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This paper presents a new epidemiological modeling approach that adapts
the working set (WS) concept from computer memory management to the
dynamics of infectious diseases. Traditional compartmental models provide
valuable insights but are limited in their ability to capture dynamic isolation
and heterogeneous contact patterns. In contrast, the WS model
conceptualizes a time-varying subset of agents actively participating in
social interactions, allowing for dynamic adjustments to the rate of infection
and the explicit identification of superspreaders. By incorporating isolation
states for both susceptible and infected individuals, the model more
realistically captures quarantine and targeted interventions. Including an
incubation period reduces epidemic peaks by nearly 40% and delays them by
more than three weeks, providing critical time for public health response.
Within the WS model, moderate isolation reduces peak infection rates by
more than three times compared to uncontrolled scenarios, while high

isolation almost completely prevents large-scale spread. These results
highlight the model's ability to estimate the intensity and timing of
interventions with greater accuracy than traditional models. By integrating
the time window parameter and computer resource management principles,
the adapted WS model represents a robust and adaptable tool for analyzing
epidemic dynamics. The results highlight its potential for advancing
epidemic modeling and supporting real-time public health decision-making.
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1. INTRODUCTION

Epidemic modeling has become one of the important tools for understanding, predicting and
controlling the spread of infectious diseases. By transforming biological and social processes into
mathematical and computational models, researchers can simulate the course of an outbreak, estimate key
parameters such as the basic reproduction number, and evaluate the effectiveness of public health measures
[1], [2]- The importance of such frameworks has been highlighted by global health crises, including the
COVID-19 pandemic, where timely forecasts have guided critical decisions on quarantines, vaccinations,
mobility restrictions, and social distancing policies [3], [4].

Mathematical approaches, from simple deterministic compartmental susceptible—infectious—
recovered/removed (SIR) and exposed—(SEIR) models to advanced stochastic and network formulations,
have provided valuable insights into transmission dynamics [5], [6]. Computational methods, including
agent-based modeling and machine learning approaches, have further facilitated the integration of
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heterogeneous population structures, contact networks, and real-time data flows. Collectively, these
approaches highlight the interdisciplinary nature of epidemic modeling, where epidemiology, mathematics,
computer science, and public health come together to support evidence-based decision-making [7]-[9].

Classic compartmental models such as SIR and its extensions SEIR and SEIR-V remain widely used
in epidemiology [10]-[12]. They divide populations into compartments based on disease status and apply
systems of differential equations to describe transitions. The SIR model by Kermack and McKendrick [13]
laid the foundation for modern epidemic theory by segmenting populations into susceptible, infected, and
recovered groups. Although mathematically elegant and analytically explicable, it makes simplifying
assumptions such as homogeneous mixing and instantaneous infectivity that limit its ability to capture real
epidemic behavior [14].

The SEIR model enhances realism by adding an exposed compartment to represent incubation [15],
while SEIR-V takes vaccination into account [16], [17]. These extensions are more representative of
biological processes, but they also increase complexity and remain limited by the assumption of a well-mixed
population, making it difficult to model time-varying interventions such as isolation or quarantine.

Such interventions are dynamic: people are tested, isolated, released as new data arrives, and
superspreaders heavily shape epidemic curves. Traditional compartmental models struggle to capture this
adaptive isolation, often requiring additional compartments that complicate calibration and interpretation
[18]-[21]. This highlights the urgent need for models that can naturally capture dynamic isolation,
heterogeneous contact structures, and targeted interventions within epidemic dynamics.

The working set (WS) model, originally developed in computer science, provides a useful analogy
for epidemic dynamics. In computing, the idea is simple: a program does not use all of its memory at once - it
actively relies on a subset of memory pages at any given time, called the “Working Set.” Pages not recently
used are temporarily set aside to keep the system efficient [22], [23]. In epidemiology, a similar principle
applies: at any moment, only a subset of individuals is actively engaged in transmitting infection, while
others may be isolated or not participating in contact networks.

Just as operating systems dynamically adjust resources by adding or removing memory pages,
epidemic control measures such as quarantine and isolation dynamically remove or reintegrate people from
the pool of active contacts. This makes the WS concept especially suitable for modeling real epidemics,
where the size and composition of the active contact set constantly change. To address this gap, we adapt the
WS model to epidemiology.

In our formulation, the “Working Set” represents the subset of individuals involved in potential
transmission. Infectious agents can be dynamically removed to represent isolation, while recovered or
susceptible individuals may rejoin after a defined period. This allows the model to reflect heterogeneity in
contact structures, capture the influence of superspreaders [24], and adjust transmission rates in real time.
Unlike classical compartmental models the adaptive WS model makes dynamic isolation a central
mechanism, offering a more flexible and realistic framework for analyzing epidemic control strategies under
real-world conditions.

2. METHOD

We now examine some key assumptions of the adapted WS model in epidemiology. Key elements
of the original WS model are redefined as follows: population is the complete set of agents, analogous to the
set of all memory pages in a computer model; WS is a subset of the population that includes agents that are
not currently isolated and may be involved in transmission (susceptible and infected); Isolation is the process
of excluding agents from the WS, and equivalent to unloading pages from RAM. Isolated agents are
temporarily not involved in the spread of infection; superspreader is an infected agent (in state I) that
transmits infection to an unusually large number of susceptible agents (state S). Unlike the average infected
agent, a superspreader causes significantly more infections due to high contact frequency or other factors.

The adapted model introduces the following states that reflect the epidemiologic status of the agents:
Susceptible (S) is agents that are not in isolation and can become infected through contact with infected
agents; Infected (I) is agents, not in isolation, capable of transmitting infection to others; Recovered (R) is
agents who have developed immunity and are no longer involved in transmission, and Quarantined (Q) is
agents who may be both susceptible and infected, but are temporarily excluded from transmission because of
isolation. The adaptive WS model is described by a system of ordinary differential equations (ODES):
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where, Qs is isolated susceptible; Q; is isolated infected; Qy is isolated recovered (transferred from Q, after
recovery); B(t) is dynamic infection rate; Ny, is current WS size (sum of agents in states S and I) at time t;
& is isolation for S; &, is isolation for I; ng is isolation escape velocity for S; n, is isolation escape velocity
for I; and y is rate of recovery.

This system accounts for all key processes: infection, recovery, isolation and release. The total
population in the model is defined as follows: N = S(t) + I(t) + R(t) + Qs(t) + Q;(t) + Qg(t). The size
of the WS is determined by the formula: Ny, ¢(t) = S(t) + I(t).

The dynamics of infection spread in the model is determined by the following processes:

a. Infection: transition of agents from state S to I by contact with infected agents. The speed of this process

depends on the frequency of contact and the probability of transmission: B(t) = ,vaﬁg-
ws

b. Recovery: transition from I to R as infected individuals recover. Rate of transition from I to R: yI(t).

c. lsolation: the transfer of agents from S or I to Q as a result of control measures such as contact tracing or
quarantine. Then the coefficient from S to Qg will be: §5S(t) and from I to Q, will be: &,1(t).

d. Release from isolation: return of agents from Qg to S (if they remain susceptible) or to R (if recovered)
after completion of the isolation period or confirmation of status by testing: nsQs(t) and from Q; to Qg
(recovery in isolation): yQ, (t). From Qg to R will be: n,Qg(¢).

In contrast to traditional models such as SIR, where the infection rate £ is assumed to be constant
and the population is assumed to be homogeneously mixed, in the adapted WS model the value of 8 becomes

a dynamic variable depending on the size of the WS:

B(t) = o x 25 )
where, B, is basic transmission rate under full population conditions; Ny, (t) is the current size of the WS
(the sum of agents in states S and I) at time t; and N is the total population size. As the number of isolated
agents (translated into Q) increases, the size of the WS decreases, which reduces g (t) and slows the spread
of infection. This approach allows us to model the effect of quarantine and other control measures on
epidemic dynamics.

To summarize the effects of uneven transmission likelihoods, vulnerability distributions, and
interaction patterns, we use a simple class of models in which the population is partitioned into multiple
groups of agents. These adaptations aim to demonstrate that population diversity can significantly alter both
the progression and total reach of an epidemic, and, critically, broaden the range of viable intervention
strategies.

Let consider a multi-agent system with n agents distributed over p groups and exposed to the risk of
infection through contact with each other. Let us specify that the agents' distribution into groups, and each
agent group number can be easily determined by the matrix x = (x,;),xn as shown in Figure 1, where the
element is x,; = 1, if the agent with the number i is located in the group with the number r and x,; = 0,
otherwise.

The matrix x must satisfy constraints (a), (b), and (c). Whatever the distribution of agents over
groups, we assume that each agent of the system belongs to only one of the groups (condition, (a)):
Y x4 =1,i=1,2,..,n Each agent of the system is assigned a "weight", the linear size of its living space,
within which the agent can perform its set of operations assigned to it. In this case, the agents interacting with
each other are exposed to infection risk through contact. Each group is also assigned a "weight" - living space
within which the group's agents are located. The total "weight" of agents in any group should not exceed the
weight of the group (condition (b)): X7, ;i - x < v, v = 1,2,...,p. Here [; is the weight of the agent i,
i =1,2,..,n, and v, is the weight of the group with number r, r=1, 2, ..., p. Let us determine the number of
a group that contains an agent, for example i, with a given matrix x € X, denoting this number by r;(x) and
taking into account the constraints (a), (b), we write (condition (¢)): r;(x) = ¥*_, x,; " 1,i = 1,2, ...,n.

r=1
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Figure 1. Matrix representation of agent distribution across groups

A WS in an epidemiological context is a dynamic group of agents that participate in social
interactions and are not subject to isolation. Its size and composition depend on the following factors:
Isolation policy: when an infected agent from I is identified, its contacts from S in the last t days are
relegated to the state Q. This shortens the WS and reduces the likelihood of new infections. At the end of the
isolation period, agents from Q are tested: susceptible agents return to S, recovered agents to R. An
alternative scenario is high-coverage isolation, in which a large fraction of the population is isolated. Time
window (t): similar to the original WS model, a parameter t is introduced to define the period of "relevance”
of contacts. Agents who have been in contact with infected individuals in the last T time units are considered
candidates for isolation. There may also be superspreaders among these agents. Their identification is
important for epidemic control because isolation of such agents can significantly slow the spread of the
disease. In the WS model, the t parameter specifies the time window during which contacts are considered
relevant.

To assess the dynamics of infection spread and evaluate the impact of isolation measures. For this
purpose, we introduce experimental scenarios: 1. Basic scenario: no isolation (65 = 0, &; = 0); 2. Moderate
isolation: low isolation parameters (&5 = 0.08, &; = 0.9); 3. High-coverage isolation: high isolation
parameters (s = 0.3, §; = 0.4). The SIR and SEIR models do not take insulation into account, so only the
basic scenario is considered. Table 1 summarizes the parameter values and their descriptions used in the
numerical simulations. The parameters were derived from an extensive literature review [25]-[27] on
COVID-19 and epidemic modeling. As in agent-based models [28], our model is formulated for a
generalized small-city population. This abstraction allows flexible adaptation while avoiding the need for
detailed prior knowledge of region-specific parameters

Table 1. Model parameters and descriptions

Variable  Default value Explanation
N 100,000 Total number of individuals in the population
So 98000 Initial number of susceptible individuals
Iy 2000 Initial number of infected individuals
R, 0 Initial number of recovered individuals
E, 0 Initial number of exposed individuals (for SEIR model)
Qs, 0 Initial number of quarantined susceptible individuals
Q, 0 Initial number of quarantined infected individuals
Qr, 0 Initial number of quarantined recovered individuals
B 0.4 Infection rate; probability of disease transmission per contact between susceptible and infected
individuals
Bo 0.4 Base infection rate for the WS
o 0.3 Incubation rate; rate at which exposed individuals become infectious (for SEIR model)
y 0.2 Recovery rate; proportion of infected individuals recovering per unit time
ns 0.2 Quarantine release rate for susceptible individuals; proportion released per unit time
1, 0.2 Quarantine release rate for infected individuals; proportion released per unit time

3. RESULTS AND DISCUSSION
Figure 2 illustrates the epidemic dynamics and the impact of isolation across classical SIR, SEIR,
and adaptive WS models. Figure 2(a) shows reflect the comparative epidemic dynamics in the SIR, SEIR,
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and WS models. In both the SIR and WS scenarios, the infection curve peaks around day 25, reaching
approximately 31,490 individuals, or 31.5% of the total population, after which infections decline sharply.
The SEIR model, by contrast, produces a substantially lower peak of about 19,222 individuals, or 19.2%,
which occurs later on day 52. These results demonstrate that incorporating an incubation period reduces the
epidemic peak by nearly 40% and delays it by more than three weeks, offering critical additional time for
healthcare response.

Figure 2(b) demonstrates the influence of isolation measures on epidemic outcomes within the WS
framework. In the absence of isolation, the infection curve peaks at 35,564 cases, or 35.6% of the population,
on day 24. Under moderate isolation (65 = 0.025 and &, = 0.06), the peak is reduced to 10,843 cases, or
10.8% of the population, and is shifted to day 27, representing a reduction of more than threefold compared
to the uncontrolled scenario. With high isolation (65 = 0.2 and &§; = 0.3), the curve is nearly suppressed,
with infections never exceeding 2% of the population before rapidly declining. These findings confirm that
even moderate interventions markedly reduce epidemic intensity, while strict measures can almost
completely prevent large-scale spread.

Figure 2(c) highlights the differences in epidemic curves when measuring daily incidence. The SIR
model reaches a peak of approximately 3,950 new infections per day, or 3.95% of the population, on day 22.
The WS (no isolation) trajectory is nearly identical, with the maximum slightly higher at around 4,450 daily
cases, or 4.45% of the population, on days 22-23, confirming the equivalence of the two models in the
absence of interventions. The SEIR model, in contrast, produces a much lower peak of about 1,950 new
infections per day, or 1.95%, and this occurs considerably later, on days 43-44. The inclusion of an
incubation period, therefore, reduces the intensity of daily spread by almost half and delays the peak by
approximately three weeks, creating a vital buffer for organizational and medical response. The main
characteristics of the traditional SIR/SEIR models and the proposed WS framework are comparatively
summarized in Table 2 to emphasize the advantages of the WS approach.

Infected Dynamics Comparison (Basic Scenario) ses0taran Working Set Model: Impact of Isolation
tasy 24

35000
30000
25000

é’ 20000/

£ 15000,
3
2

10000

5000

Epidemic Curve: Daily New Infections

000

3 3000
£ 2000

1000

Figure 2. Epidemic dynamics and the impact of isolation in SIR, SEIR, and WS models; (a) comparative
epidemic dynamics, (b) effect of isolation measures in WS model, and (c) daily incidence curves across
models

Comparing the SIR, SEIR, and WS models, we may say that the WS model offers flexibility due to
its isolation, making it more realistic for modeling control measures. The proposed WS model offers several

Memory management principle for dynamic isolation in agent-based epidemic ... (Aslanbek Murzakhmetov)



4864 O ISSN: 2302-9285

advantages, such as accounting for contact heterogeneity and the ability to quantify the impact of quarantine,
contact tracing, and other strategies. In addition, like memory management in computer science, the model
allows to explore the effectiveness of epidemic control. These analyses demonstrate how the adapted WS
model can be useful for studying epidemic dynamics, providing valuable insights for infectious disease
management. Further study of the model could be useful for public health planning and the evaluation of
measures such as quarantine and social distancing.

Table 2. Comparisons of the models

Aspect SIR/SEIR WS
Isolation and quarantine Not directly accounted for, expansion required  Included as centerpiece, dynamic adjustment
Transmission speed Fixed or dependent on S and | Dynamically adjusted based on active set
Contact heterogeneity Requires extensions (e.g., network) Accounting through groups and subsets
Behavioral solutions Not modelled May be enabled via agent rules
Applicability for interventions  Limited without modifications Easy to model quarantine

4. CONCLUSION

The proposed WS model, adapted to the epidemiological context, represents a new and flexible
approach to modeling the spread of infectious diseases. Unlike classical SIR and SEIR models, it uses
dynamic containment as a central mechanism, enabling the identification of active subgroups of individuals
involved in infection transmission and highlighting the role of superspreaders in shaping epidemic curves. By
adjusting the effective transmission rate based on the size and composition of the group of active contacts,
the model provides a more realistic representation of how interventions influence epidemic dynamics over
time. In addition to its theoretical contributions, the WS model has clear practical applications. Public health
officials and policymakers can use it as a decision support tool to evaluate gquarantine measures, testing
strategies, or phased release policies in real time. The model's ability to simulate dynamic containment
scenarios makes it particularly relevant in rapidly changing epidemic situations, where timely adjustments to
interventions are critical to mitigating peak incidence and reducing the burden on healthcare systems.
Although the WS model requires detailed data and careful parameter calibration, its integration of principles
from computer science into epidemiology opens new opportunities for designing optimal control strategies.
Future research may be focused on extending the WS model through integration with agent-based
simulations, which can capture individual-level heterogeneity and social network structures, which can
provide real-time information on interaction patterns. These developments will help validate and refine the
WS framework, ultimately transforming it into a practical tool for real-time epidemic response planning and
strengthening preparedness for future public health crises.
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