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Compressed sensing (CS) has been widely applied in magnetic resonance
imaging (MRI) to accelerate the image acquisition without significantly
reducing its image quality. In Cartesian MRI, acquisition time can be
reduced by skipping phase-encoding steps for faster data acquisition.
However, the balance between random under-sampling and Nyquist
sampling at the k-space center strongly determines image quality. In this
study, we systematically evaluate the impact of different random-to-Nyquist
sampling ratios for both single-coil (CS-MRI) and multi-coil (CS-pMRI)
reconstructions. Simulation results reveal that dense Nyquist sampling
around the k-space center is essential for maintaining image fidelity,
whereas reconstruction quality deteriorates sharply when random sampling
exceeds approximately 60% of the total under-sampled data. Moreover, CS-
pPMRI consistently outperforms CS-MRI under equivalent under-sampling
factors, benefiting from additional coil sensitivity information that improves
resilience against aliasing and noise. These findings provide practical
guidelines for hybrid under-sampling design, emphasizing that sufficient
Nyquist sampling coverage of central k-space is crucial for achieving high-

quality reconstructions while enabling high acceleration in CS-MRI.
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is one of the most powerful non-invasive imaging methods in
advanced medical diagnosis, providing high-resolution anatomical and functional information without using
ionizing radiation. However, a major limitation of conventional MRI is its time consuming acquisition time,
which can lead to motion artifacts, patient discomfort, and limited throughput in clinical practice. Reducing
the acquisition time without considerably sacrificing image quality is therefore a central research goal in MRI
technology. This challenge is often addressed by under-sampling k-space data and reconstructing the image
using proper algorithms that exploit data redundancy and prior knowledge.

Over the last two decades, numerous strategies have been developed to accelerate MRI acquisition.
The parallel MRI (pMRI) is one of these methods, which allows much faster image acquisition than the
normal MRI due to its simultaneous signals receiving with an array of RF coils (multi-coils). Some of the
common pMRI methods are used for reducing image scan time, such as the simultaneous acquisition of
spatial harmonics (SMASH) [1] and sensitivity encoding (SENSE) [2], and generalized autocalibrating
partially parallel acquisitions (GRAPPA) [3].
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Many of other techniques primarily focus on k-space, a concept was first proposed by Donald B.
Twieg in 1983 for describing nuclear magnetic resonance (NMR) image reconstruction by 2D Fourier
encoding [4]. When taking an MRI scan, the encoded NMR signals are collected and sampled by the Nyquist
sampling criteria as k-space for image reconstruction. The Nyquist criteria ensure the reconstructed image is
free of aliasing artifacts. However, it has been found that a NMR image can be sparsely represented in a
known transform domain [5]. Therefore it can be recovered from randomly under-sampled k-space data using
nonlinear reconstruction [6], [7]. Compressed sensing MRI (CS-MRI), introduced by Lustig et al. [8],
leverages sparsity in the transform domain and incoherent under-sampling to accurately recover images from
far fewer k-space samples than Nyquist theory requires [9]. Several hybrid approaches that combine CS and
PMRI have been proposed [10]-[13], showing improved reconstruction quality over either method alone.
Sampling pattern design has also been extensively studied, random sampling with variable density, chaotic
under-sampling, and a combination of random and Nyquist sampling being common choices to achieve
incoherence while maintaining coverage of low-frequency components [14]-[16]. Although these studies
clearly demonstrated the need for central k-space coverage and incoherent sampling, most studies
heuristically propose fixed under-sampling masks and stop short of quantifying how the balance between
random and Nyquist samples for ensuring image fidelity. Recently, data-driven and deep learning (DL)-based
methods [17]-[19] have emerged, enabling joint optimization of sampling and reconstruction while yielding
state-of-the-art performance at acceleration factors previously unattainable with conventional techniques.
More recently, CS has been combined with deep adaptive perceptual generative adversarial network
(DAPGAN) [20], [21] and self-supervised contrastive learning [22] for improving the accuracy of under-
sampled image reconstruction. However, these methods typically require large, high quality training datasets
to generalize well across anatomies, pathologies, and scanner vendors for image reconstruction. Moreover,
training and deploying state-of-the-art DL models demand high performance hardware, particularly GPUs
with large memory which may not be available in all clinical or research environments.

Despite these advances, there remain open problems in optimization of under-sampling pattern for
Cartesian MRI acquisitions. Specifically, while random sampling satisfies the incoherence condition required
by CS theory, excessive randomness can degrade the coverage of low-frequency k-space, which is essential for
preserving image contrast and overall structure [8], [23], [24]. Conversely, sampling strategies that heavily
favor the k-space center may under-sample high-frequency details, leading to blur image reconstruction [25].
Our previous works have acknowledged this trade-off but have not systematically quantified the effect of the
relative proportion of low-frequency (Nyquist sampling) and random sampling on reconstruction quality,
especially in the context of combined CS and pMRI reconstruction [11], [15]. However, these studies have
either adopted fixed sampling patterns or relied on heuristic density functions, without establishing empirical
guidelines on the optimal balance between random and deterministic sampling regions.

In this study, we address this issue by systematically evaluating hybrid sampling patterns that
combine a fully-sampled low-frequency region (near k-space center) with a randomly under-sampled high-
frequency region (periphery of k-space). By using retrospective simulations on both single-coil CS (CS-MRI)
and multi-coil (CS-pMRI) reconstructions, we vary the proportion of random sampling and analyze its
impact on quality metrics of image reconstruction. We propose a threshold in the random sampling ratio
beyond which reconstruction quality degrades sharply, and also demonstrate that the CS-pMRI approach
consistently outperforms CS-MRI alone under equivalent under-sampling factors. These findings provide
guidance for practical MRI protocol design for high acceleration of CS.

2. METHOD
2.1. The basics of compressed sensing in magnetic resonance imaging

CS is known as a method that reduces the number of measurements required for reconstructing the
signal or image without significantly decreasing its quality. In traditional MRI, the NMR signals are sampled
with finite frequency information. In a MRI scan, data measurements are required to obtain a complete k-
space dataset for proper image reconstruction [26]. Unlike frequency encoding, phase encoding takes a much
longer time to be completed. Therefore, if the phase encoding lines are reduced, the scan time will be greatly
reduced. Moreover, the highest magnitude data is distributed around the center of the k-space (low frequency
region) and rapidly decays toward its border. The most important information that seems to be required to
reconstruct an NMR image is concentrated at k-space center. Thus, taking the under-sampling data higher
around the k-space origin will be more realistic and practical. The required time for acquiring k-space is
determined by the number of phase encoding (k,) measurements (the red lines are 2D Cartesian samples), as
shown in Figure 1. In this figure, all k-space lines (indicated by the red arrows pointing toward the left) are
acquired, followed by the frequency-encoding and phase-encoding steps.
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Figure 1. K-space data acquisition in traditional Cartesian MRI [26]

2.2. The proposal of new hybrid under-sampling with varying parameters in CS-MRI

Previously, we proposed a combination of random and Nyquist sampling (a hybrid under-sampling
method) applied for MRI k-space (Figure 2(a)), which divided the taken number of phase encoding lines into
two separate parts (the random under-sampling distributed at high frequency domain and the Nyquist
sampling at the low frequency domain of the k-space [11], [15]). This method has been proven that it is
capable of eliminating the disadvantages of the traditional random CS. The quality of the reconstructed image
still remains with a small value of the under-sampling ratio (R). Different from the Cartesian Nyquist
sampling (Figure 2(b)), the k-space matrix (NxN) is under-sampled by a majority of measurements defined
by both a random sampling ratio R1 and a Nyquist sampling R2 ratio and (Figure 2(c)). Here, R1 represents
the amount of random sampling part in the whole k-space, while R2 represents the Nyquist sampling around
the k-space center. The total number of measurement samples is defined by the under-sampling ratio R
(R=R1+R2). The advantage of this method is to ensure that certain amount of sampling data around the
k-space origin is always taken by the Nyquist samplings, which had been confirmed the advantages of this
method as compared to the traditional random and regular under-sampling methods. In these previous
studies, we proposed a hybrid undersampling method by using R1=70% for random under-sampling and
R2=30% for the Nyquist sampling. However, this ratio was heuristic and based on the need to guarantee
minimal low-frequency coverage at the center of k-space while retaining incoherence with random sampling.
Although this hybrid under-sampling has obviously outweighed traditional random methods, the influence of
random under-sampling/Nyquist sampling (R1/R2) ratio on the quality of image reconstruction is still
required to be thoroughly and systematically evaluated.

MRI K-space Cartesian Nyquist Sampling Cartesian hybrid proposed Undersampling
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Figure 2. The model of CS using the hybrid under-sampling method; (a) MRI K-space, (b) Cartesian Nyquist
sampling, and (c) Cartesian hybrid proposed undersampling [15]

Therefore, in this study, we investigate the effect of varying the proportion between low-frequency
fully-sampled (Nyquist) and high-frequency randomly-sampled regions in the hybrid Cartesian under-
sampling for both CS-MRI and CS-pMRI reconstruction. The methodology was proposed to be fully
applicable to a broad range of Cartesian MRI acquisitions. Figure 3 illustrates the experimental workflow,
which consists of: i) MRI image data; ii) generation of the hybrid under-sampling pattern with varying
parameters; iii) image reconstruction; and iv) statistically quantitative evaluations. In this workflow, MRI
image data (single-coil or multi-coils) is loaded to obtain fully sampled k-space. This fully sampled k-space
is then under-sampled using a hybrid under-sampling mask with varying parameters. A proper reconstruction
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algorithm is selected to recover the image from the under-sampled data. Finally, image quality metrics are
calculated to evaluate efficiency of the under-sampling method.

=28

Under-sampling Reconstruction
Method Algorithm

MRI Image Data Evaluation

Figure 3. The workflow of this proposed under-sampling method and evaluation

The experimental workflow of hybrid under-sampling evaluations with varying parameters for

CS-MRI and CS-pMRI acceleration:

Step 1: load MRI data (single coil and multi-coil image) for transforming into fully-sampled k-space.

- Step 2: generate the under-sampled data (k, ky) defined by the hybrid under-sampling pattern. The
number of sampled data is based on the pre-defined under-sampling ratio R and the varying proportion
between random and Nyquist sampling R1/R2 (assign R1 for random sampling and R2 for Nyquist
sampling, and R=R1+R2). Determine coordinates (kx, ky) of the k-space for each case and store them as a
template. Then, obtain the digital data of the under-sampled k-space based on the template and store them
in a vector for each case.

- Step 3: perform the single coil and multi-coil reconstruction using the NCG algorithm.

- Step 4: calculate average values of image quality metrics and perform statistical evaluations.

2.3. Datasets and simulations

In this work, two datasets were used: single coil images (for CS-MRI experiments) is 2D images
selected from the MRI dataset from MATLAB that contains 27 slices of a human head phantom (128x128
matrix, complex-valued) arranged into a 4-D array of size 128-by-128-by-1-by-27 and multi-coil images (for
CS-pMRI experiments) is a 3-D MPRAGE dataset acquired with an eight-channel head coil
(TE/TR=3.45/2530 ms, TI=1100 ms, FOV=25.6 cm, matrix=256x%256, and slice thickness=1.33 mm), which
was obtained from this work [27]. For evaluation of different anatomical context, cardiac MRI images (from
[28]) and fastMRI knee images (from [29]) were also used in this work with dataset user agreement.

To study the effect of different ratios between random and Nyquist sampling to the reconstructed
image quality, the value of R1 will be varied from 0.1 to 0.9 for different under-sampling ratio R in a range
between 0.05 and 0.5. For each trial: the complex-valued k-space data was computed via 2D FFT for each
slice. The under-sampling mask generated by the hybrid under-sampling method was applied retrospectively
in the phase-encoding direction only. For each under-sampling ratio, 100 under-sampling masks are
randomly repeated per trial for computational feasibility. These statistical evaluations based on numerical
simulations will be performed for different under-sampling ratios with varying random R1 applying for both
CS-MRI and CS-pMRI. The simulations were performed with a personal computer (Core i5-12100, 16 GB
RAM, and SSD drive), the consuming time for each trial is about 10s (CS-MRI) and 2s (CS-pMRI).

2.4. Image reconstruction and evaluations

In the CS-MRI, the single coil MRI image reconstruction was carried out by the optimized nonlinear
conjugate gradient (NCG) as described in our previous studies [11], [15]. This algorithm adapted from
Lustig et al. [8], which was proposed to reconstruct an MRI image from under-sampled k-space data using
CS principles. It combines data consistency with sparsity priors in both the wavelet domain and the total
variation (TV) domain, and solves the optimization via NCG for minimizing the following objective as
shown in (1):

min 1

S IEx = ylI3 + A [ITVOL + AW () |4 @

This NCG reconstruction algorithm used in this work is described as following parameters: the
maximum number of iterations: 30; the sparsity transform, 1: daubechies D4 wavelet basis; Li-wavelet norm
smoothing: 4,, = 0.005; weight for TV penalty: A;, = 0.002. These values were selected and optimized
based on our previous studies [11], [15], which were empirically tuned to balance noise suppression with
preservation of fine anatomical details, ensuring reproducibility of the reported results.
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In the CS-pMRI, the multi-coil MRI image reconstruction was performed by 2D SENSE
reconstruction using the NCG algorithm. This NCG configuration was chosen for its robustness and
relatively low computational cost compared to more complex iterative algorithms, while still achieving high
quality reconstruction in both CS-MRI and CS-pMRI settings.

For quantitative evaluations, different image quality indexes such as mean squared error (E) for an
average squared pixel error of the reconstructed MRI image compared to the ground-truth fully sampled
image, the universal image quality index (Q) [30] for a perceptual metric sensitive to luminance and contrast;
and the structural similarity index measure (SSIM) [31] for perceptual similarity between reconstructed and
reference images, which were used to assess the simulation results. Each experiment was repeated 100 times
with independent random masks to ensure statistical significance as aforementioned.

3. RESULTS AND DISCUSSION
3.1. Image reconstruction from hybrid under-sampled data with varying random proportions

To illustrate the impact of sampling ratios between random and fixed sampling amounts, the
numerical simulations were performed for both the CS-MRI and CS-pMRI at the same under-sampling ratio
of 0.15 but with different random R1 proportions. Figures 4 and 5 show the simulation results with the
random sampling amounts (R1) of 0.1, 0.5, and 0.9 for CS-MRI and CS pMRI, respectively. The upper
images show the distributions of taken sampling data (the under-sampling pattern), while the lower images
are their respectively reconstructed images. When the random sampling amount (R1) increases, it can be
noticed that the general quality of the reconstructed image reduces in both cases, especially the aliasing noise
appearance at the high amount of random sampling (R1=0.9) as indicated by direct observation and image
quality indexes (E, Q, SSIM). This means that by same under-sampled data of k-space, the reconstructed
image quality will be improved when more sampling data is distributed around the center of k-space.
Moreover, by the same under-sampling ratio R and random sampling/Nyquist sampling ratio, the CS pMRI
proves better image quality than the CS-MRI as indicated by all image quality indexes. This finding
highlights that while random sampling satisfies the incoherence condition required by CS theory (introduced
by Lustig et al. [8]), fully sampling (Nyquist sampling) data compromises the coverage of low-frequency
information, which is essential for preserving global image contrast and anatomy.
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Figure 4. CS-MRI simulations at R=0.15 with different random sampling proportions R1: under-sampled
k-space patterns and reconstructed images

In this work, MRI images of different anatomical structures have been also used for more
thoroughly evaluating the proposed hybrid under-sampling method with varying the random proportion.
Figure 6 shows the simulation results of CS-MRI on brain, cardiac, and knee MRI images for under-sampling
ratio R of 0.15 and different random proportions R1 of 0.1, 0.5, and 0.9. As can be seen from upper photos in
the figure, the quality of reconstructed images is crucially affected by the random sampling proportion,
especially at high values of R1 (0.9). The quantitative evaluation of image quality indexes (normalized
average error E, Q-index, and SSIM) shown on the lower-row graphs of Figure 6 was averaged by 30
simulations, and the scale bar in each column is standard deviation (SD), which has confirmed these
observations. These findings suggest that under highly under-sampled ratios (R=0.15), maintaining a smaller
proportion of random sampling yields the best trade-off between error, visual quality, and structural fidelity
of reconstructed images from the under-sampled rata. Excessive random sampling in the CS-MRI reduces the
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effectiveness of k-space coverage, resulting in severe loss of diagnostic content, which is critically
detrimental to the anatomical detail of all brain, cardiac, and knee image reconstruction.
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Figure 5. CS-pMRI simulations at R=0.15 with different random sampling proportions R1: under-sampled
k-space patterns and reconstructed images
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Figure 6. Evaluation of random sampling proportions (R1) in CS-MRI at an under-sampling ratio (R=0.15)
for brain, cardiac, and knee MRI images

3.2. Statistical evaluation of image reconstruction with different under-sampling parameters

To provide a more rigorous assessment, 100 independent simulations were performed for each
combination of under-sampling ratio (R) and random sampling proportion (R1). The results clearly indicate
that image quality deteriorates significantly when the proportion of random under-sampling exceeds
approximately 60% of the total acquired k-space data. Here, the repeated simulations were performed for
each under-sampling ratio R, and the sampling amount of random under-sampling R1 varies from 0.1 to 0.9
(inversely, the Nyquist sampling amount R1 will reduce from 0.9 down to 0.1). Figure 7 shows the statistical
simulated estimation of the average of normalized mean squared error (E) for each sampling portion in the
CS-MRI (Figure 7(a)) and the CS-pMRI (Figure 7(b)). It can be seen that the error value E is lowest for the
cases of random under-sampling amounts lower than 60% (from R1-0.1 to R1-0.6) in both CS-MRI and CS-
PMRI. From this observation, across both CS reconstructions, dense Nyquist sampling of the central k-space
can consistently preserve contrast, reduced structural distortion, and yielded higher image quality metric
values. Moreover, it can be seen that the CS-pMRI outperforms CS-MRI alone in all tested configurations,
demonstrating the advantage of leveraging coil sensitivity encoding alongside sparsity constraints.
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Figure 7. The dependence of the normalized average error (E) on varying under-sampling ratios (R) and
random sampling proportions (R1) for; (a) CS-MRI and (b) parallel CS-pMRI

We also calculate average values (by 100 repeated simulations) for the universal image index Q and
the structural similarity index SSIM for systematically studying the influence of different random sampling
portions on the quality of image reconstruction in both CS-MRI and the CS-pMRI. Similar observations as seen
on the error E, averaged Q and SSIM indexes calculated with different random under-sampling proportions
(0.1 to 0.9) also confirm better image quality metrics when the random sampling amounts are smaller than 60%
as shown in Figures 8 and 9. Figures 8(a) and 9(a) respectively show the quantitative evaluations of Q and
SSIM indexes for CS-MRI, while Figures 8(b) and 9(b) show the same image quality metrics for CS-pMRI.
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Figure 8. The dependence of the average Q-index on varying under-sampling ratios (R) and random sampling
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From these observations, in all cases, image quality metrics remain relatively stable and favorable
when R1<0.6, but degrade sharply beyond this threshold. Dense Nyquist sampling at the k-space center
consistently preserves contrast, reduces structural distortion, and yields higher perceptual similarity.
Importantly, CS-pMRI achieves superior performance compared to CS-MRI across all tested configurations.
By leveraging coil sensitivity encoding in addition to sparsity constraints, CS-pMRI demonstrates improved
resilience against aliasing artifacts and noise, confirming its synergistic advantage over single-coil CS-MRI.

3.3. Discussion on our evaluated compressed sensing method

In this work, by statistically evaluation of the hybrid under-sampling with varying parameters, our
study lies in finding out a quantitative threshold in this hybrid under-sampling method. When random
sampling exceeds ~60% of total under-sampled k-space data, reconstruction quality drops markedly. While
earlier studies proposed hybrid or variable-density under-sampling strategies, they typically relied on
heuristic functions or fixed masks and did not quantify the relationship between random/Nyquist ratios and
image quality [11], [14], [15], [32]. Commonly, the center part of k-space contains high magnitude signals
determining the general contrast, brightness, and shapes of the image, while its outer part determines the
edges, details, and sharp transitions [33]. Thus, it is supposed that a perfect quality of the reconstructed image
will be defined by a balance between both these regions of k-space. In contrast, from our statistical
evaluations of different simulations, it can be confirmed that the sampled data is crucially required to be
densely taken around the original of k-space for better quality of reconstructed images.

Our result is consistent with the finding reported by Kojima et al. [14], which showed that optimal
under-sampling should include dense sampling near the k-space center. However, in our study, a more
comprehensive study has been performed to find out that a higher random sampling proportion of ~60% will
detrimentally affect the image quality, especially when high acceleration ratios are applied. Although this
threshold might be dependent on datasets and reconstruction algorithm, it provides a useful empirical
guideline for designing hybrid under-sampling patterns in Cartesian acquisitions.

Moreover, our work also found that the consistent superiority of CS-pMRI over CS-MRI highlights
the synergistic benefit of coil sensitivity encoding in resolving aliasing artifacts and improving noise
resilience. This is consistent with earlier studies [10], [12] and more recent CS-pMRI integrations [17], where
multi-coil data provides additional spatial encoding that relaxes the incoherence requirements of CS.

Compared to recent advanced DL-based MRI reconstruction studies [34]-[36], our method achieves
competitive quality without requiring large training datasets or high-end GPUs. DL methods have
demonstrated remarkable performance at higher acceleration factors by learning powerful image priors and
optimizing the sampling mask. For instance, Zibetti et al. [17], [18] employed a data-driven approach for
optimizing pMRI sampling tailored to specific coil geometries and further proposed alternation learned
adaptive masks coupled with unrolled networks to outperform heuristic variable-density patterns. More
recently, Kim et al. [36] has deeply reviewed on using spatiotemporal and multi-contrast redundancies for
deep-learning based reconstruction. However, these DL approaches have certain major limitations of data
requirement and hardware demand. In fact, large, diverse training datasets are essential for generalization
across anatomies, pathologies, and scanner vendors. Modern DL reconstructions are also often required
powerful VGA card (GPUs with >16 GB VRAM) for efficient inference and reconstruction. In contrast, our
method is model-free, easy to integrate into existing Cartesian MRI protocols, and computationally feasible
on standard CPUs for moderate-sized datasets.

From a clinical perspective, our findings may provide practical implications for clinical MRI
protocol design. Real MRI scanners impose hardware and software constraints on how under-sampling masks
can be implemented. In clinical workflow for informatics integration, the hybrid under-sampling parameters
(R and R1) can be embedded in sequence of data acquisition in user interface (Ul) software before MRI
scanning. The image reconstruction can be performed with NCG reconstruction or proper CS framework.
Our results suggest that ensuring at least certain amount of Nyquist sampling coverage is a safe design
principle: it balances incoherence with adequate low-frequency information, and aligns with current practices
where 30-50% of central lines are retained in routine brain imaging [6]. This provides meaningful scan time
reduction without detrimentally compromising diagnostic quality. In our work, maintaining at least 40%
Nyquist sampling around the k-space center while under-sampling its periphery can still achieve 5-7 times
acceleration (R=0.15 and R1<06), which directly improves patient throughput and reduces motion-related
artifacts. However, the trade-off between the image quality and the scan time should be carefully examined
by practical protocol designers to ensure diagnostic reliability, especially in subtle pathologies. More
importantly, our empirical threshold provides a quantitative guide for such decisions, offering a balance
between efficiency and reliability that can be integrated into clinical sequence development. Moreover, from
electrical engineering aspects, our results also inform MRI hardware. The ability of multi-coil arrays in
CS-pMRI to outperform single-coil CS suggests that coil geometry and sensitivity encoding are crucial in

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4471-4481



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4479

exploiting our proposed hybrid under-sampling approach. Optimizing RF coil configurations to maximize
central k-space encoding efficiency could further enhance acceleration performance, especially when Nyquist
coverage is constrained by hardware or time limitations.

Finally, these findings are especially relevant for scanners or institutions without advanced DL
reconstruction frameworks, where sampling pattern design remains the primary lever for acceleration. Even
in DL-enabled settings, this study’s empirical threshold can serve as a starting point for mask initialization
before fine-tuning via learning-based methods. Our ongoing work is currently focused on developing DL-
based reconstruction from under-sampled k-space (not presented in this study). Using this practical guideline
of the empirical threshold for hybrid under-sampling can result in much better reconstruction image quality,
even at high acceleration factors in the range of 7-10.

4. CONCLUSION

This work investigated the effect of varying proportions between random and Nyquist sampling in a
hybrid CS-MRI and parallel MRI (CS-pMRI). Using systematic simulations and evaluations, we
demonstrated that image reconstruction quality strongly depends on maintaining sufficient sampling density
at the center of k-space. When random sampling exceeds approximately 60% of the total under-sampled data,
reconstruction performance degrades sharply, leading to visible aliasing and reduced image fidelity. These
findings confirm that while random sampling ensures incoherence, dense Nyquist coverage of low-frequency
components is indispensable for preserving image contrast and structural integrity. We have also found that
CS-pMRI consistently outperformed CS-MRI, as validated by quantitative image quality metric
measurements. This synergy highlights the potential of CS-pMRI as a more robust and reliable strategy for
accelerated MRI, particularly in this hybrid under-sampling regimes. The empirical threshold identified in
this study offers practical guidance for sampling pattern design in Cartesian MRI. Specifically, ensuring that
at least 40% of k-space acquisition is allocated to Nyquist sampling can safeguard diagnostic image quality
while still achieving significant reduction of scan time. Importantly, the proposed hybrid approach is
computationally feasible on standard hardware and can be readily integrated into existing clinical protocols,
making it suitable for environments without access to DL-based reconstruction. Overall, the results provide a
simple yet effective guideline for balancing random and deterministic sampling to optimize MRI
acceleration, which was not quantitatively addressed in earlier works. This contribution offers both
theoretical insight and practical utility, ensuring that hybrid under-sampling strategies can be possibly applied
in real-world MRI protocols with predictable image quality outcomes.
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