a) shows that subsurface drainage and
agricultural drainage have high EC values of above 0.45 mS cm™! compared to tap water, filtered water, and
water reservoir pond. Throughout the monitoring work, the EC values for each type of water remain less
varied of data, indicating consistent water quality. Fertilizer water, as depicted in Figure 10(b), has a
minimum EC value of 0.70 mS cm™?, which is above the drinking water EC value. The Fertilizer Water has
EC values ranging from 0.7 mS cm™! and up to 5.26 mS cm™2. The concentration of fertilizer affects the EC
value reading. For instance, hydroponics fertilizer and A+B fertilizer with 3 ml concentration have a lower
EC value compared to 9 ml concentration. Another important observation is 3 ml A+B fertilizer has a near
EC value to 9 ml hydroponic fertilizer. This indicates the A+B fertilizer has a strong fertilizer concentration
compared to the hydroponic fertilizer.

The average EC value for all samples is shown in Figure 10(c). The uncontaminated water has less
than 0.20 mS cm™! EC value, and contaminated water has EC value of 0.30 mS cm™. At UTeM agricultural
site, agricultural wastewater has a higher EC value of 0.41 mS cm™* compared to subsurface drainage. Thus,
suggesting the presence of more dissolved substances compared to the other samples. This higher EC value is
likely due to the exposure of agricultural drainage to fertilizers used in the surrounding agricultural areas,
which increases the concentration of dissolved solids in the water, as well as the in-situ measurement
temperature. Despite the elevated levels, the stability of the EC values indicates consistent water quality
conditions throughout the testing period. Overall, the graph demonstrates the stability of EC values in all
samples, highlighting the impact of agricultural activities on water quality, particularly in agricultural
drainage.

4.4. Percentage accuracy (%) for EC sensor

This section of the project focuses on assessing the accuracy of the EC values obtained compared to
reference values from an EC Hanna device, as shown in Table 2.

Table 2. Percentage accuracy of EC value compared to the calculated value and EC Hanna

samples Measured_llEC Calculateci 1EC Standard de\_/ilation Perg;err;trage P:Crgﬁr::é)g/e
(mS cm™1) (mS cm™1) (mS cm™1) (%) (%)
Drinking Tap water 0.15 0.17 0.002 11.62 88.38
water Filtered water 0.13 0.15 0.004 13.37 86.63
Agriculture  Water reservoir pond 0.07 0.06 0.002 8.73 91.27
wastewater  Subsurface drainage 0.37 0.3 0.01 24.06 75.94
Agricultural drainage 0.25 0.41 0.027 38.76 61.24
Fertilizer 3 ml hydroponic 0.83 0.7 0.009 18.11 81.89
water 6 ml hydroponic 1.29 12 0.036 7.15 92.85
9 ml hydroponic 191 2.03 0.061 6.14 93.86
3ml A+B 1.88 1.68 0.05 12.23 87.77
6 ml A+B 342 3.25 0.009 5.29 94.71
9 ml A+B 4.94 5.25 0.011 5.9 94.1
Initially, the percentage difference of EC values is calculated using (2):
Percentage Error (%) _ (Average value of calculated EC—EC Hanna value) % 100 (2)

Average value of calculated EC
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This calculation determines how closely the average EC values derived from the project's monitoring system
align with those measured by the EC Hanna device. Subsequently, the percent error for accuracy is computed
using (3):

Percentage Accuracy (%) = 100 — Percentage Error (%) 3)

From Table 2, this percentage error quantifies the accuracy of the project's EC measurements
relative to the reference values provided by the EC Hanna device. Analyzing this data provides insights into
the reliability and precision of the monitoring system in assessing water EC, essential for ensuring the
system's effectiveness in agricultural applications.

For drinking water, the system achieved moderate accuracy, with values of 88.38% and 86.63% for
tap and filtered water, respectively, and percentage errors of 11.62% and 13.37%. In agricultural wastewater,
water reservoir pond exhibited a higher accuracy of 91.27% with an error of 8.73%, while subsurface
drainage and agricultural drainage samples showed reduced accuracy of 75.94% and 61.24%, respectively,
accompanied by higher percentage errors of 24.06% and 38.76%. The fertilizer water category demonstrated
a progressive increase in accuracy with higher fertilizer concentrations. For instance, 6 ml and 9 ml
hydroponic fertilizer yielded accuracies of 92.85% and 93.86%, respectively, with low percentage errors of
7.15% and 6.14%. A combination of A+B fertilizer further highlighted the system's capability, achieving the
highest accuracy of 94.10% for 9 ml A+B fertilizer, with a minimal error of 5.90%. These findings validate
the system's high reliability, particularly for high-concentration fertilizer, while identifying areas for
refinement in more complex or diluted water matrices, such as agricultural drainage.

The lower accuracy observed in agricultural drainage (61.24%) compared to fertilizer water, which
is up to 94.1% may be attributed to the presence of non-fertilizer dissolved solids, variable organic content,
and temperature fluctuations due to open environmental exposure. These factors introduce inconsistency that
affects EC calculations, as compared to controlled fertilizer solutions with predictable ion concentrations.
Despite these temperature variations, the majority of the EC values for both systems exceeded the 85%
accuracy target. In addition to accuracy, the standard deviation of each sample was analyzed over a 24-hour
period. For instance, the 9 ml hydroponic fertilizer sample has a standard deviation of +0.061 mS cm™1,
reflecting stable and repeatable EC measurements. This outcome underscores the system's integration as
accurate and reliable for monitoring EC in varying environmental conditions.

5. CONCLUSION

This study successfully demonstrated an loT-AWMS, achieving over 85% accuracy in EC
estimation across diverse water samples. By integrating Raspberry Pi, Node-RED, InfluxDB, and Grafana
with low-cost sensors, the system addresses key limitations in agricultural monitoring, including the absence
of continuous insights and delayed response to water quality changes. Importantly, this work addresses
current limitations in agricultural monitoring, such as the absence of continuous data insights and delayed
response to water quality degradation. The robust integration of hardware and software components enhances
automation and decision-making, contributing directly to resource efficiency and environmental protection in
agriculture. Advancing this work further, future studies could leverage Al and machine learning to enhance
the system’s capability in forecasting water quality variations and proactively detecting irregularities.
Furthermore, the modular design ensures scalability, cost-effectiveness, and adaptability, making it suitable
for precision farming such as corn farming and broader environmental monitoring. This research contributes
a robust framework that can be extended through future work on calibration optimization, wider field
validation, and integration into sustainable agricultural water management systems. Despite challenges such
as limited plantation knowledge, environmental conditions, and network connectivity, the project overcame
these hurdles to deliver a functional and effective monitoring solution. In conclusion, 10T-AWMS not only
contributes to the advancement of agricultural technology but also offers a practical solution for improving
crop production efficiency and sustainability.
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Figure 6. Dashboard displaying data from 9 ml A+B fertilizer stored in InfluxDB; (a) DHT11 sensor,
(b) DS18B20 sensor, and (c) TDS sensor
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Figure 10. Performance of EC sensor; (a) agriculture wastewater, (b) fertilizer water, and (c) average value

for various water samples
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