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 This paper presents a new epidemiological modeling approach that adapts 

the working set (WS) concept from computer memory management to the 

dynamics of infectious diseases. Traditional compartmental models provide 

valuable insights but are limited in their ability to capture dynamic isolation 

and heterogeneous contact patterns. In contrast, the WS model 

conceptualizes a time-varying subset of agents actively participating in 

social interactions, allowing for dynamic adjustments to the rate of infection 

and the explicit identification of superspreaders. By incorporating isolation 

states for both susceptible and infected individuals, the model more 

realistically captures quarantine and targeted interventions. Including an 

incubation period reduces epidemic peaks by nearly 40% and delays them by 

more than three weeks, providing critical time for public health response. 

Within the WS model, moderate isolation reduces peak infection rates by 

more than three times compared to uncontrolled scenarios, while high 

isolation almost completely prevents large-scale spread. These results 

highlight the model's ability to estimate the intensity and timing of 

interventions with greater accuracy than traditional models. By integrating 

the time window parameter and computer resource management principles, 

the adapted WS model represents a robust and adaptable tool for analyzing 

epidemic dynamics. The results highlight its potential for advancing 

epidemic modeling and supporting real-time public health decision-making. 
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1. INTRODUCTION 

Epidemic modeling has become one of the important tools for understanding, predicting and 

controlling the spread of infectious diseases. By transforming biological and social processes into 

mathematical and computational models, researchers can simulate the course of an outbreak, estimate key 

parameters such as the basic reproduction number, and evaluate the effectiveness of public health measures 

[1], [2]. The importance of such frameworks has been highlighted by global health crises, including the 

COVID-19 pandemic, where timely forecasts have guided critical decisions on quarantines, vaccinations, 

mobility restrictions, and social distancing policies [3], [4].  

Mathematical approaches, from simple deterministic compartmental susceptible–infectious–

recovered/removed (SIR) and exposed–(SEIR) models to advanced stochastic and network formulations, 

have provided valuable insights into transmission dynamics [5], [6]. Computational methods, including 

agent-based modeling and machine learning approaches, have further facilitated the integration of 

https://creativecommons.org/licenses/by-sa/4.0/
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heterogeneous population structures, contact networks, and real-time data flows. Collectively, these 

approaches highlight the interdisciplinary nature of epidemic modeling, where epidemiology, mathematics, 

computer science, and public health come together to support evidence-based decision-making [7]-[9].  

Classic compartmental models such as SIR and its extensions SEIR and SEIR-V remain widely used 

in epidemiology [10]-[12]. They divide populations into compartments based on disease status and apply 

systems of differential equations to describe transitions. The SIR model by Kermack and McKendrick [13] 

laid the foundation for modern epidemic theory by segmenting populations into susceptible, infected, and 

recovered groups. Although mathematically elegant and analytically explicable, it makes simplifying 

assumptions such as homogeneous mixing and instantaneous infectivity that limit its ability to capture real 

epidemic behavior [14].  

The SEIR model enhances realism by adding an exposed compartment to represent incubation [15], 

while SEIR-V takes vaccination into account [16], [17]. These extensions are more representative of 

biological processes, but they also increase complexity and remain limited by the assumption of a well-mixed 

population, making it difficult to model time-varying interventions such as isolation or quarantine.  

Such interventions are dynamic: people are tested, isolated, released as new data arrives, and 

superspreaders heavily shape epidemic curves. Traditional compartmental models struggle to capture this 

adaptive isolation, often requiring additional compartments that complicate calibration and interpretation 

[18]-[21]. This highlights the urgent need for models that can naturally capture dynamic isolation, 

heterogeneous contact structures, and targeted interventions within epidemic dynamics. 

The working set (WS) model, originally developed in computer science, provides a useful analogy 

for epidemic dynamics. In computing, the idea is simple: a program does not use all of its memory at once - it 

actively relies on a subset of memory pages at any given time, called the “Working Set.” Pages not recently 

used are temporarily set aside to keep the system efficient [22], [23]. In epidemiology, a similar principle 

applies: at any moment, only a subset of individuals is actively engaged in transmitting infection, while 

others may be isolated or not participating in contact networks.  

Just as operating systems dynamically adjust resources by adding or removing memory pages, 

epidemic control measures such as quarantine and isolation dynamically remove or reintegrate people from 

the pool of active contacts. This makes the WS concept especially suitable for modeling real epidemics, 

where the size and composition of the active contact set constantly change. To address this gap, we adapt the 

WS model to epidemiology.  

In our formulation, the “Working Set” represents the subset of individuals involved in potential 

transmission. Infectious agents can be dynamically removed to represent isolation, while recovered or 

susceptible individuals may rejoin after a defined period. This allows the model to reflect heterogeneity in 

contact structures, capture the influence of superspreaders [24], and adjust transmission rates in real time. 

Unlike classical compartmental models the adaptive WS model makes dynamic isolation a central 

mechanism, offering a more flexible and realistic framework for analyzing epidemic control strategies under 

real-world conditions. 

 

 

2. METHOD 

We now examine some key assumptions of the adapted WS model in epidemiology. Key elements 

of the original WS model are redefined as follows: population is the complete set of agents, analogous to the 

set of all memory pages in a computer model; WS is a subset of the population that includes agents that are 

not currently isolated and may be involved in transmission (susceptible and infected); Isolation is the process 

of excluding agents from the WS, and equivalent to unloading pages from RAM. Isolated agents are 

temporarily not involved in the spread of infection; superspreader is an infected agent (in state 𝐼) that 

transmits infection to an unusually large number of susceptible agents (state 𝑆). Unlike the average infected 

agent, a superspreader causes significantly more infections due to high contact frequency or other factors.  

The adapted model introduces the following states that reflect the epidemiologic status of the agents: 

Susceptible (𝑆) is agents that are not in isolation and can become infected through contact with infected 

agents; Infected (𝐼) is agents, not in isolation, capable of transmitting infection to others; Recovered (𝑅) is 

agents who have developed immunity and are no longer involved in transmission, and Quarantined (𝑄) is 

agents who may be both susceptible and infected, but are temporarily excluded from transmission because of 

isolation. The adaptive WS model is described by a system of ordinary differential equations (ODEs): 
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 (1) 

 

where, 𝑄𝑆 is isolated susceptible; 𝑄𝐼  is isolated infected; 𝑄𝑅 is isolated recovered (transferred from 𝑄𝐼  after 

recovery); 𝛽(𝑡) is dynamic infection rate; 𝑁𝑊𝑆 is current WS size (sum of agents in states 𝑆 and 𝐼) at time t; 

𝛿𝑆 is isolation for 𝑆; 𝛿𝐼 is isolation for 𝐼; 𝜂𝑆 is isolation escape velocity for 𝑆; 𝜂𝐼 is isolation escape velocity 

for 𝐼; and 𝛾 is rate of recovery.  

This system accounts for all key processes: infection, recovery, isolation and release. The total 

population in the model is defined as follows: 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) +  𝑅(𝑡) + 𝑄𝑆(𝑡) + 𝑄𝐼(𝑡) + 𝑄𝑅(𝑡). The size 

of the WS is determined by the formula: 𝑁𝑊𝑆(𝑡) = 𝑆(𝑡) + 𝐼(𝑡). 
The dynamics of infection spread in the model is determined by the following processes:  

a. Infection: transition of agents from state 𝑆 to 𝐼 by contact with infected agents. The speed of this process 

depends on the frequency of contact and the probability of transmission: 𝛽(𝑡) =
𝑆(𝑡)𝐼(𝑡)

𝑁𝑊𝑆(𝑡)
.  

b. Recovery: transition from 𝐼 to 𝑅 as infected individuals recover. Rate of transition from 𝐼 to 𝑅: 𝛾𝐼(𝑡). 
c. Isolation: the transfer of agents from 𝑆 or 𝐼 to 𝑄 as a result of control measures such as contact tracing or 

quarantine. Then the coefficient from 𝑆 to 𝑄𝑆 will be: 𝛿𝑆𝑆(𝑡) and from 𝐼 to 𝑄𝐼  will be: 𝛿𝐼𝐼(𝑡). 
d. Release from isolation: return of agents from 𝑄𝑆 to 𝑆 (if they remain susceptible) or to 𝑅 (if recovered) 

after completion of the isolation period or confirmation of status by testing: 𝜂𝑆𝑄𝑆(𝑡) and from 𝑄𝐼  to 𝑄𝑅 

(recovery in isolation): 𝛾𝑄𝐼(𝑡). From 𝑄𝑅 to 𝑅 will be: 𝜂𝐼𝑄𝑅(𝑡). 
In contrast to traditional models such as SIR, where the infection rate 𝛽 is assumed to be constant 

and the population is assumed to be homogeneously mixed, in the adapted WS model the value of 𝛽 becomes 

a dynamic variable depending on the size of the WS:  

 

𝛽(𝑡) = 𝛽0 ×
𝑁𝑊𝑆(𝑡)

𝑁
 (2) 

 

where, 𝛽0 is basic transmission rate under full population conditions; 𝑁𝑊𝑆(𝑡) is the current size of the WS 

(the sum of agents in states 𝑆 and 𝐼) at time t; and N is the total population size. As the number of isolated 

agents (translated into 𝑄) increases, the size of the WS decreases, which reduces 𝛽(𝑡) and slows the spread 

of infection. This approach allows us to model the effect of quarantine and other control measures on 

epidemic dynamics.  

To summarize the effects of uneven transmission likelihoods, vulnerability distributions, and 

interaction patterns, we use a simple class of models in which the population is partitioned into multiple 

groups of agents. These adaptations aim to demonstrate that population diversity can significantly alter both 

the progression and total reach of an epidemic, and, critically, broaden the range of viable intervention 

strategies.  

Let consider a multi-agent system with n agents distributed over p groups and exposed to the risk of 

infection through contact with each other. Let us specify that the agents' distribution into groups, and each 

agent group number can be easily determined by the matrix 𝑥 = (𝑥𝑟𝑖)𝑝×𝑛 as shown in Figure 1, where the 

element is 𝑥𝑟𝑖 = 1, if the agent with the number 𝑖 is located in the group with the number r and 𝑥𝑟𝑖 = 0, 

otherwise.  

The matrix 𝑥 must satisfy constraints (a), (b), and (c). Whatever the distribution of agents over 

groups, we assume that each agent of the system belongs to only one of the groups (condition, (a)): 

∑ 𝑥𝑟𝑖
𝑝
𝑟=1 = 1, 𝑖 = 1,2, … , 𝑛. Each agent of the system is assigned a ''weight'', the linear size of its living space, 

within which the agent can perform its set of operations assigned to it. In this case, the agents interacting with 

each other are exposed to infection risk through contact. Each group is also assigned a "weight" - living space 

within which the group's agents are located. The total "weight" of agents in any group should not exceed the 

weight of the group (condition (b)): ∑ 𝑙𝑖
𝑛
𝑖=1 ⋅ 𝑥𝑟𝑖 ≤ 𝑣𝑟 , 𝑟 = 1,2, … , 𝑝. Here 𝑙𝑖 is the weight of the agent 𝑖, 

 𝑖 = 1,2, … , 𝑛, and 𝑣𝑟  is the weight of the group with number r, r=1, 2, ..., p. Let us determine the number of 

a group that contains an agent, for example 𝑖, with a given matrix 𝑥 ∈ X, denoting this number by 𝑟𝑖(𝑥) and 

taking into account the constraints (𝑎), (𝑏), we write (condition (c)): 𝑟𝑖(𝑥) = ∑ 𝑥𝑟𝑖
𝑝
𝑟=1 ∙ 𝑟, 𝑖 = 1,2, … , 𝑛. 
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Figure 1. Matrix representation of agent distribution across groups 

 

 

A WS in an epidemiological context is a dynamic group of agents that participate in social 

interactions and are not subject to isolation. Its size and composition depend on the following factors: 

Isolation policy: when an infected agent from I is identified, its contacts from S in the last τ days are 

relegated to the state Q. This shortens the WS and reduces the likelihood of new infections. At the end of the 

isolation period, agents from Q are tested: susceptible agents return to S, recovered agents to R. An 

alternative scenario is high-coverage isolation, in which a large fraction of the population is isolated. Time 

window (τ): similar to the original WS model, a parameter τ is introduced to define the period of "relevance" 

of contacts. Agents who have been in contact with infected individuals in the last τ time units are considered 

candidates for isolation. There may also be superspreaders among these agents. Their identification is 

important for epidemic control because isolation of such agents can significantly slow the spread of the 

disease. In the WS model, the 𝜏 parameter specifies the time window during which contacts are considered 

relevant.  

To assess the dynamics of infection spread and evaluate the impact of isolation measures. For this 

purpose, we introduce experimental scenarios: 1. Basic scenario: no isolation (𝛿𝑆 = 0, 𝛿𝐼 = 0); 2. Moderate 

isolation: low isolation parameters (𝛿𝑆 = 0.08, 𝛿𝐼 = 0.9); 3. High-coverage isolation: high isolation 

parameters (𝛿𝑆 = 0.3, 𝛿𝐼 = 0.4). The SIR and SEIR models do not take insulation into account, so only the 

basic scenario is considered. Table 1 summarizes the parameter values and their descriptions used in the 

numerical simulations. The parameters were derived from an extensive literature review [25]-[27] on 

COVID-19 and epidemic modeling. As in agent-based models [28], our model is formulated for a 

generalized small-city population. This abstraction allows flexible adaptation while avoiding the need for 

detailed prior knowledge of region-specific parameters 

 

 

Table 1. Model parameters and descriptions 
Variable Default value Explanation 
𝑁 100,000 Total number of individuals in the population 
𝑆0 98 000 Initial number of susceptible individuals 
𝐼0 2 000 Initial number of infected individuals 
𝑅0 0 Initial number of recovered individuals 
𝐸0 0 Initial number of exposed individuals (for SEIR model) 
𝑄𝑆0 0 Initial number of quarantined susceptible individuals 

𝑄𝐼0 0 Initial number of quarantined infected individuals 

𝑄𝑅0 0 Initial number of quarantined recovered individuals 

𝛽 0.4 Infection rate; probability of disease transmission per contact between susceptible and infected 

individuals 

𝛽0 0.4 Base infection rate for the WS 

𝜎 0.3 Incubation rate; rate at which exposed individuals become infectious (for SEIR model) 

𝛾 0.2 Recovery rate; proportion of infected individuals recovering per unit time 

𝜂𝑆 0.2 Quarantine release rate for susceptible individuals; proportion released per unit time 

𝜂𝐼 0.2 Quarantine release rate for infected individuals; proportion released per unit time 

 

 

3. RESULTS AND DISCUSSION 

Figure 2 illustrates the epidemic dynamics and the impact of isolation across classical SIR, SEIR, 

and adaptive WS models. Figure 2(a) shows reflect the comparative epidemic dynamics in the SIR, SEIR, 
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and WS models. In both the SIR and WS scenarios, the infection curve peaks around day 25, reaching 

approximately 31,490 individuals, or 31.5% of the total population, after which infections decline sharply. 

The SEIR model, by contrast, produces a substantially lower peak of about 19,222 individuals, or 19.2%, 

which occurs later on day 52. These results demonstrate that incorporating an incubation period reduces the 

epidemic peak by nearly 40% and delays it by more than three weeks, offering critical additional time for 

healthcare response.  
Figure 2(b) demonstrates the influence of isolation measures on epidemic outcomes within the WS 

framework. In the absence of isolation, the infection curve peaks at 35,564 cases, or 35.6% of the population, 

on day 24. Under moderate isolation (𝛿𝑆 = 0.025 and 𝛿𝐼 = 0.06), the peak is reduced to 10,843 cases, or 

10.8% of the population, and is shifted to day 27, representing a reduction of more than threefold compared 

to the uncontrolled scenario. With high isolation (𝛿𝑆 = 0.2 and 𝛿𝐼 = 0.3), the curve is nearly suppressed, 

with infections never exceeding 2% of the population before rapidly declining. These findings confirm that 

even moderate interventions markedly reduce epidemic intensity, while strict measures can almost 

completely prevent large-scale spread.  

Figure 2(c) highlights the differences in epidemic curves when measuring daily incidence. The SIR 

model reaches a peak of approximately 3,950 new infections per day, or 3.95% of the population, on day 22. 

The WS (no isolation) trajectory is nearly identical, with the maximum slightly higher at around 4,450 daily 

cases, or 4.45% of the population, on days 22-23, confirming the equivalence of the two models in the 

absence of interventions. The SEIR model, in contrast, produces a much lower peak of about 1,950 new 

infections per day, or 1.95%, and this occurs considerably later, on days 43-44. The inclusion of an 

incubation period, therefore, reduces the intensity of daily spread by almost half and delays the peak by 

approximately three weeks, creating a vital buffer for organizational and medical response. The main 

characteristics of the traditional SIR/SEIR models and the proposed WS framework are comparatively 

summarized in Table 2 to emphasize the advantages of the WS approach. 

 

 

  
(a) (b) 

 

 
(с)  

 

Figure 2. Epidemic dynamics and the impact of isolation in SIR, SEIR, and WS models; (a) comparative 

epidemic dynamics, (b) effect of isolation measures in WS model, and (c) daily incidence curves across 

models 

 

 

Comparing the SIR, SEIR, and WS models, we may say that the WS model offers flexibility due to 

its isolation, making it more realistic for modeling control measures. The proposed WS model offers several 
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advantages, such as accounting for contact heterogeneity and the ability to quantify the impact of quarantine, 

contact tracing, and other strategies. In addition, like memory management in computer science, the model 

allows to explore the effectiveness of epidemic control. These analyses demonstrate how the adapted WS 

model can be useful for studying epidemic dynamics, providing valuable insights for infectious disease 

management. Further study of the model could be useful for public health planning and the evaluation of 

measures such as quarantine and social distancing. 

 

 

Table 2. Comparisons of the models 
Aspect SIR/SEIR WS 

Isolation and quarantine Not directly accounted for, expansion required Included as centerpiece, dynamic adjustment 
Transmission speed Fixed or dependent on S and I Dynamically adjusted based on active set 
Contact heterogeneity Requires extensions (e.g., network) Accounting through groups and subsets 
Behavioral solutions Not modelled May be enabled via agent rules 
Applicability for interventions Limited without modifications Easy to model quarantine 

 

  

4. CONCLUSION 

The proposed WS model, adapted to the epidemiological context, represents a new and flexible 

approach to modeling the spread of infectious diseases. Unlike classical SIR and SEIR models, it uses 

dynamic containment as a central mechanism, enabling the identification of active subgroups of individuals 

involved in infection transmission and highlighting the role of superspreaders in shaping epidemic curves. By 

adjusting the effective transmission rate based on the size and composition of the group of active contacts, 

the model provides a more realistic representation of how interventions influence epidemic dynamics over 

time. In addition to its theoretical contributions, the WS model has clear practical applications. Public health 

officials and policymakers can use it as a decision support tool to evaluate quarantine measures, testing 

strategies, or phased release policies in real time. The model's ability to simulate dynamic containment 

scenarios makes it particularly relevant in rapidly changing epidemic situations, where timely adjustments to 

interventions are critical to mitigating peak incidence and reducing the burden on healthcare systems. 

Although the WS model requires detailed data and careful parameter calibration, its integration of principles 

from computer science into epidemiology opens new opportunities for designing optimal control strategies. 

Future research may be focused on extending the WS model through integration with agent-based 

simulations, which can capture individual-level heterogeneity and social network structures, which can 

provide real-time information on interaction patterns. These developments will help validate and refine the 

WS framework, ultimately transforming it into a practical tool for real-time epidemic response planning and 

strengthening preparedness for future public health crises. 
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