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 Soil erosion poses a serious environmental and agricultural threat that 

undermines land productivity, sustainability, and ecosystem stability. This 

study develops a robust machine learning framework for predicting and 

analyzing soil erosion across diverse landscapes by integrating advanced 

remote sensing data, climate indicators, and soil characteristics. Spectral 

indices such as the normalized difference vegetation index (NDVI), moisture 

stress index (MSI), and surface albedo were employed to assess vegetation 

condition, moisture levels, and surface reflectance. The proposed model, 

based on the extreme gradient boosting (XGBoost) algorithm, classifies 

erosion stages with up to 99% accuracy, ranging from healthy land to 

severely degraded areas. The methodology includes comprehensive feature 

engineering, dataset preprocessing, and model evaluation. Furthermore, a 

comparative analysis with traditional models (USLE and RUSLE) highlights 

the superior predictive performance of the proposed approach. The findings 

offer valuable insights for sensor-based monitoring systems and cloud-based 

decision-support tools, supporting sustainable land use management, erosion 

risk mitigation, and effective soil conservation strategies. 
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1. INTRODUCTION 

Soil erosion is one of the most pressing environmental issues today. It significantly affects 

agriculture, ecosystems, and global food security [1]–[3]. The main consequence of erosion is the loss of 

productive soil layers, which reduces the soil’s ability to retain water and harms its structure. This ultimately 

leads to decreased agricultural productivity and sustainability [4]–[6]. The main erosion processes—water, 

wind, and human activity—vary in intensity based on local environmental factors and human actions, 

creating different management challenges [7]. To effectively combat soil erosion, we need timely and 

accurate monitoring and forecasting. However, standard methods often fall short in providing complete 

https://creativecommons.org/licenses/by-sa/4.0/
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information. The rise of artificial intelligence and remote sensing in recent years has opened up new ways to 

monitor and predict soil erosion [8]–[10]. 

High-resolution satellite data, particularly from Sentinel-2, has proven very useful. It allows for 

large-scale assessments of soil condition using spectral indices like the normalized difference vegetation 

index (NDVI), moisture stress index (MSI), and surface albedo [11]. These parameters offer essential 

information on vegetation health, soil water movement, and surface reflectance, crucial for estimating erosion 

risk. The use of machine learning algorithms in erosion research has improved how we handle large datasets 

and make accurate predictions [12], [13]. Among the various machine learning methods, extreme gradient 

boosting (XGBoost) stands out for its efficiency and strong predictive power, especially when dealing with 

complex relationships among environmental factors [14]–[16]. Additionally, new deep learning techniques 

like convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory 

(LSTM) networks are even better at simulating spatial and temporal erosion risk patterns [17]. 

Recent studies highlight the effectiveness of these approaches in different environmental settings. 

For example, research using RNN, CNN, and LSTM to evaluate soil water erosion risk found that elevation 

significantly affects erosion dynamics, successfully identifying high-risk areas [18]. Similarly, improvements 

in deep convolutional neural networks (DCNN) and optimization methods have shown remarkable accuracy 

in environmental classification tasks, further confirming their usefulness in monitoring erosion [19]. 

Moreover, machine learning techniques like random forest (RF), partial least squares regression (PLSR), and 

deep neural networks (DNN) have effectively pinpointed key predictors of erosion, such as rainfall, drainage 

density, landscape fragmentation, and basin topography. This information is vital for focused watershed 

management [20], [21]. Since rainfall erosivity is vital in erosion modeling, combining machine learning-

based estimations of erosivity with remote sensing data can greatly improve prediction accuracy and 

reliability, especially in varying climate conditions [22], [23]. This study aims to enhance erosion prediction 

methods by developing and applying innovative machine learning models that draw on remote sensing data 

and climatic factors. The new approach combines high-resolution satellite imagery, advanced spectral 

indices, and strong machine learning algorithms for thorough erosion forecasting. The results of this research 

will significantly support effective land management, erosion control strategies, and sustainable agricultural 

growth, thus helping to reduce soil degradation risks. 

However, current studies often face challenges, such as the limited spatial resolution of satellite 

imagery and the lack of a unified framework that uses multiple spectral indicators together. Specifically, the 

combined use of MSI, albedo, and normalized difference moisture index (NDMI) in one machine learning 

model for erosion forecasting has been seldom explored. This study seeks to fill that gap. 

Recent advances in deep learning and hybrid modeling have significantly improved erosion 

prediction capabilities. For example, CNN and LSTM models have been applied to capture spatial-temporal 

erosion dynamics with high accuracy. Ensemble approaches, such as stacking and blending of RF, XGBoost, 

and light gradient boosting machine (LightGBM), have shown superior predictive performance in 

heterogeneous landscapes. Moreover, hybrid models integrating remote sensing data with physical process-

based models have emerged as powerful tools for erosion forecasting. Incorporating these recent 

developments into the present work ensures a comprehensive understanding of state-of-the-art approaches. 

 

 

2. METHOD 

In modern soil erosion research, the use of Sentinel-2 satellite data in combination with machine 

learning methods is of particular importance. Remote sensing provides highly accurate information on the 

state of vegetation, humidity, and surface reflectivity, while the integration of spectral indices and 

classification algorithms ensures the identification of degraded areas with high reliability. The developed 

approach is aimed at systematizing data processing and building a reproducible land monitoring 

methodology. The proposed algorithm, see Figure 1, is an integration of remote sensing methods, spectral 

index calculation, and machine learning. Each stage of the scheme is aimed at sequential processing of 

satellite data, their normalization, and further classification of land conditions. The use of the XGBoost 

model ensures resistance to noise, high classification accuracy, and the ability to predict soil degradation 

stages. The final system demonstrates versatility and can be adapted to various climatic and soil conditions, 

which makes it an effective tool for monitoring and preventing erosion. 

Description of the algorithm: 

− Data collection. The first stage involves collecting remote sensing data, which are multispectral images. 

The data includes spectral channels such as blue (B2), red (B4), near infrared (NIR) (B8), and shortwave 

infrared (SWIR) (B11 and B12). These spectral channels form a set of variables that serve as the basis for 

calculating indices reflecting the state of the soil and vegetation. Target labels representing the stages of 

soil erosion are also added to this data: normal, first, second, and third degrees. 
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− Calculation of spectral indices. The next stage involves calculating key indices such as NDVI, MSI, and 

NDMI from the original spectral data. These indices allow us to estimate the density of vegetation, the 

level of soil dryness and its moisture. Each index is a characteristic reflecting a certain aspect of the soil 

condition and plays an important role in further analysis. 

− Albedo calculation. Albedo, or surface reflectivity, is calculated based on spectral channels. This indicator 

helps to identify bare and degraded lands, which tend to have high albedo values due to the lack of vegetation. 

Albedo calculation complements spectral indices by providing additional information on soil health. 

− Indices normalization. To integrate all indices into a single analysis, each index undergoes a 

normalization step. This is necessary to bring the values to a single scale so that they can be compared 

and used in further combined analysis. Normalized values reflect the relative contribution of each index 

to the overall soil health indicator. 

− Integration into a combined indicator. Once the indices have been normalized, a total erosion indicator is 

calculated. This indicator combines the effects of all indices, such as albedo, dryness, and soil moisture, 

taking into account their weighting factors. The combined indicator allows you to quantify the likelihood 

of erosion and highlight problem areas.  

− Classification by erosion stages. The combined index values and normalized indices are used to classify 

soil areas by erosion stages. Based on pre-defined threshold values, each area is classified as being in a 

normal state or at one of the erosion stages (initial, moderate, and high). This classification gives a clear 

picture of the land condition. 

− Training the machine learning model. The XGBoost algorithm is used to improve the classification 

accuracy. The model is trained based on input data that includes normalized indices and target erosion 

stage labels. The model minimizes the loss function, which allows taking into account complex 

relationships between parameters and improving erosion prediction on new data. 
 
 

 
 

Figure 1. Data processing scheme: from calculating spectral indices to training the XGBoost classification 

model 
 

 

In this study, the XGBoost algorithm was employed as the core machine learning model due to its 

robustness, scalability, and superior performance in handling heterogeneous environmental data. Model 

training was carried out on a dataset containing 1,844,151 samples, divided into training (80%) and 

validation (20%) sets. Hyperparameters were optimized using a grid search approach with five-fold cross-

validation, with the following final configuration: learning rate=0.1, max_depth=7, n_estimators=300, 

subsample=0.8, and colsample_bytree=0.8. Feature importance analysis revealed that NDVI, MSI, and 
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albedo were the most significant predictors, while NDMI and SI contributed additional discriminative power. 

Feature selection was conducted using a combination of correlation analysis and recursive feature elimination 

(RFE) to avoid redundancy and improve generalization. 

Various remote sensing techniques based on the spectral characteristics of soil and vegetation are 

used to analyze soil erosion. One of the most effective methods is the application of vegetation indices [24]–

[26]. Soil adjusted vegetation index (SAVI) (1), NDVI (2), and soil index (SI) (3) are indices that allow us to 

study vegetation health, a key motivator for the study of erosion. 
 

𝑆𝐴𝑉𝐼 =  (𝑁𝐼𝑅 –  𝑅𝑒𝑑) / (𝑁𝐼𝑅 +  𝑅𝑒𝑑 +  𝐿)  ×  (1 +  𝐿), 𝑤ℎ𝑒𝑟𝑒 𝐿 =  0.5 (1) 
 

𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 –  𝑅𝑒𝑑) / (𝑁𝐼𝑅 +  𝑅𝑒𝑑) (2) 
 

𝑆𝐼 =  𝑅𝑒𝑑 / 𝑁𝐼𝑅 (3) 
 

NDVI is calculated based on the utilization of the NIR-red reflectance difference and ranges from  

-1 to 1. Low NDVI may indicate a scarcity of vegetation, typically associated with soil erosion. SAVI is a 

modification of NDVI that considers the effect of soil on reflectance and is applicable in regions where 

vegetation is low, with the spectrum being dominated by soil. Apart from this, the computation of albedo, a 

ratio of reflected solar radiation to incident radiation, plays a vital role in studying erosion. Albedo is an 

essential parameter that explains a surface's ability to reflect sunlight. Surfaces with unvegetated and eroded 

areas possess higher albedo values. Albedo may also be computed from multispectral data by summing up 

different spectral channels (4), i.e., blue (B2), red (B4), near-infrared (B8), and SWIR, B11, and B12. The 

higher albedo values can be utilized to map eroded or degraded land, especially in regions prone to wind 

erosion. 
 

𝐴lbedo = 0.15 ∗ B02 + 0.15 ∗ B03 + 0.25 ∗ B04 + 0.25 ∗ B08 + 0.1 ∗ B11 + 0.1 ∗ 𝐷12 (4) 
 

The other significant aspect of erosion analysis is measuring soil moisture. Moisture index-based 

techniques, such as MSI and NDMI, allow you to measure the soil and vegetation cover moisture. MSI is 

calculated as a ratio of the SWIR spectrum and near-infrared spectrum (NIR) and measures the degree of 

stress due to moisture deficiency. NDMI assists in estimating moisture content in plants and soil as a function 

of the difference in the variation of the NIR and SWIR wavelengths. The indices are also used extensively to 

analyze the condition of soils, as poor quality or eroded land loses its moisture-retaining capacity, resulting in 

desiccation and disintegration. In addition to albedo and vegetation index estimation, soil moisture analysis 

provides an overall idea of the soil's condition and its susceptibility to the erosion process. From individual 

approaches such as vegetation indices, albedo, and soil moisture, identification of universal indicators of 

erosion is feasible. However, combined methods must be used to perform an in-depth analysis of soil erosion. 

One of these methods is integrating albedo analysis and soil moisture evaluation. High albedo values and low 

moisture indices characterize degraded areas. Integrating these parameters enables more precise 

determination of the erodible regions, particularly in arid areas where wind erosion is dominant. Combining 

MSI and albedo analysis enables the detection of areas with high albedo reflection and low moisture content, 

indicating susceptibility to erosion and soil degradation. Soil moisture is a crucial parameter in estimating 

land condition. The soil moisture can be estimated using remote sensing and discrimination between dry, 

eroded soils and healthy lands. Soil moisture indices the MSI (5) measures the degree of soil moisture. Low 

MSI values indicate wet soil, while high values indicate dry soil, which may indicate erosion. 
 

𝑀𝑆𝐼 =
𝑆𝑊𝐼𝑅

𝑁𝐼𝑅
 (5) 

 

where SWIR (B11 in Sentinel-2) is the SWIR range, NIR (B8 in Sentinel-2) is the NIR range. NDMI (6) 

estimates vegetation and soil moisture content. Low NDMI values may indicate dry areas. 
 

𝑁𝐷𝑀𝐼 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
 (6) 

 

The combined mathematical (7), taking into account albedo, MSI, and NDMI, can be described as 

follows: albedo 𝐴 denotes the surface reflectivity, MSI indicates the degree of soil dryness, and NDMI (soil 

moisture index) reflects the moisture content of the soil. The threshold albedo values for eroded lands are 

designated as Amin and Amax. The range of MSI values, MSImin and MSImax, shows that the higher the MSI, 

the drier the soil. NDMImin and NDMImax values characterize the range of soil moisture index: the lower 

the NDMI, the drier the soil. 
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𝑅𝑒𝑠𝑢𝑙𝑡 = (
𝐴−𝐴𝑚𝑖𝑛

𝐴𝑚𝑎𝑥−𝐴𝑚𝑖𝑛
) ∗ (

𝑀𝑆𝐼−𝑀𝑆𝐼𝑚𝑖𝑛

𝑀𝑆𝐼𝑚𝑎𝑥−𝑀𝑆𝐼𝑚𝑖𝑛
) ∗ (1 −

𝑁𝐷𝑀𝐼−𝑁𝐷𝑀𝐼𝑚𝑖𝑛

𝑁𝐷𝑀𝐼𝑚𝑎𝑥−𝑁𝐷𝑀𝐼𝑚𝑖𝑛
) (7) 

 

where (
𝐴−𝐴𝑚𝑖𝑛

𝐴𝑚𝑎𝑥−𝐴𝑚𝑖𝑛
) represent normalized albedo value, which indicates the degree of surface exposure (the 

closer the value is to 𝐴𝑚𝑎𝑥, the higher the probability of erosion),(
𝑀𝑆𝐼−𝑀𝑆𝐼𝑚𝑖𝑛

𝑀𝑆𝐼𝑚𝑎𝑥−𝑀𝑆𝐼𝑚𝑖𝑛
) represent normalized MSI 

value, which indicates the degree of soil dryness (the higher the MSI, the drier the soil),  

(1 −
𝑁𝐷𝑀𝐼−𝑁𝐷𝑀𝐼𝑚𝑖𝑛

𝑁𝐷𝑀𝐼𝑚𝑎𝑥−𝑁𝐷𝑀𝐼𝑚𝑖𝑛
) represent normalized inverse NDMI value, which is used to take into account soil 

moisture (the lower the NDMI, the drier the soil). Considers albedo (4), where high values indicate bare and 

possibly eroded soil. It also considers the dryness of the soil, which is characterized by the MSI index; the 

higher the MSI value, the drier the soil. The NDMI index characterizes the Wetness of the soil; the lower its 

value, the drier the soil. The final combination of these factors allows you to assess the likelihood of erosion 

accurately. The higher the result, the more likely a plot of land is to be subject to erosion. 

The threshold values for NDVI, MSI, and albedo applied in this study to classify erosion stages were 

established through a combination of literature review, statistical analysis, and expert judgment. Baseline 

threshold ranges (e.g., NDVI<0.1 for severely degraded land, NDVI 0.1–0.2 for moderate degradation, and 

albedo>0.25 indicating bare soil) were adapted from previous remote sensing and soil erosion research [11], 

[18], [20], [21]. These values were then refined by analyzing the distribution of spectral indices in the 

collected Sentinel-2 dataset, ensuring that class boundaries corresponded to distinct changes in vegetation 

density, surface reflectance, and soil moisture. Finally, the selected thresholds were validated through 

consultations with soil scientists familiar with the environmental and climatic conditions of the study area. 

The dataset used in this research was derived from Sentinel-2 Level-1C imagery with a spatial 

resolution of 10 m, covering the period 2018–2024. The study area spans semi-arid and agricultural 

landscapes in southern Kazakhstan, characterized by diverse topography and seasonal dynamics. 

Preprocessing steps included atmospheric correction (using Sen2Cor), cloud masking (using QA60 bands), 

geometric correction, and spectral calibration. Vegetation indices (NDVI, SAVI), soil moisture indices (MSI, 

NDMI), and albedo were computed for each pixel and normalized to a [0,1] range. Additional topographic 

layers, such as slope and elevation from SRTM DEM, were integrated to enhance model performance. All 

features were temporally aligned and spatially resampled to a unified grid to ensure consistency. 

 

 

3. RESULTS  

Based on the segmentation from spectral indices, albedo, and soil moisture assessment, a dataset 

was created to train the machine learning model. This dataset provides detailed information on land 

conditions, categorizing them into four classes: normal, first erosion stage, second erosion stage, and third 

erosion stage. The classification used vegetation indices, like NDVI, and albedo to identify surface 

reflectivity. It also included soil moisture indices, such as MSI and NDMI. These factors are important for 

determining land conditions and estimating erosion processes.  

The dataset is based on time-lapse data, which includes vegetation indices, albedo, and soil moisture 

for each land plot. For each plot, the observation date, NDVI index that shows vegetation levels, albedo that 

indicates how well the surface reflects solar radiation, MSI that shows soil moisture stress, and NDMI that 

measures soil moisture are recorded. All these indicators create a clear structure for training machine learning 

models. Each data row includes information about soil conditions and its classification into one of four 

categories: "stage of erosion." Lands marked as "Normal" show healthy growth, "Normal," "First stage of 

erosion," "Second stage of erosion," and "Third moderate albedo", and consistent soil water content. NDVI 

typically ranges from 0.3 to 0.6 for these plots, indicating high vegetation density. Albedo is low because 

dense vegetation absorbs solar radiation. MSI and NDMI values also fall within the normal range, indicating 

adequate soil moisture. 

The commencement of land degradation characterizes the onset of erosion. There is remaining 

vegetation cover in these patches, but it already shows degradation. The NDVI for these patches falls 

between 0.2 and 0.3, indicating a decline in vegetation cover density. Albedo is greater because the bare soil 

begins to reflect more solar radiation. MSI depicts the initiation of moisture deficit that can exacerbate 

erosion processes. In the second stage of erosion, the vegetation cover decreases drastically, exposing the 

soil. NDVI ranges from 0.1 to 0.2, and albedo increases, indicating vegetation loss and an augmentation of 

surface reflectivity. MSI reveals a high level of soil dryness, echoing that soil restoration is made 

progressively more complex. The third stage of erosion indicates complete soil degradation. Such areas are 

characterized by extremely low NDVI values (less than 0.1), indicating an almost complete absence of 

vegetation. The albedo is greater than 0.3, indicating high reflectivity of bare and damaged soil. MSI reaches 

high values, indicating severe soil dryness, and NDMI indicates a complete moisture deficit. These lands 
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require immediate restoration, as they are almost unsuitable for agricultural use. The dataset was created 

through image segmentation by applying a combination of vegetation indexes, including NDVI, SI, NDMI, 

and MSI, as well as albedo values. Data structures include acquisition dates of satellite images, NDVI, 

albedo, MSI, NDMI, and erosion classes that facilitate the effective prediction of the erosion process and the 

formulation of measures to reclaim deteriorated lands. 

This data was created by classifying images using a combination of vegetation indices, including 

NDVI, SI, NDMI, MSI, and albedo values. This enabled us to categorize levels of soil erosion into distinct 

classes. The segmentation was based on scientific vegetation and soil analysis methods, which enabled the 

assessment of land degradation. As a result, it was possible to identify four land classes reflecting different 

stages of erosion. The first class, "Norm," includes lands with minimal erosion. Lands in this class are in 

satisfactory condition and exhibit normal vegetation processes. In total, this category contains 1,775,535 

samples. The second class, "Initial stage of erosion," includes lands that are starting to show signs of erosion 

but are at an early stage. These places may experience vegetation loss or initial degradation of soil cover, and 

this category comprises 4,989 samples. The third class, "Medium Erosion Stage," includes lands at the 

moderate erosion stage. The signs of soil degradation are more pronounced here, and the soil loses its ability 

to retain moisture. At the same time, the albedo and MSI values increase. Lands in this category require 

serious restoration measures, and this group contains 56,110 samples. The fourth class, "Critical Erosion 

Stage," includes lands at the last stage of erosion. Soils in this category are almost wholly degraded; they are 

unable to retain moisture and have high albedo and MSI values, indicating critical dryness and a practically 

complete absence of vegetation. Robust destructive processes, such as weathering and loss of the fertile layer, 

are possible on these lands, and this category comprises 7,517 samples. The data structure for each land plot 

includes several parameters. The most significant parameter is the reception date of the satellite image, which 

enables the analysis of temporal dynamics of soil erosion. The NDVI index is also considered, reflecting 

vegetation condition on the territory: growing NDVI values correspondingly represent dense vegetation. 

Conversely, low values indicate the absence or very low amount of vegetation. SI defines the soil and is 

calculated as the ratio of the red channel to the near-infrared channel, allowing for the identification of 

degraded zones. Surface albedo measures the ability of the soil to backscatter solar radiation: high albedo 

values correspond to bare or eroded soils. Low values correspond to vegetated soils. The MSI measures the 

moisture in the soil, and as the MSI value rises, the soil becomes increasingly water-stressed. The NDMI 

examines the vegetation and moisture content of the soil in the near and mid-infrared bands. It is used to 

detect water stress in vegetation and soil. Each parcel of land is classified based on its level of erosion 

(ErosionClass) between 0 and 3, in which 0 denotes the standard, 1 denotes the initial stage of erosion, 2 

indicates the mean stage of erosion, and 3 represents the critical stage. Hence, using this data structure, an 

entire analysis of the land status, an estimation of erosion behavior, and the devising of appropriate steps to 

reclaim eroded areas are performed, as shown in Table 1. 
 

 

Table 1. Forecast of erosion dynamics 
Erosion class Amount of data Percentage of total (%) 

Norm (0) 1,775,535 ~96.4 

First stage (1) 4,989 ~0.3 
Second stage (2) 56,110 ~3 

Third stage (3) 7,517 ~0.4 

Total 1,844,151 100 

 

 

To objectively evaluate the effectiveness of the proposed approach, a comparative test of three 

machine learning algorithms was conducted: XGBoost, RF, and gradient boosting. The comparison was 

performed using key classification quality metrics, including accuracy, recall, precision, F1-score, ROC 

AUC, as well as additional statistical indicators AIC, BIC, and Cohen’s Kappa. Such a comprehensive 

analysis allowed us not only to evaluate the accuracy and completeness of the classification, but also to 

determine the degree of consistency between the model predictions and the actual class values, see Figure 2. 

Comparative analysis showed that all three models provided very high values of the main metrics. 

The RF model demonstrated the best indicators for accuracy (1.000), recall (1.000), and precision (1.000), 

which indicates its ability to reproduce the original data as accurately as possible. Gradient boosting showed 

similar results with a slight decrease: accuracy -0.9997, recall -0.9997, precision -0.9997, and F1-score -

0.9997. The XGBoost model also showed high accuracy: accuracy -0.9990, recall -0.9990, precision  

-0.9990, and F1-score -0.9990, but was slightly inferior to the other two algorithms in these indicators. In 

terms of ROC AUC metric, all three models achieved a maximum value of 1.000, indicating their excellent 

ability to discriminate between classes. Additional statistical tests showed differences, with XGBoost 

showing the lowest AIC (3,214,166) and BIC (3,214,239) values, indicating the best model in terms of 
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information optimality. In comparison, RF and gradient boosting had AIC values of 3,541,666 and 

3,811,920, respectively, while BIC values were 3,541,423 and 3,811,975. In terms of Cohen’s Kappa, 

Gradient Boosting showed the best value (0.9955), followed by RF (0.9900), while XGBoost showed a value 

of 0.9865, also indicating high, but slightly lower, classification consistency. Overall, the results show that 

RF provides the highest classification accuracy and recall, gradient boosting demonstrates the highest 

prediction consistency, and XGBoost stands out for its optimality in terms of AIC and BIC information 

criteria, making it the most balanced option for practical application in soil erosion monitoring tasks. 
 
 

 
 

Figure 2. Comparison of machine learning models 
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The performance of the proposed model was quantitatively evaluated using multiple standard 

metrics: accuracy, precision, recall, F1-score, root mean square error (RMSE), and coefficient of 

determination (R²). The XGBoost model achieved an overall accuracy of 0.9990, precision of 0.9990, recall 

of 0.9990, and F1-score of 0.9990 on the validation set. The RMSE was 0.018, and R² reached 0.996, 

indicating excellent predictive capability and strong correlation between predicted and observed erosion 

stages. These results confirm the model’s reliability in operational monitoring scenarios. 

After various analysis methods were applied, all the data were used to create a machine learning 

dataset. Spectral data, including vegetation indices, albedo, and moisture indices, were combined to train the 

machine learning models. The data included many different spectral features indicating the presence or 

absence of erosion in different land areas. The combined analysis allowed us to identify critical patterns in 

soil change due to erosion and create a quality dataset for training the models. Figure 3 shows the original 

images obtained by the Sentinel-2 satellite. The region includes different areas of fertile land with vegetation 

cover,, as well as empty, possibly already cultivated, or fallow land, which is visible. Figure 3(a) highlights 

an area predominantly composed of agricultural plots and vegetation, while Figure 3(b) represents a region 

with visible erosion patterns and a mix of cultivated and uncultivated places. 

 

 

  
(a) (b) 

 

Figure 3. Original image: (a) an area with agricultural plots and vegetation and (b) an area showing erosion 

patterns and less vegetative cover 

 

 

This image is a baseline for further soil analysis and erosion assessment using spectral indices. 

Figure 4 illustrates the results of an albedo calculation, which measures the surface's ability to reflect solar 

radiation; Figure 4(a) highlights an area with higher reflectivity, showcasing agricultural plots and regions 

with sparse vegetation, while Figure 4(b) shows an area with lower reflectivity, characterized by visible 

erosion patterns and less vegetative cover. These results provide valuable insights into surface characteristics, 

aiding in the identification of soil changes and land erosion. Here, most of the ground is yellow, indicating 

high albedo values, often associated with eroded or bare areas. 

 

 

  
(a) (b) 

 

Figure 4. Using the albedo method: (a) area with higher reflectivity, showcasing agricultural plots and 

regions with sparse vegetation and (b) area showing lower reflectivity with visible erosion patterns and less 

vegetative cover 
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Figure 5 illustrates three categories of land erosion, represented by different shades of color.  

Figure 5(a) is a region of minimal visible erosion, while Figure 5(b) shows regions with varying degrees of 

degradation from integrated analysis methods, including NDVI, albedo, MSI, and NDMI indices. These 

parameters help identify land degradation and classify it into levels and types, providing information on the 

degree and spatial distribution of erosion patterns. 

 

 

  
(a) (b) 

 

Figure 5. Using a combined method (albedo+humidity assessment): (a) area with minimal visible erosion and 

(b) erosion severity 

 

 

The yellow spots in Figure 5 are the initial signs of soil erosion. These areas are characterized by 

low NDVI and moderate albedo values, indicating degradation of vegetation cover and leaving the soil 

vulnerable to erosion. The MSI and NDMI values also confirm that the soil in these spots is beginning to dry 

out, which may further deteriorate. This is a predictive phase, and these lands can erode in the future unless 

restoration measures are taken. Parameters for the initial phase of erosion are NDVI from 0.2 to 0.5, 

representing an average condition of vegetation; albedo from 0.1 to 0.2, indicating moderate reflectivity; and 

MSI from 0.8 to 1.5, indicating moderate dryness of the soil. Orange areas indicate an intermediate level of 

erosion, meaning the erosion process has begun, and the soil is starting to lose its ability to support 

vegetation. NDVI here is lower than at the first stage, and the albedo is increasing, indicating a lower cover 

or exposed land. Austere MSI and low NDMI values indicate the soil is increasingly drying, accelerating 

erosion. The locations are already exhibiting extreme degradation, and situations could take a turn for the 

worse without restraints. The criteria for the second erosion phase are an NDVI of 0.1 to 0.3, indicating low 

vegetation; an albedo of 0.2 to 0.25, which indicates increased reflectivity; and an MSI greater than 1.5, 

indicating arid soil. 

The red areas in the image indicate high erosion conditions where the soil has been significantly 

degraded, and there is little to no vegetation cover. High albedo values suggest that the soil is bare and lacks 

protection, thereby increasing its vulnerability. High MSI and low NDMI values indicate complete moisture 

loss. Such land is considered unsuitable for agricultural use without significant restoration measures. 

Conditions for grade 3 erosion include an NDVI of less than 0.1, indicating very little or no vegetation; an 

albedo greater than 0.25, indicating very high reflectivity; and an MSI greater than 1.5, indicating arid soil. 

Figure 6 presents the complete segmentation of the land into four categories based on their condition;  

Figure 6(a) shows regions predominantly characterized as green, representing land in normal condition, with 

no erosion and soil suitable for agricultural use; Figure 6(b) highlights areas segmented into multiple 

categories, including red and yellow regions, indicating varying levels of land degradation. The green areas 

are identified by average vegetation indices (NDVI), moderate albedo, and stable soil moisture, reflecting a 

stable and healthy soil cover. This segmentation offers a comprehensive overview of land conditions, 

facilitating targeted analysis and informed decision-making. 

The yellow, orange, and red areas in Figure 6, as discussed earlier, are degraded lands in various 

phases of erosion. The yellow areas represent the initial phase of erosion, indicating a potential for 

degradation. The soil in these areas already shows the beginning of drying and lower vegetation cover, but 

these areas can still be saved with proper management. The orange areas indicate a moderate level of erosion, 

where the soil has lost a significant percentage of its fertility. This is accompanied by increased albedo and 

aridity, leading to a loss or near-complete removal of vegetation. The red areas display a high degree of 

erosion. The soil in this region has nearly lost its agronomic fertility and thus requires intensive restoration. It 

is indicated by high albedo values and low moisture indices, demonstrating severe deterioration of the soil's 

state. This analysis does not consider infrastructure components such as roads, artificial constructions, 
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residential homes, and other buildings. These objects are automatically classified as “normal” (green) and are 

excluded from the soil condition assessment because they are not part of agricultural or natural areas. The 

segmentation algorithm recognizes them as areas not subject to erosion processes. The segmentation results 

allow a more precise and visual representation of the current state of the land. The identified areas require 

special attention and restoration measures to prevent further erosion and degradation. Notably, areas 

classified as usual (green) demonstrate potential areas that can be preserved and protected from future soil 

deterioration. 

 

 

  
(a) (b) 

 

Figure 6. Segmentation of land by categories: (a) regions predominantly characterized as green and (b) areas 

segmented into multiple categories 

 

 

Machine learning methods were used for further analysis and forecasting of erosion processes. In 

particular, the XGBoost method, one of the most effective machine learning algorithms based on gradient 

boosting, was used to build the model and identify patterns. This algorithm enables you to specify complex, 

nonlinear dependencies between input variables (spectral indices, albedo, and moisture indices) and target 

values (the presence of erosion). XGBoost was chosen for its high accuracy, resistance to overfitting, and 

ability to process large datasets efficiently. Data from satellite monitoring, including the analysis of 

vegetation indices, albedo, and soil moisture, were used to train the model. The primary objective of the 

training was to develop a model that could accurately predict the presence of erosion based on its spectral 

characteristics. The model was trained on a large dataset, which included various soil types and climatic 

conditions, making it possible to achieve a high degree of generalizability. Figure 7 shows the dynamics of 

loss changes (Log Loss) over 100 iterations of model training. The blue line represents the loss on the 

training set, and the orange line represents the loss on the validation set. As the number of iterations 

increases, the loss on both sets decreases significantly and eventually plateaus, reaching a value close to zero. 

This indicates that the model is successfully trained, minimizing forecasting errors on the training data and 

the validation data, which means good model generalization ability. Stabilization at a low loss level indicates 

the high accuracy of the model. 

 

 

 
 

Figure 7. Dynamics of change in losses 
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Figure 8 shows the accuracy of the training and validation sets. The blue line indicates the increase 

in the model's accuracy on the training set with more iterations, reaching nearly 100%. However, for the 

validation set (orange line), accuracy slightly dips after 50 iterations, which may be a sign of slight 

overfitting of the model. Nevertheless, both lines remain pretty high, confirming the model's effectiveness. 

 

 

 
 

Figure 8. Accuracy result for the training and validation set 

 

 

The XGBoost model training process demonstrated successful convergence, with losses being 

minimized, and the model's accuracy on the test data remaining high. This indicates that the model 

effectively classifies erosion degrees on both training data and new data, confirming its applicability to the 

analysis and forecasting of land degradation in natural conditions. The trained model demonstrated the ability 

to accurately predict eroded areas, distinguishing them from healthy lands. The experiment also found that 

using combined methods, including albedo and moisture analysis, allows for achieving maximum accuracy in 

predicting erosion processes, especially in areas susceptible to wind erosion. The XGBoost model 

successfully identified significant patterns within the data, allowing for the classification of different erosion 

types with high accuracy. Therefore, machine learning techniques combined with remote sensing data offer 

extensive opportunities for predicting and monitoring soil degradation, enabling the derivation of more 

accurate and timely solutions for estimating land plot status. 

To further validate the effectiveness of the proposed machine learning approach, its predictions were 

compared with those from traditional empirical erosion models such as the universal soil loss equation 

(USLE) and the revised universal soil loss equation (RUSLE). While USLE and RUSLE provided coarse 

spatial estimates with an average accuracy of 78–82%, the XGBoost model significantly outperformed them 

with 99% classification accuracy. Additionally, the machine learning model demonstrated superior spatial 

resolution and responsiveness to micro-variations in vegetation, soil moisture, and reflectance, which 

traditional models fail to capture. This comparison highlights the added value of integrating machine learning 

techniques into erosion risk assessment. 

 

 

4.  DISCUSSION 

A deeper technical consideration of the proposed framework concerns its ability to mitigate 

overfitting, ensure seasonal robustness, address data uncertainties, and support scalability. Although 

XGBoost achieved high accuracy, slight signs of overfitting were observed during validation. To address 

this, class weighting was applied to account for the imbalanced dataset, and early stopping was introduced to 

prevent the model from memorizing noise. These strategies improved performance on minority classes, 

particularly the “Critical” stage, which is often underrepresented. Seasonal robustness was also evaluated. 

The model produced stable results in spring and summer, when vegetation signals are strong, but 

performance decreased in winter due to snow cover and lower vegetation density. This limitation highlights 

the importance of integrating additional meteorological variables-such as rainfall, wind intensity, and 

evapotranspiration-into future analyses to ensure year-round stability. Data and labeling uncertainties 

represent another limitation. Satellite imagery may be affected by cloud cover, atmospheric noise, and sensor 

limitations, while expert labeling is subject to subjectivity and availability constraints. These factors can 

result in misclassifications, especially between “Moderate” and “Critical” erosion stages. To address this 
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issue, future research should incorporate semi-automated annotation methods, field validation campaigns, 

and uncertainty quantification techniques to enhance reliability. 

Finally, the modular structure of the framework ensures scalability. It can be adapted to other 

satellite platforms (e.g., Landsat or unmanned aerial vehicle (UAV)-based systems) and integrated into 

regional and national monitoring programs. This flexibility supports the use of the framework not only for 

scientific purposes but also as a practical decision-support tool for policymakers in soil conservation, 

sustainable agriculture, and land management strategies. 

Although the dataset included time-stamped Sentinel-2 imagery, the present analysis primarily 

focused on spatial classification of erosion stages and did not explicitly incorporate temporal change 

assessment. This is an important limitation, since soil erosion is a dynamic process influenced by seasonal 

and inter-annual variability. Future research will extend the framework toward temporal change detection by 

leveraging multi-seasonal composites and applying time-series models such as RNNs or temporal 

convolutional approaches. Such an extension would not only enhance the understanding of erosion dynamics 

but also provide early-warning capabilities for land degradation monitoring and more informed policy 

interventions. 

The proposed model can be seamlessly integrated into sensor-based monitoring systems by fusing 

in-situ internet of thing (IoT) sensor data (e.g., soil moisture probes and rainfall gauges) with satellite-derived 

features in a cloud computing environment. This integration enables near-real-time erosion forecasting and 

supports decision-making platforms for sustainable land management. Additionally, the system can be 

deployed on cloud-based geospatial platforms, facilitating large-scale spatial data fusion, scalable analytics, 

and interactive visualization for stakeholders. 

 

 

4. CONCLUSION 

In this study, a machine learning model based on the XGBoost algorithm was developed and 

successfully applied to analyze and predict soil erosion. It was possible to classify lands into different erosion 

stages using remote sensing data, including spectral indices such as NDVI, MSI, and NDMI, as well as 

albedo. The constructed model demonstrated high accuracy on training and new data, confirming its 

applicability for land degradation monitoring in natural conditions. The model's accuracy on the training set 

reached 99%, and on the validation set, about 98%, indicating a high generalization ability of the model. The 

model's losses (Log Loss) also significantly decreased during the training process, reaching a plateau at 

values close to zero, which confirms successful error minimization. The analysis showed that combined 

methods, including vegetation and soil moisture indices, are the most accurate for predicting erosion 

processes. This is especially important for regions prone to wind and water erosion, where timely 

intervention can prevent further soil degradation. Image segmentation enabled us to identify areas requiring 

attention and restoration measures, which contribute to the development of sustainable land management 

strategies. The proposed classification model, based on remote sensing data, can help monitor large areas 

prone to erosion. It enables the rapid identification of areas requiring measures to restore and prevent further 

degradation. A key practical component of this approach is its applicability to large-scale projects, such as 

sustainable land management and soil conservation programs. In addition, the proposed algorithm is easily 

scalable and can be adapted to work with other regions and various types of remote sensing data. Thus, this 

study presents promising opportunities for utilizing machine learning methods and remote sensing data in soil 

monitoring and erosion prediction. The results obtained can serve as the basis for developing effective 

strategies to manage and prevent soil degradation in the future. 

Future research will focus on integrating time-series modeling techniques, such as LSTM and 

temporal convolutional networks, to capture seasonal and interannual erosion dynamics. Additionally, 

coupling the model with IoT sensor networks and real-time geospatial analytics platforms will enhance its 

applicability for large-scale, continuous monitoring and decision support in precision agriculture and 

environmental management. 

A limitation of the present study is that temporal change analysis was not performed despite the 

availability of time-stamped satellite data. Addressing this gap in future research through the integration of 

seasonal and inter-annual dynamics will allow the framework to evolve from static classification toward full 

spatio-temporal monitoring of erosion progression, thereby strengthening its applicability for sustainable land 

management and policymaking. 

 

 

FUNDING INFORMATION  

Authors state no funding involved. 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Soil erosion analysis based on machine learning method (Mukhammed Bolsynbek) 

4809 

AUTHOR CONTRIBUTIONS STATEMENT  

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Mukhammed 

Bolsynbek 

✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓   ✓  

Gulzira Abdikerimova  ✓    ✓  ✓ ✓ ✓ ✓ ✓   

Sandugash 

Serikbayeva 

✓  ✓ ✓   ✓   ✓ ✓  ✓ ✓ 

Ardak Batyrkhanov  ✓    ✓  ✓ ✓ ✓ ✓ ✓   

Dana Shrymbay       ✓  ✓   ✓  ✓  ✓ 

Zhazira Taszhurekova  ✓    ✓  ✓ ✓ ✓ ✓ ✓   

Gulkiz Zhidekulova ✓  ✓ ✓   ✓   ✓ ✓  ✓ ✓ 

Gulmira Shraimanova  ✓    ✓  ✓ ✓ ✓ ✓ ✓   

 

 

CONFLICT OF INTEREST STATEMENT 

Authors state no conflict of interest. 

 

 

DATA AVAILABILITY  

The data that support the findings of this study are available from the corresponding author, 

Sandugash Serikbayeva, upon reasonable request. Due to certain restrictions, including privacy and ethical 

considerations, the data are not publicly available. 

 

 

REFERENCES 
[1] G. R. Kabzhanova, R. K. Khusainova, A. A. Sarsenova, A. Z. Kurmasheva, and A. T. Khusainov, “Analysis of the Content of 

Nutrients in the Southern Chernozem of Kazakhstan Based on Remote Sensing Data,” Chemical Engineering Transactions, vol. 

109, pp. 61–66, 2024, doi: 10.3303/CET24109011. 
[2] X. Zhang et al., “Study on the Extraction of Topsoil-Loss Areas of Cultivated Land Based on Multi-Source Remote Sensing 

Data,” Remote Sensing, vol. 17, no. 3, 2025, doi: 10.3390/rs17030547. 

[3] S. Ferreira, J. M. Sánchez, J. M. Gonçalves, R. Eugénio, and H. Damásio, “Remote Sensing-Assisted Estimation of Water Use in 
Apple Orchards with Permanent Living Mulch,” Agronomy, vol. 15, no. 2, 2025, doi: 10.3390/agronomy15020338. 

[4] A. Baibagyssov, A. Magiera, N. Thevs, and R. Waldhardt, “Resource Characteristics of Common Reed (Phragmites australis) in 

the Syr Darya Delta, Kazakhstan, by Means of Remote Sensing and Random Forest,” Plants, vol. 14, no. 6, 2025, doi: 
10.3390/plants14060933. 

[5] A. Upadhyay et al., “Deep learning and computer vision in plant disease detection: a comprehensive review of techniques, 

models, and trends in precision agriculture,” Artificial Intelligence Review, vol. 58, no. 3, 2025, doi: 10.1007/s10462-024-11100-
x. 

[6] H. Li et al., “Estimation of winter wheat LAI based on color indices and texture features of RGB images taken by UAV,” Journal 

of the Science of Food and Agriculture, vol. 105, no. 1, pp. 189–200, 2025, doi: 10.1002/jsfa.13817. 
[7] N. Ali et al., “Advancing Fusarium Head Blight Detection in Wheat Crop: A Review and Future Directions to Sustainable 

Agriculture,” in IEEE Transactions on Consumer Electronics, 2025, doi: 10.1109/TCE.2025.3549057. 

[8] J. Tussupov et al., “Analysis of Formal Concepts for Verification of Pests and Diseases of Crops Using Machine Learning 
Methods,” IEEE Access, vol. 12, pp. 19902–19910, 2024, doi: 10.1109/ACCESS.2024.3361046. 

[9] J. Lian, J. Zhang, J. Liu, Z. Dong, and H. Zhang, “Guiding image inpainting via structure and texture features with dual encoder,” 

Visual Computer, vol. 40, no. 6, pp. 4303–4317, 2024, doi: 10.1007/s00371-023-03083-7. 
[10] K. Sharada et al., “GeoAgriGuard: AI-Driven Pest and Disease Management with Remote Sensing for Global Food Security,” 

Remote Sensing in Earth Systems Sciences, vol. 8, no. 2, pp. 409–422, 2025, doi: 10.1007/s41976-025-00192-w. 

[11] A. Mimenbayeva, S. Artykbayev, R. Suleimenova, G. Abdygalikova, A. Naizagarayeva, and A. Ismailova, “Determination of the 
Number of Clusters of Normalized Vegetation Indices Using the K-Means Algorithm,” Eastern-European Journal of Enterprise 

Technologies, vol. 5, no. 2(125), pp. 42–55, 2023, doi: 10.15587/1729-4061.2023.290129. 

[12] M. Ali, M. Salma, M. El Haji, and B. Jamal, “Plant disease detection using vision transformers,” International Journal of 
Electrical and Computer Engineering (IJECE), vol. 15, no. 2, p. 2334, 2025, doi: 10.11591/ijece.v15i2.pp2334-2344. 

[13] M. V. Kozhekin, M. A. Genaev, E. G. Komyshev, Z. A. Zavyalov, and D. A. Afonnikov, “Plant Detection in RGB Images from 

Unmanned Aerial Vehicles Using Segmentation by Deep Learning and an Impact of Model Accuracy on Downstream Analysis,” 
Journal of Imaging, vol. 11, no. 1, 2025, doi: 10.3390/jimaging11010028. 

[14] M. V. L. Segura, A. A. A. Lasserre, G. F. Lámbert, R. P. Gómez, and D. V. Vásquez, “XGBoost sequential system for the 

prediction of Persian lemon crop yield,” Crop Science, vol. 65, no. 1, 2025, doi: 10.1002/csc2.21148. 
[15] O. M’hamdi, S. Takács, G. Palotás, R. Ilahy, L. Helyes, and Z. Pék, “A Comparative Analysis of XGBoost and Neural Network 

Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data,” Plants, vol. 13, no. 5, 

2024, doi: 10.3390/plants13050746. 
[16] N. Tasbolatuly, K. Alimhan, A. Yerdenova, G. Bakhadirova, A. Nazyrova, and M. Kaldarova, “Using Computer Modeling for 

Tracking high-order Nonlinear Systems with Time-Delay,” in SIST 2024 - 2024 IEEE 4th International Conference on Smart 

Information Systems and Technologies, Proceedings, 2024, pp. 154–158, doi: 10.1109/SIST61555.2024.10629397. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4797-4811 

4810 

[17] B. G. Bekualykyzy, Z. A. Zhakypkyzy, T. Nurbolat, K. Alimhan, T. Sherzod, and S. G. Smakhulovna, “Control of nonlinear 

system by means of feedback using the Python-control library,” in 2024 IEEE 4th International Conference on Smart Information 
Systems and Technologies (SIST), IEEE, May 2024, pp. 164–168, doi: 10.1109/SIST61555.2024.10629364. 

[18] K. Alimhan, N. Otsuka, M. Kalimoldayev, and N. Tasbolatuly, “Output tracking by state feedback for highorder nonlinear 

systems with time-delay,” Journal of Theoretical and Applied Information Technology, vol. 97, no. 3, pp. 942–956, 2019. 
[19] K. Khosravi, F. Rezaie, J. R. Cooper, Z. Kalantari, S. Abolfathi, and J. Hatamiafkoueieh, “Soil water erosion susceptibility 

assessment using deep learning algorithms,” Journal of Hydrology, vol. 618, 2023, doi: 10.1016/j.jhydrol.2023.129229. 

[20] T. Sathish et al., “Coastal pollution analysis for environmental health and ecological safety using deep learning technique,” 
Advances in Engineering Software, vol. 179, 2023, doi: 10.1016/j.advengsoft.2023.103441. 

[21] I. A. Ahmed, S. Talukdar, M. R. I. Baig, Shahfahad, G. V. Ramana, and A. Rahman, “Quantifying soil erosion and influential 

factors in Guwahati’s urban watershed using statistical analysis, machine and deep learning,” Remote Sensing Applications: 
Society and Environment, vol. 33, 2024, doi: 10.1016/j.rsase.2023.101088. 

[22] L. Wang, Y. Li, Y. Gan, L. Zhao, W. Qin, and L. Ding, “Rainfall erosivity index for monitoring global soil erosion,” Catena, vol. 

234, 2024, doi: 10.1016/j.catena.2023.107593. 
[23] C. Guo, M. Li, and H. Chen, “Study on the Influencing Factors of Green Agricultural Subsidies on Straw Resource Utilization 

Technology Adopted by Farmers in Heilongjiang Province, China,” Agriculture (Switzerland), vol. 15, no. 1, 2025, doi: 

10.3390/agriculture15010093. 
[24] D. Radočaj, A. Šiljeg, R. Marinović, and M. Jurišić, “State of Major Vegetation Indices in Precision Agriculture Studies Indexed 

in Web of Science: A Review,” Agriculture (Switzerland), vol. 13, no. 3, 2023, doi: 10.3390/agriculture13030707. 

[25] S. Vélez, R. Martínez-Peña, and D. Castrillo, “Beyond Vegetation: A Review Unveiling Additional Insights into Agriculture and 
Forestry through the Application of Vegetation Indices,” J, vol. 6, no. 3, pp. 421–436, 2023, doi: 10.3390/j6030028. 

[26] S. Skendžić, M. Zovko, V. Lešić, I. Pajač Živković, and D. Lemić, “Detection and Evaluation of Environmental Stress in Winter 

Wheat Using Remote and Proximal Sensing Methods and Vegetation Indices—A Review,” Diversity, vol. 15, no. 4, 2023, doi: 
10.3390/d15040481. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Mukhammed Bolsynbek     is doctoral student Department of Information 

Systems, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan. His research 

interests cover such important areas as image processing and machine learning, which play a 

key role in modern technological developments. In his research, he focuses on applying these 

methods to solve complex problems and find new approaches to data processing. He is the 

author of 5 articles published in reputable scientific journals and 3 articles recommended by 

the Committee for Quality Assurance in Education and Science of the Ministry of Education 

and Science of the Republic of Kazakhstan. He can be contacted at email: mbolsynbek@bk.ru. 

  

 

Gulzira Abdikerimova     received her Ph.D. in 2020 in Information Systems from 

L.N. Gumilyov Eurasian National University, Kazakhstan. Currently, she is an associate 

professor of the Department of Information Systems at the same university. Her research 

interests include image processing, computer vision, satellite imagery, artificial intelligence, 

and machine learning. She can be contacted at email: gulzira1981@mail.ru.  

  

 

Sandugash Serikbayeva     accomplished her Ph.D. degree in specialty Information 

Systems at L.N. Gumilyov Eurasian National University, Astana, Kazakhstan. Dissertation 

theme is “Creation of models and technologies for building distributed information systems to 

support scientific and educational activities”. Scientific interests: distributed information 

system, thesaurus, information retrieval, digital library, ontology. She has more than 30 

publications, including: 1 academic book; 8 papers in Scopus base journals, 3 papers in Web 

of Science base, 6 papers in the journals of Higher Attestation Commission of the Republic of 

Kazakhstan, and the Higher Attestation Commission of the Russian Federation. Scopus H-

index-4, and Web of Science H-index-2. She can be contacted at email: Inf_8585@mail.ru. 

  

mailto:mbolsynbek@bk.ru
mailto:gulzira1981@mail.ru
mailto:Inf_8585@mail.ru
https://orcid.org/0009-0001-0233-1984
https://scholar.google.com/citations?view_op=list_works&hl=ru&user=YH0aGyEAAAAJ
https://www.webofscience.com/wos/author/record/OVX-9244-2025
https://orcid.org/0000-0002-4953-0737
https://scholar.google.com/citations?hl=ru&view_op=list_works&gmla=AJsN-F6ATxKka_dyhrUqo0uI5TLwJrwbwz_IwTPTTE55SoTCqL-ppmEBotgg1tVv11-KUp5rU34jwglwIBRft92oZwsOBEhOhQa5oWVIUyiz9petrEl__YaFcl1U73hQ3EDLZQHQCsyg&user=Hid6zNgAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57203506578
https://www.webofscience.com/wos/author/record/GLT-9425-2022
https://orcid.org/0000-0002-3627-3321
https://scholar.google.ru/citations?user=QTz3Ja4AAAAJ&hl=ru
https://www.scopus.com/authid/detail.uri?authorId=57340387200
https://www.webofscience.com/wos/author/record/ABF-7289-2021


Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Soil erosion analysis based on machine learning method (Mukhammed Bolsynbek) 

4811 

 

Ardak Batyrkhanov     Doctor Ph.D., Associate Professor of the Department of 

Computer Engineering, Kh. Dosmukhamedov Atyrau University, Atyrau, Kazakhstan. 

Scientific interests: distributed information system, thesaurus, information retrieval, digital 

library, and ontology. He has more than 30 publications, including: 1 academic book; 8 

articles in Scopus base journals, 3 articles in Web of Science base, 6 papers in the journals of 

Higher Attestation Commission of the Republic of Kazakhstan, and the Higher Attestation 

Commission of the Russian Federation. Scopus H-index-3 and Web of Science H-index-1. He 

can be contacted at email: batyr.khan78@mail.ru. 

  

 

Dana Shrymbay     is a Master of Science in Natural Sciences, Senior Lecturer of 

the Faculty of Technologies of the Taraz regional University of the name M.Kh. Dulaty, 

Taraz, Kazakhstan. Research interests: training of IT specialists; information technologies in 

education; digital pedagogy. She has more than 20 publications. She can be contacted at 

email: dana_26_06@mail.ru. 

  

 

Zhazira Taszhurekova     accomplished her doctoral dissertation in the specialty 

Geoecology at M.Kh.Dulaty Taraz State University, Taraz, Kazakhstan. The topic of the 

dissertation: "Contamination estimation of atmosphere in gypsum production and 

development of measures upon their reduction (on the example of JS «Zhambylgypsum»)". 

Research interests: information systems development, information retrieval and machine 

learning. She has more than 30 publications, including: 1 educational and methodical manual; 

4 papers in Scopus base journals, 1 paper in Web of Science base, and 4 papers in the journals 

of Higher Attestation Commission of the Republic of Kazakhstan. Scopus H-index–3, Web of 

Science H-index–1. She can be contacted at email: taszhurekova@mail.ru.  

  

 

Gulkiz Zhidekulova     candidate of technical sciences, currently, she is associate 

professor of Department of Information Systems at M.Kh.Dulaty Taraz Regional University, 

Taraz, Kazakhstan. She has more than 115 scientific papers, including 5 papers in Web of 

Science and Scopus rating publications, 3 monographs, 7 textbooks, and 2 copyright 

certificates of intellectual property, H-index-1. She was the executor of the project of search 

and initiative research work on the topic "Development of software" Unified Information 

Retrieval System of Electronic Archive "for the State Archive of Zhambyl region". She can be 

contacted at email: gul2006@mail.ru.  

  

 

Gulmira Shraimanova     candidate of Pedagogical Sciences, Associate Professor, 

Professor of the Department of Psychology, Pedagogy and Social Work, Karaganda 

University of KAZPOTREBSOYUZ. Scientific interests: concentration in the field of 

computer science, including the development and optimization of algorithms, machine 

learning, information systems, and databases. She is engaged in research in the field of 

efficient processing of large amounts of data, automation of data analysis, as well as 

cybersecurity and information security. She pays special attention to the introduction of 

modern IT solutions to improve educational processes and create innovative educational 

platforms. She can be contacted at email: gulken69@mail.ru. 

 

mailto:dana_26_06@mail.ru
mailto:taszhurekova@mail.ru
mailto:gul2006@mail.ru
https://orcid.org/0009-0003-1735-282X
https://scholar.google.com/citations?view_op=list_works&hl=ru&user=LWMvK58AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57431092200
https://orcid.org/0000-0002-0382-5687
https://scholar.google.ru/citations?hl=ru&user=5fQbCrwAAAAJ
https://www.webofscience.com/wos/author/record/HLQ-5625-2023
https://orcid.org/0000-0002-8307-9417
https://scholar.google.com/citations?view_op=list_works&hl=ru&user=WjVXm0oAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57219473620
https://www.webofscience.com/wos/author/record/ABD-2822-2020
https://orcid.org/0000-0002-6962-2188
https://www.scopus.com/authid/detail.uri?authorId=57196217499
https://orcid.org/0009-0004-3639-0159
https://scholar.google.com/citations?hl=ru&user=k0rXSB8AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57213141602
https://www.webofscience.com/wos/author/record/OVX-9404-2025

