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The increasing complexity and scale of heat supply systems leads to a higher
risk of failures, which may cause significant economic and environmental
consequences. This study develops a predictive mathematical framework for
the early detection of emergency conditions in heat supply networks (HSNs)
using machine learning (ML). The proposed approach is based on the
LightGBM gradient boosting (GB) algorithm, chosen for its high accuracy
and efficiency in handling large datasets. Real operational data (temperature,
pressure, flow, and vibration) were considered. Data preprocessing, feature
engineering (including SHAP analysis), and hyperparameter tuning with grid
search and 5-fold cross-validation improved prediction quality. The model
achieved accuracy of 85%, Fl-score of 0.82, and receiver operating
characteristic (ROC)-area under the curve (AUC) of 0.96, outperforming
logistic regression (LR) and decision trees. The framework may be
integrated into monitoring systems for predictive maintenance, reducing

downtime and optimizing costs.
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1. INTRODUCTION

Modern technological systems such as industrial production, transportation, and energy
infrastructure are characterized by increasing complexity and automation [1]-[3]. While this improves
efficiency, it also increases vulnerability to failures, leading to economic losses, environmental harm, and
safety hazards [4]-[6]. Heat supply networks (HSNSs), as critical urban infrastructure, are especially prone to
risks due to their wide distribution and dynamic operation. Early prediction of pre-emergency states in HSNs
is therefore a research priority.

Traditional diagnostic and maintenance methods (rule-based systems and statistical models) depend
on thresholds and expert knowledge [7]-[10], but they are insufficient for nonlinear and high-dimensional
data. For example, Rahal et al. [11] analyzed heat losses but noted scalability limits. Ukoba [12] applied
time-series anomaly detection, but robustness was low under changing loads.

Machine learning (ML) offers more flexibility. Support vector machines (SVM) and random forests
(RF) have been used for anomaly detection with moderate success [13], [14]. Artificial neural networks
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(ANNSs) improve flexibility but require high resources and lack interpretability [15]. Gradient boosting (GB),
particularly LightGBM, shows strong predictive ability in power grids and industrial systems. LightGBM
efficiently handles large datasets and complex nonlinear dependencies, using gradient-based one-side
sampling (GOSS) and exclusive feature bundling (EFB). Despite these strengths, little research applies GB to
HSN fault prediction [16].
This study addresses this gap by proposing a LightGBM-based predictive framework for HSNs,
integrating SHAP for interpretability. Main contributions:
— Data-driven methodology for early detection of pre-emergency conditions using multi-dimensional data
(temperature, pressure, flow, and vibration).
— Comparative analysis of logistic regression (LR), RF, SVM, ANN, and LightGBM.
— SHAP integration for interpretability.
— Validation using a large synthetic dataset with cross-validation and performance metrics (accuracy, F1,
and receiver operating characteristic (ROC)-area under the curve (AUC)).

2. MATERIALS AND METHODS
2.1. Predicting failures in heat networks
Failures (leaks, pipe breaks, and equipment damage) disrupt heating and cause severe consequences
[17]. Predicting them is complex due to nonlinear interactions of pressure, temperature, and flow [18]-[23]
ML is applied for:
Condition diagnostics (classification of malfunctions using sensor data).
Maintenance optimization (time-series based predictive schedules).
Heat flow modeling (simulation of network performance).
Clustering (identifying high-risk sections).

2.2. Gradient boosting method
GB combines weak learners (decision trees) into a strong predictor by minimizing loss iteratively.

Algorithm 1. GB procedure
Input: training set {(x;, y;)}, learning rate 7, iterations M
1. Initialize model with constant prediction.
2. Fort=1...M:
a) Compute negative gradient (pseudo-residuals)
b) Fit weak learner 4. (x)
¢) Update model: F,(x) = Fe_1(x) +n - h(x). t = 1...M:
3. Output FM(x).
The optimization objective:

L. fG)) = E [(y = f(0)] (1)

where:

— y - true output (accident/non-accident),

—  f(x) - model prediction,

— x - feature vector (pressure, temperature, flow, and vibration).

2.3. Dataset description
The dataset included operational data:
— Source parameters (plant output),
— Pipeline parameters (pressure, temperature, and diameter),
— Maintenance (cleaning schedules),
— Environment (ambient temperature and humidity).
Normalization was applied, with training/test split and 5-fold cross-validation.

3. RESULTS
3.1. Conceptual framework

Figure 1 illustrates the developed conceptual framework for predictive maintenance of HSNs using
ML algorithms. The framework includes four key stages:
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— Initialization and normalization of input parameters,

— Forecast generation for specified time intervals,

— Visualization of predicted outcomes for operator interpretation,
— Decision support for proactive maintenance planning.
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Figure 1. Conceptual scheme of predicting and decision-making

This structure emphasizes the integration of data-driven models into operational workflows to
enable real-time monitoring and risk assessment. The reliability of such a system fundamentally depends on
the quality of the dataset, which was carefully curated and split into training and test samples to preserve
class distributions.

3.2. Dataset formation
As shown in Figure 2, the training dataset was formed by grouping features into categories:
— Source characteristics (e.g., thermal power plant output),
— Pipeline characteristics (e.g., pressure, temperature profiles),
— Maintenance parameters (e.g., chemical cleaning schedules),
— Environmental factors (e.g., ambient temperature, humidity).
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Figure 2. Dataset structure categories
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This categorization facilitates the identification of high-risk areas prone to failures, such as:
— Pipeline sections exceeding critical pressure levels,
— Zones with cavitation risks due to gravity-induced flow,
— Regions where vaporization may occur from insufficient pressure,
— Subscriber buildings facing insufficient heat delivery during peak loads.
By incorporating such domain-specific knowledge, the dataset ensures realistic representation of
operational conditions, a critical factor in achieving robust model performance.

3.3. Comparative analysis of machine learning models

Table 1 presents the comparative performance of four ML models evaluated using accuracy and
F1-score metrics. GB (LightGBM) demonstrated superior predictive capability with an accuracy of 85% and
an F1-score of 0.82, outperforming LR (82% accuracy, F1=0.80), decision trees (79% accuracy, F1=0.76),
and linear regression (76% accuracy, F1=0.74).

Table 1. Comparison of models
Algorithms Accuracy (%) AUC  Fl-score

GB 85 0.96 0.82
LR 82 0.98 0.80
Decision tree 79 0.92 0.76
Linear regression 76 0.90 0.74

Figure 3 shows the ROC curve for four machine learning models applied to the problem of anomaly
detection in heating networks. The X-axis shows the false positive rate (FPR), and the Y-axis shows the true
positive rate (TPR). The diagonal line corresponds to a random classifier and serves as a benchmark for
assessing the quality of the models.
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Figure 3. ROC curves of ML models

The curves show that all algorithms demonstrate predictive ability above chance. The logistic
regression model demonstrates the best classification quality, with the highest area under the curve
(AUC=0.98), followed by GB (AUC=0.96), decision tree (AUC=0.92), and linear regression (AUC=0.90).
The closer a model's ROC curve is to the upper left corner of the graph, the higher its accuracy; thus, logistic
regression and boosting demonstrate the most consistent ability to detect anomalies. Figure 4 provides a
visualization of model performance across metrics, highlighting the stability and higher precision-recall
balance achieved by GB.

3.4. LightGBM predictions with technical parameters

The strong performance of LightGBM can be attributed to its ability to capture complex nonlinear
relationships and effectively handle class imbalance via its GOSS and EFB techniques. The relatively high
F1-score (0.82) indicates a good balance between precision and recall, which is critical in pre-emergency
detection where both false positives (unnecessary maintenance) and false negatives (missed failures) have
significant operational consequences.
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Figure 4. Architecture of predictive maintenance system

Compared to other studies, Xue et al. [24] reported a 78% accuracy using SVM on district heating
fault datasets, and Xue et al. [25] achieved 80% accuracy using RF. Thus, the LightGBM approach in this
study surpasses these benchmarks, demonstrating improved generalization.

However, the study’s reliance on a synthetic dataset introduces potential limitations. While the data
reflects realistic operational patterns, the absence of real-world noise and unmodeled system behaviors could
lead to overestimated performance. Future work should validate the model on actual operational datasets
from district heating systems to assess robustness.

3.5. Results of LightGBM classification

Table 2 provides example predictions from the LightGBM model, demonstrating its classification of
operational states (accident/non-accident) based on input parameters. This table illustrates how LightGBM
correctly identifies pre-emergency states, enabling timely intervention to mitigate potential failures. The
results highlight the potential of LightGBM-based predictive maintenance frameworks to enhance the
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reliability of HSNs. With its superior accuracy and interpretability (via SHAP analysis), the proposed system
can support decision-making processes, reduce unplanned downtimes, and optimize resource allocation.

Table 2. LightGBM classification with technical parameters

Pressure (MPa)  Temperature (°C)  Flow rate (m®/h) Result Confidence
12 85 Accident Accident 0.91
25 70 No accident No accident 0.87
3.8 90 Accident Accident 0.93
4.1 75 No accident No accident 0.89
5.4 95 Accident Accident 0.95

4. CONCLUSION

This study developed a LightGBM-based predictive framework for HSNs, achieving accuracy=85%,
F1=0.82, ROC-AUC=0.96. The model outperforms traditional approaches, confirming its suitability for
predictive maintenance. Future work: validation on real operational datasets from different HSNs, field trials
across diverse heating networks, 10T integration with real-time sensors, and development of lightweight
real-time implementations for deployment.
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