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 Compressed sensing (CS) has been widely applied in magnetic resonance 

imaging (MRI) to accelerate the image acquisition without significantly 

reducing its image quality. In Cartesian MRI, acquisition time can be 

reduced by skipping phase-encoding steps for faster data acquisition. 

However, the balance between random under-sampling and Nyquist 

sampling at the k-space center strongly determines image quality. In this 

study, we systematically evaluate the impact of different random-to-Nyquist 

sampling ratios for both single-coil (CS-MRI) and multi-coil (CS-pMRI) 

reconstructions. Simulation results reveal that dense Nyquist sampling 

around the k-space center is essential for maintaining image fidelity, 

whereas reconstruction quality deteriorates sharply when random sampling 

exceeds approximately 60% of the total under-sampled data. Moreover, CS-

pMRI consistently outperforms CS-MRI under equivalent under-sampling 

factors, benefiting from additional coil sensitivity information that improves 

resilience against aliasing and noise. These findings provide practical 

guidelines for hybrid under-sampling design, emphasizing that sufficient 

Nyquist sampling coverage of central k-space is crucial for achieving high-

quality reconstructions while enabling high acceleration in CS-MRI. 
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1. INTRODUCTION 

Magnetic resonance imaging (MRI) is one of the most powerful non-invasive imaging methods in 

advanced medical diagnosis, providing high-resolution anatomical and functional information without using 

ionizing radiation. However, a major limitation of conventional MRI is its time consuming acquisition time, 

which can lead to motion artifacts, patient discomfort, and limited throughput in clinical practice. Reducing 

the acquisition time without considerably sacrificing image quality is therefore a central research goal in MRI 

technology. This challenge is often addressed by under-sampling k-space data and reconstructing the image 

using proper algorithms that exploit data redundancy and prior knowledge. 

Over the last two decades, numerous strategies have been developed to accelerate MRI acquisition. 

The parallel MRI (pMRI) is one of these methods, which allows much faster image acquisition than the 

normal MRI due to its simultaneous signals receiving with an array of RF coils (multi-coils). Some of the 

common pMRI methods are used for reducing image scan time, such as the simultaneous acquisition of 

spatial harmonics (SMASH) [1] and sensitivity encoding (SENSE) [2], and generalized autocalibrating 

partially parallel acquisitions (GRAPPA) [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Many of other techniques primarily focus on k-space, a concept was first proposed by Donald B. 

Twieg in 1983 for describing nuclear magnetic resonance (NMR) image reconstruction by 2D Fourier 

encoding [4]. When taking an MRI scan, the encoded NMR signals are collected and sampled by the Nyquist 

sampling criteria as k-space for image reconstruction. The Nyquist criteria ensure the reconstructed image is 

free of aliasing artifacts. However, it has been found that a NMR image can be sparsely represented in a 

known transform domain [5]. Therefore it can be recovered from randomly under-sampled k-space data using 

nonlinear reconstruction [6], [7]. Compressed sensing MRI (CS-MRI), introduced by Lustig et al. [8], 

leverages sparsity in the transform domain and incoherent under-sampling to accurately recover images from 

far fewer k-space samples than Nyquist theory requires [9]. Several hybrid approaches that combine CS and 

pMRI have been proposed [10]-[13], showing improved reconstruction quality over either method alone. 

Sampling pattern design has also been extensively studied, random sampling with variable density, chaotic 

under-sampling, and a combination of random and Nyquist sampling being common choices to achieve 

incoherence while maintaining coverage of low-frequency components [14]-[16]. Although these studies 

clearly demonstrated the need for central k-space coverage and incoherent sampling, most studies 

heuristically propose fixed under-sampling masks and stop short of quantifying how the balance between 

random and Nyquist samples for ensuring image fidelity. Recently, data-driven and deep learning (DL)-based 

methods [17]-[19] have emerged, enabling joint optimization of sampling and reconstruction while yielding 

state-of-the-art performance at acceleration factors previously unattainable with conventional techniques. 

More recently, CS has been combined with deep adaptive perceptual generative adversarial network 

(DAPGAN) [20], [21] and self-supervised contrastive learning [22] for improving the accuracy of under-

sampled image reconstruction. However, these methods typically require large, high quality training datasets 

to generalize well across anatomies, pathologies, and scanner vendors for image reconstruction. Moreover, 

training and deploying state-of-the-art DL models demand high performance hardware, particularly GPUs 

with large memory which may not be available in all clinical or research environments. 

Despite these advances, there remain open problems in optimization of under-sampling pattern for 

Cartesian MRI acquisitions. Specifically, while random sampling satisfies the incoherence condition required 

by CS theory, excessive randomness can degrade the coverage of low-frequency k-space, which is essential for 

preserving image contrast and overall structure [8], [23], [24]. Conversely, sampling strategies that heavily 

favor the k-space center may under-sample high-frequency details, leading to blur image reconstruction [25]. 

Our previous works have acknowledged this trade-off but have not systematically quantified the effect of the 

relative proportion of low-frequency (Nyquist sampling) and random sampling on reconstruction quality, 

especially in the context of combined CS and pMRI reconstruction [11], [15]. However, these studies have 

either adopted fixed sampling patterns or relied on heuristic density functions, without establishing empirical 

guidelines on the optimal balance between random and deterministic sampling regions. 

In this study, we address this issue by systematically evaluating hybrid sampling patterns that 

combine a fully-sampled low-frequency region (near k-space center) with a randomly under-sampled high-

frequency region (periphery of k-space). By using retrospective simulations on both single-coil CS (CS-MRI) 

and multi-coil (CS-pMRI) reconstructions, we vary the proportion of random sampling and analyze its 

impact on quality metrics of image reconstruction. We propose a threshold in the random sampling ratio 

beyond which reconstruction quality degrades sharply, and also demonstrate that the CS-pMRI approach 

consistently outperforms CS-MRI alone under equivalent under-sampling factors. These findings provide 

guidance for practical MRI protocol design for high acceleration of CS. 

 

 

2. METHOD 

2.1.  The basics of compressed sensing in magnetic resonance imaging 

CS is known as a method that reduces the number of measurements required for reconstructing the 

signal or image without significantly decreasing its quality. In traditional MRI, the NMR signals are sampled 

with finite frequency information. In a MRI scan, data measurements are required to obtain a complete k-

space dataset for proper image reconstruction [26]. Unlike frequency encoding, phase encoding takes a much 

longer time to be completed. Therefore, if the phase encoding lines are reduced, the scan time will be greatly 

reduced. Moreover, the highest magnitude data is distributed around the center of the k-space (low frequency 

region) and rapidly decays toward its border. The most important information that seems to be required to 

reconstruct an NMR image is concentrated at k-space center. Thus, taking the under-sampling data higher 

around the k-space origin will be more realistic and practical. The required time for acquiring k-space is 

determined by the number of phase encoding (𝑘𝑦) measurements (the red lines are 2D Cartesian samples), as 

shown in Figure 1. In this figure, all k-space lines (indicated by the red arrows pointing toward the left) are 

acquired, followed by the frequency-encoding and phase-encoding steps. 
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Figure 1. K-space data acquisition in traditional Cartesian MRI [26] 

 

 

2.2.  The proposal of new hybrid under-sampling with varying parameters in CS-MRI 

Previously, we proposed a combination of random and Nyquist sampling (a hybrid under-sampling 

method) applied for MRI k-space (Figure 2(a)), which divided the taken number of phase encoding lines into 

two separate parts (the random under-sampling distributed at high frequency domain and the Nyquist 

sampling at the low frequency domain of the k-space [11], [15]). This method has been proven that it is 

capable of eliminating the disadvantages of the traditional random CS. The quality of the reconstructed image 

still remains with a small value of the under-sampling ratio (R). Different from the Cartesian Nyquist 

sampling (Figure 2(b)), the k-space matrix (N×N) is under-sampled by a majority of measurements defined 

by both a random sampling ratio R1 and a Nyquist sampling R2 ratio and (Figure 2(c)). Here, R1 represents 

the amount of random sampling part in the whole k-space, while R2 represents the Nyquist sampling around 

the k-space center. The total number of measurement samples is defined by the under-sampling ratio R 

(R=R1+R2). The advantage of this method is to ensure that certain amount of sampling data around the  

k-space origin is always taken by the Nyquist samplings, which had been confirmed the advantages of this 

method as compared to the traditional random and regular under-sampling methods. In these previous 

studies, we proposed a hybrid undersampling method by using R1=70% for random under-sampling and 

R2=30% for the Nyquist sampling. However, this ratio was heuristic and based on the need to guarantee 

minimal low-frequency coverage at the center of k-space while retaining incoherence with random sampling. 

Although this hybrid under-sampling has obviously outweighed traditional random methods, the influence of 

random under-sampling/Nyquist sampling (R1/R2) ratio on the quality of image reconstruction is still 

required to be thoroughly and systematically evaluated. 
 

 

   

(a) (b) (c) 
 

Figure 2. The model of CS using the hybrid under-sampling method; (a) MRI K-space, (b) Cartesian Nyquist 

sampling, and (c) Cartesian hybrid proposed undersampling [15] 
 
 

Therefore, in this study, we investigate the effect of varying the proportion between low-frequency 

fully-sampled (Nyquist) and high-frequency randomly-sampled regions in the hybrid Cartesian under-

sampling for both CS-MRI and CS-pMRI reconstruction. The methodology was proposed to be fully 

applicable to a broad range of Cartesian MRI acquisitions. Figure 3 illustrates the experimental workflow, 

which consists of: i) MRI image data; ii) generation of the hybrid under-sampling pattern with varying 

parameters; iii) image reconstruction; and iv) statistically quantitative evaluations. In this workflow, MRI 

image data (single-coil or multi-coils) is loaded to obtain fully sampled k-space. This fully sampled k-space 

is then under-sampled using a hybrid under-sampling mask with varying parameters. A proper reconstruction 
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algorithm is selected to recover the image from the under-sampled data. Finally, image quality metrics are 

calculated to evaluate efficiency of the under-sampling method. 
 
 

 
 

Figure 3. The workflow of this proposed under-sampling method and evaluation 
 

 

The experimental workflow of hybrid under-sampling evaluations with varying parameters for  

CS-MRI and CS-pMRI acceleration: 

- Step 1: load MRI data (single coil and multi-coil image) for transforming into fully-sampled k-space. 

- Step 2: generate the under-sampled data (kx, ky) defined by the hybrid under-sampling pattern. The 

number of sampled data is based on the pre-defined under-sampling ratio R and the varying proportion 

between random and Nyquist sampling R1/R2 (assign R1 for random sampling and R2 for Nyquist 

sampling, and R=R1+R2). Determine coordinates (kx, ky) of the k-space for each case and store them as a 

template. Then, obtain the digital data of the under-sampled k-space based on the template and store them 

in a vector for each case. 

- Step 3: perform the single coil and multi-coil reconstruction using the NCG algorithm. 

- Step 4: calculate average values of image quality metrics and perform statistical evaluations. 

 

2.3.  Datasets and simulations 

In this work, two datasets were used: single coil images (for CS-MRI experiments) is 2D images 

selected from the MRI dataset from MATLAB that contains 27 slices of a human head phantom (128×128 

matrix, complex-valued) arranged into a 4-D array of size 128-by-128-by-1-by-27 and multi-coil images (for 

CS-pMRI experiments) is a 3-D MPRAGE dataset acquired with an eight-channel head coil 

(TE/TR=3.45/2530 ms, TI=1100 ms, FOV=25.6 cm, matrix=256×256, and slice thickness=1.33 mm), which 

was obtained from this work [27]. For evaluation of different anatomical context, cardiac MRI images (from 

[28]) and fastMRI knee images (from [29]) were also used in this work with dataset user agreement. 

To study the effect of different ratios between random and Nyquist sampling to the reconstructed 

image quality, the value of R1 will be varied from 0.1 to 0.9 for different under-sampling ratio R in a range 

between 0.05 and 0.5. For each trial: the complex-valued k-space data was computed via 2D FFT for each 

slice. The under-sampling mask generated by the hybrid under-sampling method was applied retrospectively 

in the phase-encoding direction only. For each under-sampling ratio, 100 under-sampling masks are 

randomly repeated per trial for computational feasibility. These statistical evaluations based on numerical 

simulations will be performed for different under-sampling ratios with varying random R1 applying for both 

CS-MRI and CS-pMRI. The simulations were performed with a personal computer (Core i5-12100, 16 GB 

RAM, and SSD drive), the consuming time for each trial is about 10s (CS-MRI) and 2s (CS-pMRI). 

 

2.4.  Image reconstruction and evaluations 

In the CS-MRI, the single coil MRI image reconstruction was carried out by the optimized nonlinear 

conjugate gradient (NCG) as described in our previous studies [11], [15]. This algorithm adapted from  

Lustig et al. [8], which was proposed to reconstruct an MRI image from under-sampled k-space data using 

CS principles. It combines data consistency with sparsity priors in both the wavelet domain and the total 

variation (TV) domain, and solves the optimization via NCG for minimizing the following objective as 

shown in (1): 
 
𝑚𝑖𝑛

𝑥

1

2
||𝐹𝑢𝑥 − 𝑦||2

2 +  𝜆𝑇𝑉||𝑇𝑉(𝑥)||1  +  𝜆𝑤||𝑊(𝑥) ||1 (1) 

 

This NCG reconstruction algorithm used in this work is described as following parameters: the 

maximum number of iterations: 30; the sparsity transform, 𝜓: daubechies D4 wavelet basis; L1-wavelet norm 

smoothing: 𝜆𝑤 = 0.005; weight for TV penalty: 𝜆𝑇𝑉 = 0.002. These values were selected and optimized 

based on our previous studies [11], [15], which were empirically tuned to balance noise suppression with 

preservation of fine anatomical details, ensuring reproducibility of the reported results. 
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In the CS-pMRI, the multi-coil MRI image reconstruction was performed by 2D SENSE 

reconstruction using the NCG algorithm. This NCG configuration was chosen for its robustness and 

relatively low computational cost compared to more complex iterative algorithms, while still achieving high 

quality reconstruction in both CS-MRI and CS-pMRI settings. 

For quantitative evaluations, different image quality indexes such as mean squared error (E) for an 

average squared pixel error of the reconstructed MRI image compared to the ground-truth fully sampled 

image, the universal image quality index (Q) [30] for a perceptual metric sensitive to luminance and contrast; 

and the structural similarity index measure (SSIM) [31] for perceptual similarity between reconstructed and 

reference images, which were used to assess the simulation results. Each experiment was repeated 100 times 

with independent random masks to ensure statistical significance as aforementioned. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Image reconstruction from hybrid under-sampled data with varying random proportions 

To illustrate the impact of sampling ratios between random and fixed sampling amounts, the 

numerical simulations were performed for both the CS-MRI and CS-pMRI at the same under-sampling ratio 

of 0.15 but with different random R1 proportions. Figures 4 and 5 show the simulation results with the 

random sampling amounts (R1) of 0.1, 0.5, and 0.9 for CS-MRI and CS pMRI, respectively. The upper 

images show the distributions of taken sampling data (the under-sampling pattern), while the lower images 

are their respectively reconstructed images. When the random sampling amount (R1) increases, it can be 

noticed that the general quality of the reconstructed image reduces in both cases, especially the aliasing noise 

appearance at the high amount of random sampling (R1=0.9) as indicated by direct observation and image 

quality indexes (E, Q, SSIM). This means that by same under-sampled data of k-space, the reconstructed 

image quality will be improved when more sampling data is distributed around the center of k-space. 

Moreover, by the same under-sampling ratio R and random sampling/Nyquist sampling ratio, the CS pMRI 

proves better image quality than the CS-MRI as indicated by all image quality indexes. This finding 

highlights that while random sampling satisfies the incoherence condition required by CS theory (introduced 

by Lustig et al. [8]), fully sampling (Nyquist sampling) data compromises the coverage of low-frequency 

information, which is essential for preserving global image contrast and anatomy. 
 
 

 
 

Figure 4. CS-MRI simulations at R=0.15 with different random sampling proportions R1: under-sampled 

k-space patterns and reconstructed images 
 

 

In this work, MRI images of different anatomical structures have been also used for more 

thoroughly evaluating the proposed hybrid under-sampling method with varying the random proportion. 

Figure 6 shows the simulation results of CS-MRI on brain, cardiac, and knee MRI images for under-sampling 

ratio R of 0.15 and different random proportions R1 of 0.1, 0.5, and 0.9. As can be seen from upper photos in 

the figure, the quality of reconstructed images is crucially affected by the random sampling proportion, 

especially at high values of R1 (0.9). The quantitative evaluation of image quality indexes (normalized 

average error E, Q-index, and SSIM) shown on the lower-row graphs of Figure 6 was averaged by 30 

simulations, and the scale bar in each column is standard deviation (SD), which has confirmed these 

observations. These findings suggest that under highly under-sampled ratios (R=0.15), maintaining a smaller 

proportion of random sampling yields the best trade-off between error, visual quality, and structural fidelity 

of reconstructed images from the under-sampled rata. Excessive random sampling in the CS-MRI reduces the 
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effectiveness of k-space coverage, resulting in severe loss of diagnostic content, which is critically 

detrimental to the anatomical detail of all brain, cardiac, and knee image reconstruction. 

 

 

 
 

Figure 5. CS-pMRI simulations at R=0.15 with different random sampling proportions R1: under-sampled  

k-space patterns and reconstructed images 
 

 

 
 

Figure 6. Evaluation of random sampling proportions (R1) in CS-MRI at an under-sampling ratio (R=0.15) 

for brain, cardiac, and knee MRI images 

 

 

3.2.  Statistical evaluation of image reconstruction with different under-sampling parameters 

To provide a more rigorous assessment, 100 independent simulations were performed for each 

combination of under-sampling ratio (R) and random sampling proportion (R1). The results clearly indicate 

that image quality deteriorates significantly when the proportion of random under-sampling exceeds 

approximately 60% of the total acquired k-space data. Here, the repeated simulations were performed for 

each under-sampling ratio R, and the sampling amount of random under-sampling R1 varies from 0.1 to 0.9 

(inversely, the Nyquist sampling amount R1 will reduce from 0.9 down to 0.1). Figure 7 shows the statistical 

simulated estimation of the average of normalized mean squared error (E) for each sampling portion in the 

CS-MRI (Figure 7(a)) and the CS-pMRI (Figure 7(b)). It can be seen that the error value E is lowest for the 

cases of random under-sampling amounts lower than 60% (from R1-0.1 to R1-0.6) in both CS-MRI and CS-

pMRI. From this observation, across both CS reconstructions, dense Nyquist sampling of the central k-space 

can consistently preserve contrast, reduced structural distortion, and yielded higher image quality metric 

values. Moreover, it can be seen that the CS-pMRI outperforms CS-MRI alone in all tested configurations, 

demonstrating the advantage of leveraging coil sensitivity encoding alongside sparsity constraints. 
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(a) (b) 

 

Figure 7. The dependence of the normalized average error (E) on varying under-sampling ratios (R) and 

random sampling proportions (R1) for; (a) CS-MRI and (b) parallel CS-pMRI 
 

 

We also calculate average values (by 100 repeated simulations) for the universal image index Q and 

the structural similarity index SSIM for systematically studying the influence of different random sampling 

portions on the quality of image reconstruction in both CS-MRI and the CS-pMRI. Similar observations as seen 

on the error E, averaged Q and SSIM indexes calculated with different random under-sampling proportions  

(0.1 to 0.9) also confirm better image quality metrics when the random sampling amounts are smaller than 60% 

as shown in Figures 8 and 9. Figures 8(a) and 9(a) respectively show the quantitative evaluations of Q and 

SSIM indexes for CS-MRI, while Figures 8(b) and 9(b) show the same image quality metrics for CS-pMRI. 
 

 

  
(a) (b) 

 

Figure 8. The dependence of the average Q-index on varying under-sampling ratios (R) and random sampling 

proportions (R1) for; (a) CS-MRI and (b) CS-pMRI 
 

 

  
(a) (b) 

 

Figure 9. The dependence of the average SSIM-index on varying under-sampling ratios (R) and random 

sampling proportions (R1) for; (a) CS-MRI and (b) CS-pMRI 
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From these observations, in all cases, image quality metrics remain relatively stable and favorable 

when R1≤0.6, but degrade sharply beyond this threshold. Dense Nyquist sampling at the k-space center 

consistently preserves contrast, reduces structural distortion, and yields higher perceptual similarity. 

Importantly, CS-pMRI achieves superior performance compared to CS-MRI across all tested configurations. 

By leveraging coil sensitivity encoding in addition to sparsity constraints, CS-pMRI demonstrates improved 

resilience against aliasing artifacts and noise, confirming its synergistic advantage over single-coil CS-MRI. 

 

3.3.  Discussion on our evaluated compressed sensing method 

In this work, by statistically evaluation of the hybrid under-sampling with varying parameters, our 

study lies in finding out a quantitative threshold in this hybrid under-sampling method. When random 

sampling exceeds ~60% of total under-sampled k-space data, reconstruction quality drops markedly. While 

earlier studies proposed hybrid or variable-density under-sampling strategies, they typically relied on 

heuristic functions or fixed masks and did not quantify the relationship between random/Nyquist ratios and 

image quality [11], [14], [15], [32]. Commonly, the center part of k-space contains high magnitude signals 

determining the general contrast, brightness, and shapes of the image, while its outer part determines the 

edges, details, and sharp transitions [33]. Thus, it is supposed that a perfect quality of the reconstructed image 

will be defined by a balance between both these regions of k-space. In contrast, from our statistical 

evaluations of different simulations, it can be confirmed that the sampled data is crucially required to be 

densely taken around the original of k-space for better quality of reconstructed images. 

Our result is consistent with the finding reported by Kojima et al. [14], which showed that optimal 

under-sampling should include dense sampling near the k-space center. However, in our study, a more 

comprehensive study has been performed to find out that a higher random sampling proportion of ~60% will 

detrimentally affect the image quality, especially when high acceleration ratios are applied. Although this 

threshold might be dependent on datasets and reconstruction algorithm, it provides a useful empirical 

guideline for designing hybrid under-sampling patterns in Cartesian acquisitions. 

Moreover, our work also found that the consistent superiority of CS-pMRI over CS-MRI highlights 

the synergistic benefit of coil sensitivity encoding in resolving aliasing artifacts and improving noise 

resilience. This is consistent with earlier studies [10], [12] and more recent CS-pMRI integrations [17], where 

multi-coil data provides additional spatial encoding that relaxes the incoherence requirements of CS. 

Compared to recent advanced DL-based MRI reconstruction studies [34]-[36], our method achieves 

competitive quality without requiring large training datasets or high-end GPUs. DL methods have 

demonstrated remarkable performance at higher acceleration factors by learning powerful image priors and 

optimizing the sampling mask. For instance, Zibetti et al. [17], [18] employed a data-driven approach for 

optimizing pMRI sampling tailored to specific coil geometries and further proposed alternation learned 

adaptive masks coupled with unrolled networks to outperform heuristic variable-density patterns. More 

recently, Kim et al. [36] has deeply reviewed on using spatiotemporal and multi-contrast redundancies for 

deep-learning based reconstruction. However, these DL approaches have certain major limitations of data 

requirement and hardware demand. In fact, large, diverse training datasets are essential for generalization 

across anatomies, pathologies, and scanner vendors. Modern DL reconstructions are also often required 

powerful VGA card (GPUs with >16 GB VRAM) for efficient inference and reconstruction. In contrast, our 

method is model-free, easy to integrate into existing Cartesian MRI protocols, and computationally feasible 

on standard CPUs for moderate-sized datasets. 

From a clinical perspective, our findings may provide practical implications for clinical MRI 

protocol design. Real MRI scanners impose hardware and software constraints on how under-sampling masks 

can be implemented. In clinical workflow for informatics integration, the hybrid under-sampling parameters 

(R and R1) can be embedded in sequence of data acquisition in user interface (UI) software before MRI 

scanning. The image reconstruction can be performed with NCG reconstruction or proper CS framework. 

Our results suggest that ensuring at least certain amount of Nyquist sampling coverage is a safe design 

principle: it balances incoherence with adequate low-frequency information, and aligns with current practices 

where 30–50% of central lines are retained in routine brain imaging [6]. This provides meaningful scan time 

reduction without detrimentally compromising diagnostic quality. In our work, maintaining at least 40% 

Nyquist sampling around the k-space center while under-sampling its periphery can still achieve 5–7 times 

acceleration (R=0.15 and R1<06), which directly improves patient throughput and reduces motion-related 

artifacts. However, the trade-off between the image quality and the scan time should be carefully examined 

by practical protocol designers to ensure diagnostic reliability, especially in subtle pathologies. More 

importantly, our empirical threshold provides a quantitative guide for such decisions, offering a balance 

between efficiency and reliability that can be integrated into clinical sequence development. Moreover, from 

electrical engineering aspects, our results also inform MRI hardware. The ability of multi-coil arrays in  

CS-pMRI to outperform single-coil CS suggests that coil geometry and sensitivity encoding are crucial in 
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exploiting our proposed hybrid under-sampling approach. Optimizing RF coil configurations to maximize 

central k-space encoding efficiency could further enhance acceleration performance, especially when Nyquist 

coverage is constrained by hardware or time limitations. 

Finally, these findings are especially relevant for scanners or institutions without advanced DL 

reconstruction frameworks, where sampling pattern design remains the primary lever for acceleration. Even 

in DL-enabled settings, this study’s empirical threshold can serve as a starting point for mask initialization 

before fine-tuning via learning-based methods. Our ongoing work is currently focused on developing DL-

based reconstruction from under-sampled k-space (not presented in this study). Using this practical guideline 

of the empirical threshold for hybrid under-sampling can result in much better reconstruction image quality, 

even at high acceleration factors in the range of 7–10. 

 

 

4. CONCLUSION 

This work investigated the effect of varying proportions between random and Nyquist sampling in a 

hybrid CS-MRI and parallel MRI (CS-pMRI). Using systematic simulations and evaluations, we 

demonstrated that image reconstruction quality strongly depends on maintaining sufficient sampling density 

at the center of k-space. When random sampling exceeds approximately 60% of the total under-sampled data, 

reconstruction performance degrades sharply, leading to visible aliasing and reduced image fidelity. These 

findings confirm that while random sampling ensures incoherence, dense Nyquist coverage of low-frequency 

components is indispensable for preserving image contrast and structural integrity. We have also found that 

CS-pMRI consistently outperformed CS-MRI, as validated by quantitative image quality metric 

measurements. This synergy highlights the potential of CS-pMRI as a more robust and reliable strategy for 

accelerated MRI, particularly in this hybrid under-sampling regimes. The empirical threshold identified in 

this study offers practical guidance for sampling pattern design in Cartesian MRI. Specifically, ensuring that 

at least 40% of k-space acquisition is allocated to Nyquist sampling can safeguard diagnostic image quality 

while still achieving significant reduction of scan time. Importantly, the proposed hybrid approach is 

computationally feasible on standard hardware and can be readily integrated into existing clinical protocols, 

making it suitable for environments without access to DL-based reconstruction. Overall, the results provide a 

simple yet effective guideline for balancing random and deterministic sampling to optimize MRI 

acceleration, which was not quantitatively addressed in earlier works. This contribution offers both 

theoretical insight and practical utility, ensuring that hybrid under-sampling strategies can be possibly applied 

in real-world MRI protocols with predictable image quality outcomes. 
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