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 The increasing complexity and scale of heat supply systems leads to a higher 

risk of failures, which may cause significant economic and environmental 

consequences. This study develops a predictive mathematical framework for 

the early detection of emergency conditions in heat supply networks (HSNs) 

using machine learning (ML). The proposed approach is based on the 

LightGBM gradient boosting (GB) algorithm, chosen for its high accuracy 

and efficiency in handling large datasets. Real operational data (temperature, 

pressure, flow, and vibration) were considered. Data preprocessing, feature 

engineering (including SHAP analysis), and hyperparameter tuning with grid 

search and 5-fold cross-validation improved prediction quality. The model 

achieved accuracy of 85%, F1-score of 0.82, and receiver operating 

characteristic (ROC)-area under the curve (AUC) of 0.96, outperforming 

logistic regression (LR) and decision trees. The framework may be 

integrated into monitoring systems for predictive maintenance, reducing 

downtime and optimizing costs. 

Keywords: 

Anomaly detection 

Ensemble learning 

Heat supply 

Predictive maintenance 

Real-time monitoring 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Dauren Darkenbayev 

Department of Computational Sciences and Statistics, Faculty of Mechanics and Mathematics 

Al-Farabi Kazakh National University 

Almaty, Kazakhstan 

Email: dauren.kadyrovich@gmail.com 

 

 

1. INTRODUCTION  

Modern technological systems such as industrial production, transportation, and energy 

infrastructure are characterized by increasing complexity and automation [1]–[3]. While this improves 

efficiency, it also increases vulnerability to failures, leading to economic losses, environmental harm, and 

safety hazards [4]–[6]. Heat supply networks (HSNs), as critical urban infrastructure, are especially prone to 

risks due to their wide distribution and dynamic operation. Early prediction of pre-emergency states in HSNs 

is therefore a research priority. 

Traditional diagnostic and maintenance methods (rule-based systems and statistical models) depend 

on thresholds and expert knowledge [7]–[10], but they are insufficient for nonlinear and high-dimensional 

data. For example, Rahal et al. [11] analyzed heat losses but noted scalability limits. Ukoba [12] applied 

time-series anomaly detection, but robustness was low under changing loads. 

Machine learning (ML) offers more flexibility. Support vector machines (SVM) and random forests 

(RF) have been used for anomaly detection with moderate success [13], [14]. Artificial neural networks 
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(ANNs) improve flexibility but require high resources and lack interpretability [15]. Gradient boosting (GB), 

particularly LightGBM, shows strong predictive ability in power grids and industrial systems. LightGBM 

efficiently handles large datasets and complex nonlinear dependencies, using gradient-based one-side 

sampling (GOSS) and exclusive feature bundling (EFB). Despite these strengths, little research applies GB to 

HSN fault prediction [16]. 

This study addresses this gap by proposing a LightGBM-based predictive framework for HSNs, 

integrating SHAP for interpretability. Main contributions: 

− Data-driven methodology for early detection of pre-emergency conditions using multi-dimensional data 

(temperature, pressure, flow, and vibration). 

− Comparative analysis of logistic regression (LR), RF, SVM, ANN, and LightGBM. 

− SHAP integration for interpretability. 

− Validation using a large synthetic dataset with cross-validation and performance metrics (accuracy, F1, 

and receiver operating characteristic (ROC)-area under the curve (AUC)). 

 

 

2. MATERIALS AND METHODS 

2.1.  Predicting failures in heat networks 

Failures (leaks, pipe breaks, and equipment damage) disrupt heating and cause severe consequences 

[17]. Predicting them is complex due to nonlinear interactions of pressure, temperature, and flow [18]-[23] 

ML is applied for: 

− Condition diagnostics (classification of malfunctions using sensor data). 

− Maintenance optimization (time-series based predictive schedules). 

− Heat flow modeling (simulation of network performance). 

− Clustering (identifying high-risk sections). 

 

2.2.  Gradient boosting method 

GB combines weak learners (decision trees) into a strong predictor by minimizing loss iteratively. 

 

Algorithm 1. GB procedure 

Input: training set {(𝑥𝑖 , 𝑦𝑖)}, learning rate 𝜂, iterations 𝑀 

1. Initialize model with constant prediction. 

2. For t = 1 … M: 

a) Compute negative gradient (pseudo-residuals) 

b) Fit weak learner ℎ𝑡(𝑥) 

c) Update model: 𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝜂 ⋅ ℎ𝑡(𝑥). 𝑡 = 1. . . 𝑀: 
3. Output 𝐹𝑀(𝑥). 

The optimization objective: 
 

𝐿(𝑦, 𝑓(𝑥)) = 𝛦 [(𝑦 − 𝑓(𝑥))
2

] (1) 

 

where: 

− 𝑦 - true output (accident/non-accident), 

− 𝑓(𝑥) - model prediction, 

− 𝑥 - feature vector (pressure, temperature, flow, and vibration). 

 

2.3.  Dataset description 

The dataset included operational data: 

− Source parameters (plant output), 

− Pipeline parameters (pressure, temperature, and diameter), 

− Maintenance (cleaning schedules), 

− Environment (ambient temperature and humidity). 

Normalization was applied, with training/test split and 5-fold cross-validation. 

 

 

3. RESULTS 

3.1.  Conceptual framework 

Figure 1 illustrates the developed conceptual framework for predictive maintenance of HSNs using 

ML algorithms. The framework includes four key stages: 
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− Initialization and normalization of input parameters, 

− Forecast generation for specified time intervals, 

− Visualization of predicted outcomes for operator interpretation, 

− Decision support for proactive maintenance planning. 

 

 

 
 

Figure 1. Conceptual scheme of predicting and decision-making 

 

 

This structure emphasizes the integration of data-driven models into operational workflows to 

enable real-time monitoring and risk assessment. The reliability of such a system fundamentally depends on 

the quality of the dataset, which was carefully curated and split into training and test samples to preserve 

class distributions. 

 

3.2.  Dataset formation 

As shown in Figure 2, the training dataset was formed by grouping features into categories: 

− Source characteristics (e.g., thermal power plant output), 

− Pipeline characteristics (e.g., pressure, temperature profiles), 

− Maintenance parameters (e.g., chemical cleaning schedules), 

− Environmental factors (e.g., ambient temperature, humidity). 

 

 

 
 

Figure 2. Dataset structure categories 
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This categorization facilitates the identification of high-risk areas prone to failures, such as: 

− Pipeline sections exceeding critical pressure levels, 

− Zones with cavitation risks due to gravity-induced flow, 

− Regions where vaporization may occur from insufficient pressure, 

− Subscriber buildings facing insufficient heat delivery during peak loads. 

By incorporating such domain-specific knowledge, the dataset ensures realistic representation of 

operational conditions, a critical factor in achieving robust model performance. 

 

3.3.  Comparative analysis of machine learning models 

Table 1 presents the comparative performance of four ML models evaluated using accuracy and  

F1-score metrics. GB (LightGBM) demonstrated superior predictive capability with an accuracy of 85% and 

an F1-score of 0.82, outperforming LR (82% accuracy, F1=0.80), decision trees (79% accuracy, F1=0.76), 

and linear regression (76% accuracy, F1=0.74). 
 

 

Table 1. Comparison of models 
Algorithms Accuracy (%) AUC F1-score 

GB 85 0.96 0.82 
LR 82 0.98 0.80 

Decision tree 79 0.92 0.76 

Linear regression 76 0.90 0.74 

 

 

Figure 3 shows the ROC curve for four machine learning models applied to the problem of anomaly 

detection in heating networks. The X-axis shows the false positive rate (FPR), and the Y-axis shows the true 

positive rate (TPR). The diagonal line corresponds to a random classifier and serves as a benchmark for 

assessing the quality of the models. 
 

 

 
 

Figure 3. ROC curves of ML models 
 

 

The curves show that all algorithms demonstrate predictive ability above chance. The logistic 

regression model demonstrates the best classification quality, with the highest area under the curve 

(AUC=0.98), followed by GB (AUC=0.96), decision tree (AUC=0.92), and linear regression (AUC=0.90). 

The closer a model's ROC curve is to the upper left corner of the graph, the higher its accuracy; thus, logistic 

regression and boosting demonstrate the most consistent ability to detect anomalies. Figure 4 provides a 

visualization of model performance across metrics, highlighting the stability and higher precision-recall 

balance achieved by GB. 

 

3.4.  LightGBM predictions with technical parameters 

The strong performance of LightGBM can be attributed to its ability to capture complex nonlinear 

relationships and effectively handle class imbalance via its GOSS and EFB techniques. The relatively high 

F1-score (0.82) indicates a good balance between precision and recall, which is critical in pre-emergency 

detection where both false positives (unnecessary maintenance) and false negatives (missed failures) have 

significant operational consequences. 
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Figure 4. Architecture of predictive maintenance system 

 

 

Compared to other studies, Xue et al. [24] reported a 78% accuracy using SVM on district heating 

fault datasets, and Xue et al. [25] achieved 80% accuracy using RF. Thus, the LightGBM approach in this 

study surpasses these benchmarks, demonstrating improved generalization. 

However, the study’s reliance on a synthetic dataset introduces potential limitations. While the data 

reflects realistic operational patterns, the absence of real-world noise and unmodeled system behaviors could 

lead to overestimated performance. Future work should validate the model on actual operational datasets 

from district heating systems to assess robustness. 

 

3.5.  Results of LightGBM classification 

Table 2 provides example predictions from the LightGBM model, demonstrating its classification of 

operational states (accident/non-accident) based on input parameters. This table illustrates how LightGBM 

correctly identifies pre-emergency states, enabling timely intervention to mitigate potential failures. The 

results highlight the potential of LightGBM-based predictive maintenance frameworks to enhance the 
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reliability of HSNs. With its superior accuracy and interpretability (via SHAP analysis), the proposed system 

can support decision-making processes, reduce unplanned downtimes, and optimize resource allocation. 

 

 

Table 2. LightGBM classification with technical parameters 
Pressure (MPa) Temperature (°C) Flow rate (m3/h) Result Confidence 

1.2 85 Accident Accident 0.91 

2.5 70 No accident No accident 0.87 
3.8 90 Accident Accident 0.93 

4.1 75 No accident No accident 0.89 

5.4 95 Accident Accident 0.95 

 

 

4. CONCLUSION 

This study developed a LightGBM-based predictive framework for HSNs, achieving accuracy=85%, 

F1=0.82, ROC-AUC=0.96. The model outperforms traditional approaches, confirming its suitability for 

predictive maintenance. Future work: validation on real operational datasets from different HSNs, field trials 

across diverse heating networks, IoT integration with real-time sensors, and development of lightweight  

real-time implementations for deployment. 
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