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 Alzheimer’s disease is a progressive neurodegenerative disorder requiring 

early and accurate detection for effective intervention. Deep learning (DL) 

techniques, particularly convolutional neural networks (CNNs), have shown 

promise in medical image classification. However, conventional CNN 

models often suffer from high computational complexity and inefficiency in 

handling imbalanced datasets. This study proposes a quad convolutional 

layers-CNN (QCL-CNN) for Alzheimer’s disease detection using magnetic 

resonance images (MRI) scans from the open access series of imaging 

studies (OASIS) dataset, which includes four dementia stages, non-

dementia, very mild dementia, mild dementia, and moderate dementia. The 

QCL-CNN model employs four sequential convolutional layers for 

enhanced multi-level feature extraction, ensuring efficient classification 

while minimizing computational overhead. The experimental results 

demonstrate that QCL-CNN outperforms traditional CNN architectures, 

achieving an accuracy of 99.90%, recall of 99.89%, specificity of 99.93%, 

and an F1-score of 99.52%. The model surpasses VGG19, Xception, 

ResNet50, and DenseNet201 while maintaining a significantly lower 

parameter count (4.2M), making it computationally efficient. These findings 

confirm that network optimization is more crucial than model depth, 

ensuring robust performance even with fewer layers. Future research should 

explore multi-modal imaging, class balancing techniques, and real-world 

clinical validation to further improve the model’s diagnostic capabilities. 

The QCL-CNN model offers a promising artificial intelligence (AI)-

powered approach for early Alzheimer’s detection, enabling precise, and 

efficient medical diagnosis. 
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1. INTRODUCTION 

According to the latest WHO report, more than fifty million individuals worldwide are currently 

affected by dementia, with 60–80% of cases linked to Alzheimer’s [1]. This figure is expected to climb to 78 

million by 2030 and 139 million by 2050, mainly driven by the extension of human lifespan and the growing 

proportion of elderly populations [2]. In addition to impacting individuals, Alzheimer’s imposes a 

considerable burden on both family caregivers and healthcare infrastructures. The global cost of dementia 

https://creativecommons.org/licenses/by-sa/4.0/
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care is projected to amount to approximately 1.3 trillion US dollars, a number that is expected to grow unless 

effective early detection and intervention strategies are implemented [3]. Therefore, developing faster, more 

accurate, and easily applicable diagnostic methods has become an urgent necessity in combating the 

Alzheimer’s epidemic. Early diagnosis of Alzheimer’s remains a major challenge as its symptoms often develop 

gradually and can be difficult to distinguish from normal aging [4]. Currently, the diagnostic process typically 

involves a combination of clinical, neuropsychological, biomarker, and brain imaging assessments such as 

magnetic resonance images (MRI). The MRI is widely used as a diagnostic tool because it can detect alterations 

in the brain’s anatomical structure, particularly in the hippocampal region along with the entorhinal cortical 

area, which represent key regions that undergo degeneration associated with Alzheimer’s disease [5]. However, 

interpreting MRI scans still relies on manual analysis by radiologists and neurologists, which is not only time-

consuming but also introduces a degree of subjectivity. Therefore, more objective and efficient methods for 

analyzing brain imaging data are needed to enhance the accuracy of detecting Alzheimer’s in its early stages. 

Recent progress in artificial intelligence (AI) technologies, with a strong emphasis on machine 

learning (ML) and deep learning (DL) techniques, has led to the emergence of new opportunities in medical 

imaging-based diagnosis. AI algorithms can analyze MRI scans more rapidly and detect subtle patterns of 

brain changes that may be difficult for the human eye to recognize. Techniques such as convolutional neural 

networks (CNNs) have shown great potential in identifying Alzheimer’s-related structural changes in the 

brain with high sensitivity and specificity [6]. Several studies have demonstrated that AI models can 

distinguish between healthy individuals, MCI patients, and Alzheimer’s patients with better accuracy than 

conventional methods [7]. With AI, diagnosis can be performed automatically and in real-time, not only 

improving medical efficiency but also enabling earlier intervention for patients at high risk. Research 

conducted by Ebrahimi and Luo [8] explored the effectiveness of different architectures of DL models, such 

as two-dimensional CNNs, three-dimensional CNNs, and integrated CNN-RNN frameworks in detecting 

Alzheimer’s from MRI. The results showed that the 3D CNN-based model with pre-trained weights gave the 

best results with an accuracy of 96.88%, suggesting that voxel-level analysis provides superior performance 

compared to approaches that rely only on slice-based imaging. Meanwhile, Al-Shoukry and Musa [9] 

developed an integrated AI framework merging DL methods with conventional ML such as support vector 

machine (SVM), Naive Bayes (NB), and XGBoost. This approach demonstrated improved diagnostic 

performance, reaching an accuracy as high as 94.22%, indicating that the hybrid strategy can address the 

inherent shortcomings of standalone AI techniques and improve early detection of Alzheimer’s disease. In 

addition, Odusami et al. [10] studied the use of multimodal data by applying the integration of MRI with 

positron emission tomography (PET) imaging modalities to improve the precision of Alzheimer’s detection. 

Using a modified ResNet-18 model, this study achieved an accuracy of 73.90% and emphasized the 

importance of XAI in enhancing the visibility of AI decisions in clinical practice. 

In their research, Massoud et al. [11] introduced a distributed learning-based CNN classification 

model, achieving 94.91% accuracy in Alzheimer’s detection and 96.60% validation accuracy, ensuring 

efficient disease classification from diverse clinical data sources. The results highlight the potential of AI-

driven telemedicine in enhancing early diagnosis, optimizing treatment accessibility, and advancing 

healthcare solutions for improved patient outcomes. Mahanty et al. [12] also proposed an ensemble learning 

technique with the Xception model to improve the precision in identifying Alzheimer’s cases. By utilizing 

the snapshot ensemble and blending strategies with random forest (RF) as a meta-learner, this study achieved 

an accuracy of 99.14%, indicating that the ensemble method can improve the reliability of neurodegenerative 

disease prediction. While AlSaeed and Omar [13] explored utilizing ResNet-50 as an automated feature 

extraction technique for diagnosing Alzheimer’s from MRI. This study evaluated the performance of CNN 

alongside different classification techniques, including NB, SVM, and RF. The findings indicated that DL 

notably enhanced the predictive performance for Alzheimer’s diagnosis when contrasted with conventional 

approaches, achieving predictive accuracies varying between 85.7% and 99% when tested on the ADNI MRI 

dataset. Overall, these studies show that AI and DL have made significant progress in MRI-based 

Alzheimer’s diagnosis. However, some major challenges still need to be overcome, such as the reliance on 

pre-trained and ensemble learning, the problem of overfitting, and the substantial volume of parameters 

requiring optimization during training. Therefore, this study proposes a QCL-CNN approach for the 

diagnosis of Alzheimer’s disease utilizing MRI data. The objective is to minimize the number of trainable 

parameters, speeding up model convergence and lowering computational demands. 

 

 

2. METHOD 

2.1.  Dataset 

The open access series of imaging studies (OASIS) MRI dataset is a neuroimaging corpus created to 

facilitate studies focused on early identification and characterization of Alzheimer’s disease [14]. The dataset 

comprises 86,437 brain MRI scans, which are organized into four classes according to the severity of 
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Alzheimer’s progression, namely non-demented, very mild dementia, mild dementia, and moderate dementia 

(Figure 1). These categories are determined based on clinical metadata and dementia rating, allowing for in-

depth analysis of the disease progression from early to advanced stages. To facilitate accessibility and 

compatibility with various AI models, the original data in .img and .hdr formats were converted into Nifti 

(.nii) format using FMRIB software library (FSL). After conversion, MRIs from 461 patients were uploaded 

to a GitHub repository, which can be accessed in parts to facilitate further research. In the process of training 

NN model, the MRI images were processed in 2D format, with the images cut along the z-axis into 256 parts. 

For each patient, slices between 100 and 160 were selected as model input, resulting in a more structured and 

optimal dataset for analysis. To improve compatibility with DL algorithms, MRI images in .nii format were 

then converted to .jpg format. The following are several brain MRIs of Alzheimer's patients from the OASIS 

dataset shown in Figure 1. 

 

 

  
 

Figure 1. Example samples of the OASIS MRI dataset 

 

 

2.2.  Data augmentation 

In the analysis of Alzheimer’s condition using the OASIS magnetic resonance imaging dataset, one 

of the main challenges faced is the imbalance of class distribution. This dataset shows the dominance of the 

non-dementia class with 67,222 samples, while the very mild dementia (13,725 samples), mild dementia 

(5,002 samples), and moderate dementia (488 samples) categories have much less data [14]. This 

disproportion may lead AI models to show higher accuracy in classifying the majority class, but less 

effectiveness in recognizing patients with Mild or Moderate Dementia, which are critical groups in the initial 

identification of Alzheimer’s cases. To mitigate this problem, different augmentation strategies are 

implemented to expand the dataset size and enrich the variety of features in the learning model [15]. Several 

augmentation approaches employed during the preprocessing phase of the OASIS MRI collection include 

rotation, cropping, flipping, brightness adjustment, and contrast adjustment. Rotation augmentation is applied 

by rotating the MRI image by ±10° to ±30°, resulting in a variety of perspectives that help the model 

recognize structural changes in the brain from various angles [16]. Cropping augmentation is used to focus 

the image on more relevant areas, such as the hippocampus and entorhinal cortex, which often experience 

degenerative shrinkage occurring in the initial phases of Alzheimer’s progression [17]. In addition, flipping 

augmentation is performed by mirroring the image horizontally or vertically, which is beneficial for 

enhancing the capacity of the model to identify Alzheimer’s-related patterns from different orientations 

without changing important anatomical information [18]. 

The brightness augmentation technique is applied by adjusting the brightness level of the MRI 

image, which aims to mimic illumination fluctuations during acquisition and help the model maintain 

consistent identification of Alzheimer-related characteristics [19]. Meanwhile, contrast augmentation is used 

to enhance the visibility of brain structures by accentuating the intensity distinction between gray and white 

matter, which helps the model focus more on discriminating Non-Dementia from Dementia across varying 

severity grades [20]. By applying this augmentation method selectively to the underrepresented categories, 

namely mild dementia and moderate dementia, the dataset distribution becomes more balanced, thereby 

preventing the model from concentrating solely on the majority class and enabling it to learn from a broader 

range of samples [21]. 

 

2.3.  Quad convolutional layers convolutional neural network 

QCL-CNN is a DL architecture that utilizes four consecutive convolutional layers to enhance the 

quality of feature extraction in image data [22]. This model is designed to capture more complex spatial 
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patterns, making it highly effective for various applications, such as classification, segmentation, and 

detection of object, particularly in medical imaging fields like MRI and CT scans. By applying four 

convolutional layers sequentially, QCL-CNN can retain more information from the image without losing 

important details, thereby improving accuracy in image analysis. The primary function of QCL-CNN is to 

enhance feature representation in an image, allowing the model to recognize patterns more effectively. Each 

convolutional layer plays a distinct role in the feature extraction process [23]. The first layer captures basic 

patterns such as edges and simple textures, while the second and third layers begin to recognize object shapes 

and more complex structures. The fourth layer refines the previously extracted features and prepares the data 

for the classification stage. Additionally, the use of MaxPooling after certain convolutional layers allows the 

model to reduce the feature map dimensions without eliminating important information, thereby improving 

computational efficiency and reducing the likelihood of overfitting [24]. 

In terms of working principles, QCL-CNN is based on convolution operations, which apply filters or 

kernels to the input image to capture spatial characteristics from the input data. Each convolutional layer has 

its own weights and biases, which are optimized throughout the training phase to enhance predictive 

precision. Rectified linear unit (ReLU) or LeakyReLU activation functions are applied after each convolution 

operation to embed non-linear transformations, enabling the network to identify and represent intricate 

feature patterns [25]. Furthermore, Batch Normalization is implemented to improve training stability by 

maintaining an optimal data distribution, while pooling layers function to downsample the feature map by 

retaining either the maximum or mean value within localized pixel regions [26]. After features are extracted 

through four convolutional layers, the resulting data is transformed into a flattened vector representation 

using Flattening and then processed in a fully connected layer for classification. The model then generates 

final predictions using softmax for multi-class classification or Sigmoid for binary classification [27]. During 

the training phase, weights in each layer are updated through backpropagation and gradient descent, allowing 

the model to adapt based on error feedback and refine its classification accuracy [28]. The following is a 

proposed QCL-C   for the identification of Alzheimer’s disease. 

The Table 1 presents a QCL-C   designed for Alzheimer’s disease detection. This DL architecture 

is organized into four convolutional layers, with every layer paired with a subsequent max pooling operation, 

which progressively extracts and refines image features before feeding them into fully connected layers for 

classification. This model is designed to categorize MRI scans into four distinct groups: non-demented, very 

mild dementia, mild dementia, and moderate dementia. The architecture starts with an input layer that 

processes input images sized at 224 by 224 pixels with three color channels. In the initial convolutional layer 

(Conv1), 32 filters with a kernel size of 3×3 are applied to extract primary features, including edges and 

surface textures. It is followed by a 2×2 max pooling layer, which compresses the spatial resolution of the 

data and computational load while preserving essential feature details. The second convolutional layer 

(Conv2) again applies 32 filters with a 3×3 kernel, further refining extracted patterns, followed by another 

max pooling layer to continue downsampling the feature maps. Deeper layers in the network allow for the 

recognition of more complex image patterns. The third convolutional layer (Conv3) expands the filter count 

to 64, thereby strengthening the model’s capacity to identify fine-grained anatomical structures and texture 

details within MRI images. After another max pooling layer, the fourth convolutional layer (Conv4) utilizes 

128 filters, capturing high-level abstract features indicative of structural changes in the brain caused by 

Alzheimer’s disease. The final max pooling layer (2×2) guarantees retention of the most salient and 

informative features before transitioning to the fully connected layers. Following feature extraction, the 

Flatten layer reshapes the three-dimensional feature maps into a one-dimensional vector representation, 

preparing them for the fully connected (Dense) layers. The initial dense layer (Dense 1) is composed of 224 

neurons utilizing ReLU activation, allowing the model to capture complex feature relationships. The second 

fully connected layer (Dense 2) further refines this representation with 64 neurons. Finally, the output layer 

uses softmax activation to classify the image into one of four categories, ensuring a multi-class classification 

approach. In addition, Figure 2 shows the proposed QCL-CNN with input and output vector shapes. 

The Figure 2 illustrates the architecture of the proposed QCL-C   for Alzheimer’s disease detection, 

showcasing the representations of input and output vectors at each stage. This network is composed of four 

convolutional blocks, with each convolutional layer paired with a max pooling operation, ensuring efficient 

feature extraction while reducing spatial dimensions. The model accepts images with dimensions of 224 by 

224 pixels and three channels, representing MRI scans. As the data moves through the network, the spatial 

resolution decreases while the feature depth increases, capturing hierarchical patterns crucial for disease 

classification. The first convolutional layer utilizes 32 filters to capture fundamental visual attributes like edges 

and surface textures, producing an output tensor of dimensions (222, 222, 32). Then, a max pooling layer is 

applied, decreasing the spatial resolution of the feature maps by half to (111, 111, 32). This progression 

continues across subsequent convolutional layers, where deeper layers increase feature complexity while 

further reducing spatial dimensions. The third convolutional layer expands feature representation to 64 filters, 

generating (52, 52, 64) before max pooling reduces it to (26, 26, 64). The fourth convolutional layer, which 
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uses 128 filters, outputs (24, 24, 128) and is further downsampled to (12, 12, 128) via pooling. After passing 

through the convolution and pooling stages, the resulting feature maps are reshaped into a one-dimensional 

vector of 18,432 elements, serving as the input to the dense layers. The first fully connected layer compresses 

the representation into 224 neurons, subsequently processed by a second fully connected layer consisting of 64 

neurons, refining the learned features serving as the basis for the classification process. Finally, the output 

layer, composed of four neurons, executes multi-class classification corresponding to the four dementia stages. 

 

 

Table 1. Architecture of the proposed QCL-CNN 
Layers Layer (type) Properties 

1st Input Input shape=224×224×3 

Convolutional 1 Kernel size=3×3, 32 filters 

2nd Max-pooling Pool size=2×2 
3rd Convolutional 2 Kernel size=3×3, 32 filters 

4th Max-pooling Pool size=2×2 

5th Convolutional 3 Kernel size=3×3, 64 filters 
6th Max-pooling Pool size=2×2 

7th Convolutional 4 Kernel size=3×3, 128 filters 

8th Max-pooling Pool size=2×2 
9th Flatten Convert to 1d vector for dense 

10th Dense 1 224 neurons, ReLU 

11th Dense 2 64 neurons, ReLU 
12th Output 4-class classification, softmax 

 

 

 
 

Figure 2. Proposed QCL-CNN architecture with input and output vector forms 

Output Layer

Input: (None, 64) Output: (None, 4)

Dense 2

Input: (None, 224) Output: (None, 64)

Dense 1

Input: (None, 18432) Output: (None, 224)

Flatten

Input: (None, 12, 12, 128) Output: (None, 18432)

Max Pooling Layer

Input: (None, 24, 24, 128) Output: (None, 12, 12, 128)

Convolutional Layer 4

Input: (None, 26, 26, 64) Output: (None, 24, 24, 128)

Max Pooling Layer

Input: (None, 52, 52, 64) Output: (None, 26, 26, 64)

Convolutional Layer 3

Input: (None, 54, 54, 32) Output: (None, 52, 52, 64)

Max Pooling Layer

Input: (None, 109, 109, 32) Output: (None, 54, 54, 32)

Convolutional Layer 2

Input: (None, 111, 111, 32) Output: (None, 109, 109, 32)

Max Pooling Layer

Input: (None, 222, 222, 32) Output: (None, 111, 111, 32)

Convolutional Layer 1

Input: (None, 224, 224, 3) Output: (None, 222, 222, 32)
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3. RESULTS AND DISCUSSION 

This study introduces a QCL-C   approach to identify Alzheimer’s disease based on MRI imaging 

data. The OASIS MRI dataset is chosen to support research in the initial diagnosis and detailed examination 

of Alzheimer’s disease, providing a reliable foundation for training and testing the DL model. The dataset 

consists of four different classes, non-dementia (67,222 samples), very mild dementia (13,725 samples), mild 

dementia (5,002 samples), and moderate dementia (488 samples). The class imbalance in the dataset 

highlights the critical role of employing reliable DL methodologies to ensure fair and accurate classification 

across all categories [29]. The QCL-CNN model employs four consecutive convolutional layers, enabling a 

hierarchical feature extraction process that strengthens the model’s capacity to distinguish among the 

different progression levels of Alzheimer’s disease. Each convolutional layer captures spatial features from 

MRI scans, progressively refining extracted patterns, ranging from fundamental attributes like edges and 

surface textures to advanced representations such as structural irregularities in the brain. By applying 

multiple convolutional layers in sequence, the model preserves critical information while filtering out 

irrelevant noise, ultimately improving classification accuracy. The following are the performance values of 

the QCL-CNN approach proposed in this research. 

The Table 2 presents the performance values of the proposed QCL-C   model for Alzheimer’s 

disease detection utilizing MRI imaging as the primary diagnostic input. The findings reveal that the model 

delivers outstanding predictive performance across all categories, with an overall accuracy rate of 99.90% 

together with an F1-score of 99.52%, confirming the robustness of the model in producing consistent and 

dependable classifications. The recall values, which measure the model’s ability to recognize true positive 

instances, are 99.78% for non-dementia and very mild dementia, and 100% for mild and moderate dementia. 

This indicates that the model demonstrates strong sensitivity in detecting Alzheimer’s disease across different 

stages, ensuring that almost no cases are missed. Similarly, the specificity values, which reflect the capability 

of the model to accurately distinguish negative instances, are consistently remarkably elevated, with an 

average of 99.93%, indicating a very low rate of false positives. In terms of precision, which measures the 

proportion of predicted positives that correspond to true positives, the model achieves an average of 99.16%, 

with the highest precision observed for non-dementia (99.99%) and the lowest for moderate dementia 

(98.18%). This slight variation suggests that while the model performs exceptionally well in classifying the 

majority of cases, the smaller dataset size for moderate dementia (only 488 samples) might slightly affect its 

predictive certainty. Nonetheless, the overall high precision indicates the model minimizes false positives, 

which is essential for clinical applications [30]. 

 

 

Table 2. Performance values of the proposed QCL-CNN 

Condition 
Performance evaluation (%) 

Recall Specificity Precision Accuracy F1-score 

Non-dementia 99.78 99.95 99.99 99.81 99.88 
Very mild dementia 99.78 99.82 99.04 99.81 99.41 

Mild dementia 100.00 99.96 99.42 99.97 99.71 

Moderate dementia 100.00 99.99 98.18 99.99 99.08 
Average 99.89 99.93 99.16 99.90 99.52 

 

 

The accuracy values, ranging from 99.81% to 99.99%, highlight the robustness of the QCL-CNN 

model. The model achieves consistent performance across all dementia stages, achieving a total accuracy rate 

of 99.90%, thereby validating its strong capability in identifying Alzheimer’s disease. Additionally, the  

F1-score (an evaluation metric that harmonizes precision and recall) reached an average of 99.52%, 

reinforcing the dependability of the model in addressing both balanced and imbalanced data distributions. 

These results suggest that the QCL-C   model is highly effective for categorizing Alzheimer’s disease cases 

through MRI-based imaging data. Its high sensitivity and specificity ensure that both positive and negative 

cases are accurately identified, reducing the risk of false diagnoses. In addition, the performance value of 

QCL-CNN is compared with several other CNN models. The following is the result of a comparative 

assessment of performance metrics across multiple CNN architectures with the proposed QCL-CNN. 

Table 3 highlights the performance assessment of multiple CNN architectures in detecting 

Alzheimer’s disease based on MRI imaging data. The models analyzed include VGG19, Xception, ResNet50, 

DenseNet201, and the proposed QCL-CNN, with key evaluation criteria including recall, specificity, 

precision, accuracy, and the F1-score, together with their total number of parameters. The results demonstrate 

that the proposed QCL-CNN outperforms alternative models across critical performance metrics while 

keeping the parameter count considerably lower, making it a more efficient and effective DL model for 

medical image classification. The proposed QCL-CNN achieves the highest recall (99.89%), indicating its 

ability to correctly detect almost all true positive cases of Alzheimer’s disease, thereby effectively reducing 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4848-4858 

4854 

the occurrence of false negatives. This aspect is especially vital in medical imaging, since misclassification 

errors may cause postponed treatments and potentially harmful consequences for patients [31]. Similarly, its 

specificity (99.93%) is the highest among all models, ensuring that non-Alzheimer’s cases are correctly 

identified, thereby reducing false positives and preventing unnecessary medical interventions. These two 

metrics collectively confirm that QCL-CNN is highly reliable in distinguishing between cases diagnosed as 

Alzheimer’s and those identified as non-Alzheimer’s. 

 

 

Table 3. Comparison of performance values of several CNN models 

Models 
Performance evaluation (%) 

Total parameter 
Recall Specificity Precision Accuracy F1-score 

VGG19 97.14 99.71 99.61 99.83 98.32 20.158.788 

Xception 97.58 99.82 99.35 99.89 98.44 21.395.244 

ResNet50 97.98 99.82 99.01 99.89 98.49 24.121.476 
DenseNet201 98.73 99.83 99.03 99.90 98.88 18.822.468 

Proposed QCL-CNN 99.89 99.93 99.16 99.90 99.52 4.246.148 

 

 

The accuracy of QCL-CNN reaches 99.90%, slightly surpassing VGG19 (99.83%), Xception 

(99.89%), and ResNet50 (99.89%), and matching DenseNet201 (99.90%). Even minor improvements in 

accuracy are significant in clinical applications, where every correctly classified case contributes to better 

patient diagnosis and treatment planning. Furthermore, the F1-score of 99.52%, which balances precision and 

recall, is the highest among all models, ensuring that the model maintains strong classification consistency 

across all categories [32]. One of the most striking advantages of QCL-CNN is its computational efficiency, 

as reflected in its significantly lower total parameter count. While VGG19 (20.1M), Xception (21.3M), 

ResNet50 (24.1M), and DenseNet201 (18.8M) require large computational resources, the QCL-CNN 

operates with only 4.2M parameters, making it nearly five to six times more efficient while still achieving 

better classification performance. This reduced number of parameters minimizes memory consumption and 

decreases training time. Additionally, the low parameter count of QCL-CNN makes it more suitable for edge 

computing and real-time applications, where models must be deployed on devices with limited processing 

power. Unlike heavier architectures like ResNet50 or Xception, which may require high-end GPUs for 

training and inference, QCL-CNN can be effectively implemented on standard computational systems, 

allowing faster and more accessible AI-assisted diagnostics in real-world clinical environments. The ability 

to deploy an efficient yet highly accurate DL model makes QCL-CNN a strong candidate for medical 

imaging applications, particularly for early Alzheimer’s detection. 

The Table 4 presents a comparative analysis of the proposed QCL-CNN in comparison with several 

previously developed DL models aimed at detecting Alzheimer’s disease from MRI imaging. The 

comparison is based on the quantity of convolutional layers employed and the level of classification accuracy 

attained by each architecture. The results demonstrate that QCL-CNN outperforms previous architectures by 

achieving the highest accuracy (99.90%) while using the fewest convolutional layers (4 layers). This finding 

highlights the importance of network optimization and efficient feature extraction over simply increasing the 

depth of the model. Among the prior models, Odusami et al. [33] 18-layered CNN achieved 98.00% 

accuracy, suggesting that while deeper networks can extract complex patterns, they do not necessarily lead to 

superior performance. AbdulAzeem et al. [34] end-to-end CNN framework, which uses 8 convolutional 

layers, performed at 99.80% accuracy, showing that reducing the number of layers can still yield strong 

results. Similarly, Mandal and Mahto [35] deep multi-branch CNN (10 layers) reached 99.05% accuracy, and  

El-Assy et al. [36] deep CNN (5 layers) achieved 99.57% accuracy, further reinforcing the trend that 

optimized architectures perform better than excessively deep models. 

 

 

Table 4. Comparison of the performance of the proposed QCL-CNN with prior work 
Prior work Models Convolutional layers Accuracy (%) 

Odusami et al. [33] 18-layered CNN 18 98.00 
AbdulAzeem et al. [34] CNN based end-to-end framework 8 99.80 

Mandal and Mahto [35] Multi-branch CNN 10 99.05 

El-Assy et al. [36] Deep CNN 5 99.57 
Proposed QCL-CNN Quad convolutional layers 4 99.90 

 

 

Despite having the fewest layers, the proposed QCL-CNN surpasses all previous models in 

accuracy, proving that deeper architectures are not always more effective. Instead, the efficiency of feature 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Alzheimer's disease detection based on MR images using the quad convolutional layers … (Yuri Pamungkas) 

4855 

extraction and network design plays a more critical role than merely increasing depth. The quad 

convolutional layer structure in QCL-CNN enables multi-level feature extraction, preserving crucial spatial 

information while reducing computational redundancy, ultimately leading to higher classification accuracy 

with fewer parameters. This efficiency makes QCL-CNN an ideal solution for real-world applications, 

particularly in medical environments with limited computational resources. Another key insight from the 

comparison is that the number of convolutional layers does not directly correlate with better accuracy. The 

18-layered CNN by Odusami et al. [33] achieves only 98.00% accuracy, while the proposed QCL-CNN with 

just 4 layers outperforms it with 99.90% accuracy. This indicates that a well-optimized CNN with an efficient 

architecture can outperform deeper models, reducing training time, computational costs, and the risk of 

overfitting while maintaining high classification performance. 

 

 

4. CONCLUSION 

This study has demonstrated the effectiveness of the QCL-CNN model to detect Alzheimer’s 

disease through MRI-based imaging. The model achieved a remarkable accuracy rate of 99.90% alongside an 

F1-score of 99.52%, outperforming traditional CNN architectures while maintaining computational 

efficiency with only 4 convolutional layers. The results highlight QCL-C  ’s high recall and specificity, 

ensuring accurate detection of both positive and negative classifications, while effectively reducing the 

incidence of false positives and false negatives. Furthermore, a comparative evaluation with other established 

DL architectures including VGG19, Xception, ResNet50, and DenseNet201, revealed that QCL-CNN 

achieves superior classification performance with significantly fewer parameters, making it a practical 

solution for real-world medical applications, especially within clinical settings that face limitations in 

computational or infrastructural resources. Despite its strong performance, there are areas for improvement 

and future research directions. A primary challenge arises from the uneven distribution of classes within the 

dataset, particularly for Moderate Dementia cases, where the limited number of available samples may 

slightly impact model precision. Future studies should consider data augmentation methods, synthetic data 

generation, or pre-trained approaches to improve classification confidence for underrepresented classes. 

Additionally, exploring multi-modal imaging techniques, such as integrating MRI with PET scans, may 

provide richer data representations and further enhance model accuracy. Another promising direction is 

incorporating XAI to improve interpretability. 
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