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 A solar-photovoltaic (PV) system cannot optimize power transfer from the 

generator to the load due to the nonlinear characteristics of the PV arrays. 

Maximum power point tracking (MPPT) approaches are necessary to optimize 

the power output of PV arrays. This study introduces a dual intelligent MPPT 

framework using fuzzy-logic controller (FLC) and neuro-fuzzy controller 

(NFC) to enhance solar PV efficiency under dynamic environmental 

conditions. The FLC uses 49 fuzzy rules with seven membership functions 

(MFs) in a fuzzy interface system (FIS). The NFC is an extension of FLC and 

is constructed using the artificial neuro-fuzzy interface system (ANFIS). The 

work analyzes the simulation results and performance realization, including 

% power loss, system efficiency, and MPPT efficiency under variable 

irradiance and temperatures. The solar-PV system utilizes FLC and NFC to 

achieve MPPT efficiencies of 97.89% and 98.61%, respectively. Similarly, 

the solar-PV system employing FLC and NFC yields system efficiencies of 

98.24% and 99.23% respectively. The proposed system using both FLC and 

NFC is compared with existing MPPT approaches, with better improvement 

in system efficiency. 
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1. INTRODUCTION 

The renewable energy sources significantly influence the production of electricity. The four types of 

renewable energy are hydro, geothermal, wind, and solar. The first human era made several uses of them for 

various purposes. These sources lessen the generation of greenhouse gases, such as carbon dioxide and nitrogen 

oxides, which cause climate change. Cutting-edge technologies are using these energies to generate incredible 

profits [1]. One rapidly developing technology is solar energy, which has affordable equipment costs. One of 

the most successful innovations is photovoltaic (PV) technology, which uses a PV cell, panel, or array to 

convert solar radiation into electric energy [2] directly. The photoelectric effect is the PV system's direct light 

conversion into energy. PV power systems are classified according to their operational requirements, how their 

machinery is connected to other power sources, the arrangement of their components, electrical loads, and their 

efficiency. PV systems can be divided into two main categories: standalone and grid-connected [3]. The 

standalone system's construction aims to supply specific direct current (DC) and alternating current (AC) 

electric loads and an independent electric grid utility. Grid-connected PV systems use solar PV systems to 

generate power and are linked to the grid utilities. Solar PV arrays, power conditioning devices, converters, 

and grid-connected equipment are all part of the grid-connected system [4]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Since PV arrays are not linear, there is no maximizing of power transmission from PV generation to 

load usage in solar-based PV systems. These properties are determined mainly by external factors such as 

temperature and irradiance, which depend on the solar-PV cell's temperature and irradiance. PV efficiency is 

impacted by the power transfer from electricity to solar, making maximizing solar energy challenging [5]. 

Nonetheless, to continue supplying energy without experiencing a decline in performance, it is crucial to 

generate the PV system's maximum efficiency. The PV array's maximum power point (MPP) must be obtained 

to increase the PV system's power production. As a result, to maximize power from PV arrays and make 

efficient use of their power, maximum power point tracking (MPPT) techniques are required. The majority of 

current research offers a wide variety of MPPT-based techniques. Several factors, including cost, difficulty 

level, hardware needs, method of execution, converging speed, and many more, are considered while 

developing and implementing these MPPT techniques [6]. There are two types of MPPT approaches: soft 

computing and traditional. Incremental conductance (INC) and perturb and observe (PO) procedures 

are examples of conventional MPPT techniques. These conventional methods have moderate MPP tracking, a 

straightforward structure, and simple implementation. Changes in the MPP limit conventional techniques, 

causing a rapid impact on accuracy and a loss of usable power [7]. 

Intelligent and bio-inspired techniques are used to construct the soft-computing MPPT approaches. 

Examples of intelligent techniques are the genetic algorithm (GA), artificial neural networks (ANNs), and 

fuzzy-logic controllers (FLCs) [8]. When handling the nonlinear features of current (I)-voltage (V) and power 

(P)–voltage (V) curves, intelligent approaches need more processing but track the MPP more accurately and 

with a minor power loss. Bio-inspired MPPT techniques include cuckoo search (CS) engines, colony 

optimization, and particle swarm optimization (PSO) [9]. The bio-inspired MPPT algorithms offer superior 

exploration capabilities with minimal computational effort. Because the methods may quickly attain a global 

highest, they can minimize power loss regardless of settings with partial shading. The more gradual 

convergence of the bio-inspired MPPT techniques is a disadvantage that keeps them from being used as cloud-

based alternatives in practical scenarios [10]. Table 1 illustrates the comparison of MPPT approaches. 

 

 

Table 1. Comparison of MPPT approaches 
MPPT techniques Description Strengths Limitations 

P&O [6] Simple hill-climbing to 

track MPP 

Low cost; easy to implement; 

requires minimal hardware 

Steady-state oscillations; poor PS 

performance; drift under rapid changes 
INC [7] Uses the dI/dV relation 

for precise MPP 

detection 

Better accuracy than P&O; reduced 

oscillation 

Sensitive to noise; higher complexity 

FLC [8] Rule-based decision 

making for MPPT 

Handles nonlinearities well; robust 

response 

Rule design and tuning complexity 

ANN [8] Learns a nonlinear 
mapping between 

inputs and MPP 

High accuracy; fast after training; 
adaptive 

Requires a large dataset; offline training; risk 
of overfitting 

GA [8] Evolutionary 
optimization applied to 

MPPT 

Global search: effective under 
complex conditions 

Slower convergence; computationally 
intensive 

PSO [9] Swarm-based global 

optimization of MPP 

Good accuracy under PS; global 

optimum search 

Iterative and slower than conventional 

methods 

Ant colony 
optimization 

(ACO) [9] 

Mimics ant foraging to 
find the global MPP 

Avoids local minima; strong 
exploration capability 

Iterative process; parameter sensitivity 

CS [9] Uses Lévy flights for 
global MPP search 

Robust exploration; fewer 
parameters than GA/PSO 

Convergence speed variable; tuning needed 

 

 

Problem statement: due to its widespread adoption in the last ten years, solar energy has seen an 

exponential surge in demand. Through the clean reception of light, energy, solar panels generate electricity. 

Solar panels are highly dependent on external factors such as temperatures and irradiance to produce the MPP. 

Due to the nonlinear IV properties of PV cells, the PV current also influences the PV's output voltage, which 

prevents the load impedance from directly forecasting the output power. Thus, a PV MPPT control system is 

required to reach the MPP of the PV. To ascertain the practical MPP, an observation control system 

continuously adjusts its operating position and changes the voltage or current state of the power input. 

Numerous methods for tracking the MPP have been published in the scientific literature. Nevertheless, most 

existing methods need improved accuracy, efficiency, and response time. Traditional MPPT methods struggle 

with accuracy and adaptability under fluctuating irradiance. This study proposes intelligent controllers to 

address these limitations intelligent controllers to address these limitations and this research aims to identify 

the most precise and adaptable mechanism for obtaining the required PV power under various environmental 

circumstances. 
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The work aims to develop an effective solar PV system and optimize its MPPT algorithm to maximize 

system efficiency under various environmental conditions. The work aims to develop intelligent controller-

based MPPT algorithms for solar PV systems, such as FLC and neuro-fuzzy controller (NFC), which increase 

system efficiency by lowering power loss. In order to improve flexibility under changing temperature and 

irradiance conditions, an artificial neuro-fuzzy interface system (ANFIS)-based NFC is created, along with a 

49-rule FLC with seven membership functions (MFs). The suggested solution outperforms traditional MPPT 

techniques in terms of both MPPT efficiency and system efficiency. Additionally, the NFC shows a great deal 

of promise in lowering power losses and enhancing PV systems' overall performance. 

This section includes the work done on various MPPT techniques for PV systems to achieve 

performance parameters and system efficiency. Riquelme-Dominguez and Martinez [11] present PV-based 

MPPT methods employing a state-space framework in several test circumstances. This work studies the PO 

and drift-free-based MPPT approaches. At the EN50530 irradiance examination, the system achieves a 

dynamic efficiency of 96.77% and 96.77% for conventional PO and drift-free PO-based MPPT methods, 

respectively. Alcaide et al. [12] discuss the effect of MPPT techniques on capacitor longevity throughout the 

PV array. The work analyses the PV voltage and power outcomes using a PO-based MPPT technique. The PO 

and INC-based MPPT techniques provide 91.56% and 91.82% efficiency, respectively, for the system. Zouga 

et al. [13] present the backstepping control-based PSO for PV-based electrical networks under fluctuating 

loads. Backstepping and PSO processes design the PV voltage and power factor regulators. The study examined 

the injected current, DC-link, and PV voltage at different loads, both with and without control. Malarvili and 

Vinothkumar [14] present the artificial intelligence-based PSO for MPPT of solar energy systems under PSCs. 

The FLC—merged with PSO—is regarded as an artificial intelligence technique to enhance PV system 

efficiency under PSCs. With PSO and FLC+PSO under PSCs, the PV system achieves steady state convergence 

of 0.6 and 0.3 sec. Jamaludin et al. [15] describe the Salp-swarm algorithm (SSA)- based MPPT for PV systems 

under partial shade conditions (PSCs). When operating under uniform illumination conditions (UICs), the 

system achieves 97.87% tracking efficiency using the SSA. Bouakkaz et al. [16] present the FL-based modified 

Hill climbing (MHC) MPPT technique with adaptive step characteristics for PV systems. To build the MHC, 

the FLC output response is attached to the HC method. This paper analyses the PV and boost-converter 

findings. 

Hayder et al. [17] discuss FLC-based MPPT for PV systems. This work investigates the changing 

irradiance and temperature conditions of solar PV and IV and includes the duty cycle, voltage, current, and 

power results under various temperature and irradiance circumstances. Salem et al. [18] describe the PO and 

FLC-Hill climbing (HC)-based MPPT techniques for PV generators. The study covers the individual 

algorithms for PO, FLC, and FLC-HC. They discuss the PV system outcomes utilizing FLC-HC and PO.  

Ali et al. [19] present the FLC-INC-based MPPT technique with variable-step capabilities for grid-connected 

solar energy systems. The grid-connected PV system analyses solar PV and IV. The duty cycle, voltage, 

current, and power outcomes under various temperature and irradiance circumstances are included in the work. 

Bag et al. [20] cover the combined sliding-mode control (SMC) and reinforcement learning (RL)—based 

MPPT technique for grid-connected PV systems. The hybrid model achieves a THD of 2.95% for load voltage 

in steady-state settings and provides 98.80% efficiency. Roy et al. [21] address the comparative study of ANN 

based MPPT energy harvesting techniques for solar-PV systems. Using ANN-based methods, the maximum 

PV voltage at various temperatures and irradiances is analyzed. Padmanaban et al. [22] describe the ANN and 

Newton-Raphson (ANN-NR) based selective harmonic elimination (SHE) strategy in the cascaded multilevel 

inverter (CMLI) for PV applications. By employing a symmetric technique, the PV system achieves an 

efficiency of 89.39% with a power loss of 97.73 W. Similarly, by employing the symmetrical technique with 

ANN-NR, the PV system achieves an efficiency of 93.14% with a power loss of 58.64 W. Table 2 shows the 

summary of existing works using various approaches on the solar-PV system. 

The efficiency and dynamic response of current MPPT techniques are increased, but accuracy, 

convergence speed, computational complexity, and real-time application are all traded off. Under partial 

shading, conventional methods perform poorly, whereas intelligent and hybrid methods become more difficult 

and expensive. Efficiency and power quality are rarely optimized together in studies. Therefore, this study aims 

to address the market gaps for an MPPT method that ensures high efficiency, rapid tracking, and adaptability 

with reduced implementation complexity. 
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Table 2. Summary of existing works 
Authors (Ref.) Method Results Advantages Limitations 

Riquelme-
Dominguez and 

Martinez [11] 

PO and drift-
free PO (state-

space) 

Dynamic efficiency: 
96.77% (both PO and drift-

free PO) at EN50530 test 

High dynamic efficiency; 
drift-free reduces 

oscillations 

Limited to test conditions; 
scalability to large PV arrays 

not shown 

Alcaide et al. 
[12] 

PO and INC PO: 91.56% efficiency, 
INC: 91.82% efficiency 

Good efficiency under the 
capacitor longevity study 

Lower efficiency compared to 
advanced techniques; limited 

dynamic testing 

Zouga et al. 
[13] 

Backstepping + 
PSO 

Improved current injection, 
DC-link, and PV voltage 

under varying loads 

Handles load fluctuation; 
better power factor 

regulation 

Computationally complex; 
requires tuning of 

backstepping+PSO 

Malarvili and 
Vinothkumar 

[14] 

FLC + PSO 
(AI-based) 

Steady-state convergence: 
0.6 sec (PSO), 0.3 sec 

(FLC+PSO) under PSCs 

Fast convergence under 
PSCs; hybrid improves 

efficiency 

Requires fuzzy rule base; 
sensitive to parameter tuning 

Jamaludin et al. 
[15] 

SSA 97.87% tracking efficiency 
under UICs 

High efficiency; effective 
under PSC and UICs 

Performance under highly 
dynamic PSCs is not fully 

addressed 

Bouakkaz et al. 

[16] 

FLC-based 

MHC 

Improved PV and boost 

converter (BC) performance 

Adaptive step size 

improves tracking; avoids 

oscillations 

Complexity increases; it 

depends on the fuzzy system's 

accuracy 

Hayder et al. 
[17] 

FLC-based 
MPPT 

Duty cycle, voltage, current, 
and power were analyzed 

under varying irradiance. 

Handles 
irradiance/temperature 

variations 

Performance metrics 
(efficiency %) not quantified 

Salem et al. 

[18] 

PO, FLC, and 

FLC-HC 

PV system tested with 

individual PO and hybrid 

FLC-HC 

Hybrid FLC-HC 

outperforms conventional 

PO 

Implementation complexity; 

lacks quantitative efficiency 

data 
Ali et al. [19] FLC-INC 

(variable step) 

Grid-connected PV 

analyzed under varying 

conditions 

Variable-step improves 

adaptability; grid-connected 

application 

Increased computational 

demand; system complexity 

Bag et al. [20] Sliding mode 

control + RL 

Achieves 98.80% 

efficiency; THD=2.95% in 

steady state 

High efficiency; low THD; 

adaptive learning capability 

Computationally intensive; 

may require large training 

datasets 
Roy et al. [21] ANN-based 

MPPT 

PV voltage at various 

temperatures and 

irradiances analyzed 

Learns nonlinear PV 

characteristics; adaptable 

Requires training; 

performance depends on 

dataset quality 
Padmanaban et 

al. [22] 

ANN-NR, SHE Efficiency: 89.39% (ANN), 

93.14% (ANN-NR); Loss: 

97.73 W vs 58.64 W 

Reduced power loss with 

ANN-NR; improved SHE 

Lower efficiency compared to 

other AI techniques; 

implementation complexity 

 

 

2. PROPOSED WORK 

The two MPPT algorithms, including FLC and NFC, are implemented in this study. The difficulty, 

expense, speed of convergence, and ease of implementation of these algorithms may all differ. The work 

involves implementing various MPPT techniques in varying temperature and irradiance circumstances to 

determine the power supplied by the solar-PV array. The solar-PV array's MPPT technique will increase the 

dependability and efficiency of MPP. Implementing the MPPT algorithms, which adapt dynamically for 

extracting the MPP in the solar-PV system, is essential. The main parts of the design model are a 250 W solar 

PV array panel, a DC-DC-based pulse width modulation (PWM) generator, an MPPT controller with FLC/NFC 

techniques, and a BC with the necessary load. The MPPT mechanism based on solar PV is shown in Figure 1. 

The BC gives the solar PV-based MPPT system's output voltage, current, and power values. After receiving 

the temperature and irradiance data, the PV array model delivers the PV voltage, current, and power in DC. 

The DC-to-DC-based BC receives the PV-based DC voltages, which use an MPPT controller to transform them 

to DC. Two MPPT techniques, including NFC and FLC, are used in constructing the MPPT controller. The 

duty cycle (D) is supplied by the MPPT controller and sent into the PWM generator. At the switching frequency 

of 10 kHz, the PWM generator gets the duty cycle and produces the gate pulses. The insulated-gate bipolar 

transistor (IGBT) of the BC makes additional use of these gate pulses. A load resistor is attached to this BC to 

calculate the resulting power of the solar PV-based MPPT system. 

The solar PV module produces the PV and VI graphs under different operating circumstances, such 

as temperature and irradiance. Determining the MPP from the PV curve is challenging. Therefore, the DC-DC-

based BC with an MPPT control mechanism is required to overcome these problems. Several algorithms are 

used to determine the MPPT control mechanism. The solar-PV module and the load resistance are interfaced 

through this DC-DC converter. The BC reaches the designated DC output voltage by increasing the obtained 

input PV voltage. In Figure 2, the BC representation is depicted. CR (capacitor (Cout) and load resistor (RL) in 

parallel, input capacitance (Cin)), an IGBT-followed diode as the inductance, and a gate pulse from a PWM 

generator are the critical components of the BC. Inductance (L) is connected to the BC, which collects the input 

voltage from the PV array. The parallel Cin and L of the IGBT module serve as a switch and link it to the BC 

input. Situated in parallel to CR, the diode functions as an additional switch. 
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Figure 1. Solar-PV system using MPPT controller 
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Figure 2. DC-DC-based BC 

 

 

The load resistor is connected across the voltage sensor unit to produce the anticipated final DC output 

voltage (Vout). A steady input current is produced using an inductance link to the PV voltage. The MPPT 

controller uses PWM to operate the IGBT switch in both "ON" and "OFF" modes. The DC to DC-based PWM 

generators' gate pulses are linked to the IGBT switch end. The PWM generator produces gate pulses with a 

switching frequency of 10 kHz. With the diode "ON" and the switch "OFF," the polarity of the inductor is 

changed. To maintain the current's flow direction, the inductor releases the accumulated energy and transfers 

it to the resistor. The final power (Pout) is computed using the final voltage (Vout) and current (Iout). The output 

of the BC is the DC output voltage and current. In (1) can be used to express the DC output current of the BC 

as (1): 

 

𝐼𝑜𝑢𝑡(𝑎) =
(1−𝐷).𝑉𝑜𝑢𝑡(𝑎−2).𝐼𝑝𝑣(𝑎−1)

2𝑉𝑜𝑢𝑡(𝑎−2)−𝑉𝑜𝑢𝑡(𝑎−3)
 (1) 

 

2.1.  Fuzzy-logic controller 

For industry sectors, the FLC is more efficient than the conventional PID controller and provides more 

options for output response. Failsafe execution, fast information set interpretation, and fault tolerance are only 

a few of the FLC's benefits. The five main components of the FLC operation are the evaluation unit, ruleset, 

fuzzification, defuzzification, database, and MPPT (which functions as the plant). The FLC operating with the 

MPPT is seen in Figure 3. The fuzzification process changes the absolute (crisp) value into a fuzzy (linguistic) 

value. PV values (power and voltage) give the input data (error signal) for the fuzzification process, as crisp 

data into variables (fuzzy variables). The fuzzy variables can detect fuzzy values and act as fuzzy sets. The 

MFs deal with the fuzzy sets in the small, high, low, or massive values. 

The rule base, which consists of fuzzy rules based on the MFs, improves the efficiency of the plant. 

The assessment process provides the decision logic predicated on the rules stored in the database. The essential 

logic operations AND, OR, and NOT implement the fuzzy rules. As the defuzzification process progresses, the 

fuzzy values become crisp values. Three key components are utilized in FLC activities: MFs, fuzzy rules, and 

fuzzy variables. 
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Figure 3. FLC with MPPT 

 

 

Fuzzy variables: considering the Mamdani model, the FLC is designed using the fuzzy interface 

system (FIS) in the MATLAB Simulink environment. The FLC variables error (E) value and change in error 

(CE value) are defined as follows using (2) and (3). PV power is measured using P (a) and P (a-1). PV voltages 

V (a) and V (a-1) represent the current and previous values. The prior error input value is E (a-1). Figure 4 

depicts the formation of errors and CE indications for FLC. PV power and voltage values are inputted into (2) 

to determine the error (E) estimate. 

 

𝐸(𝑎) =  
𝑃(𝑎)−𝑃(𝑎−1)

𝑉(𝑎)−𝑉(𝑎−1)
 (2) 

 

𝐶𝐸(𝑎) = 𝐸(𝑎) −  𝐸(𝑎 − 1) (3) 

 

Membership function: using fuzzy set MF, the fuzzy components E, CE, and FLC output (FO) values 

for the given discourse domain are shown in the interval [-500 to 500]. The range of possibilities for MFs for 

E and CE is based on the triangular-shaped MFs. The range decision of the FLC output (FO) MF is based on 

the triangle-shaped MF. Indicators for performance and robustness will rise with a triangle-shaped MF inside 

certain bounds. Positive large (PB), positive medium (PM), positive small (PS), zero (ZO), negative big (NB), 

negative medium (NM), and negative small (NS) are the seven fuzzy variables (FVs) and act as MFs that the 

E and CE use. The fuzzy variables are retained in the knowledge base and will be used later in the rule-building 

process. MFs are categorized as tiny or large based on their range.  
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Figure 4. Error and CE generation used in FLC 

 

 

Fuzzy rules: about the rule set, the rule base is created using the fuzzy rules. The collection of fuzzy 

rules is shown in Table 3. The Mamdani-based FIS is used in the construction of the FLC system. Forty-nine 

rules and 7 MFs are used in FIS for the E and CE variables. This rule set contains 49 fuzzy rules that 

can generate a single FO output as Duty cycle (D) for two inputs. The FLC output is produced based on (4) as 

follows for the nth-order rule base. For the nth fuzzy rule set, n=1, 2... Nm. The integer (i) is set to 1, 2, 3, 4, 5, 

6, and 7. Employing the centroid technique, the ruleset is transformed into a clean output structure to complete 

defuzzification. 
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𝑅𝑛: 𝐼𝐹 (𝑒𝑟𝑟𝑜𝑟 𝑖𝑠 𝐸 (𝑖)) 𝐴𝑁𝐷 (𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐸𝑟𝑟𝑜𝑟 𝑖𝑠 𝐶𝐸 (𝑖)) 𝑡ℎ𝑒𝑛 (𝐹𝐿𝐶 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑠 𝐹𝑂 (𝑖) (4) 

 

 

Table 3. FLC rule set used for MPPT process 
Error/CE NB NM NS ZO PS PM PB 

NB NB NB NB NM NM NS ZO 

NM NB NB NB NM NS ZO PS 
NS NB NM NS NS ZO PS PM 

ZO NM NM NS ZO PS PM PM 

PS NM NS ZO PS PS PM PB 
PM NS ZO PS PM PM PB PB 

PB ZO PS PM PM PB PB PB 

 

 

The controller can capture nonlinear variations in PV output without becoming overly complex due 

to the use of seven MFs for each input variable, which strikes a delicate balance between resolution and 

computational efficiency. This setup yields 7×7=49 fuzzy rules with two inputs (E and CE), which is enough 

to cover every circumstance in which the PV system could operate. This rule-based approach improves 

robustness under dynamic irradiance and partial shading, minimizes steady-state oscillations, and guarantees 

seamless transitions between control actions. It is the best option for real-world MPPT applications since 

keeping the rule set at 49 preserves real-time implementation feasibility on digital controllers. 

 

2.2.  Neuro-fuzzy-controller 

The NFC extends FLC using an ANFIS. The FIS of NFC is automatically realized by neural networks 

(NNs). The practical process of converting from crisp to fuzzy and vice versa is provided by NFC. The ANFIS 

framework is used to construct the FIS optimization using NNs. Figure 5 illustrates the implementation of NFC 

operation through ANFIS. Training and testing the FIS is possible, and the NFC has the unique ability to learn 

fresh abilities. The four primary operations are FIS generation, training data unit, FIS testing, and FIS training. 

 

 

Training Data FIS Generation Train FIS Test FIS
Output 

data

Input 

data
 

 

Figure 5. ANFIS-based NFC implementation 

 

 

For NFC training, the PV power and voltage data are considered. The ANFIS editor for NN training 

loads these data. Grid partitioning is the method used to generate FIS. The FIS produces the constant MF output 

after considering the seven MFs with a kind of Gaussian MF as input. The FIS employs seven rules and the 

AND operation to produce a single FIS output. Two optimization strategies—back-propagation and hybrid 

mode—can be used for FIS training. This work considers the hybrid optimization strategy to train the FIS. 

With three epochs, the error tolerance is set to zero. To produce the final NFC output, test the FIS against the 

training data when it has finished training. The final NFC output is the FIS output generated during the testing 

process. The NFC output is utilized in PWM generators and is regarded as a duty cycle.  

Hybrid optimization was chosen because it combined the benefits of back-propagation and least-

squares estimation. Slow and prone to local minima is simple back-propagation is. Least-squares evaluation is 

fast for linear parameters but poor for nonlinear ones. Both are balanced in the hybrid technique, which ensures 

faster convergence and higher precision. ANFIS significantly reduces training timeframes by avoiding local 

minima and achieving robust adjustment of MFs and rule parameters. This makes it ideal for MPPT, where 

speed and accuracy are critical. 

 

 

3. RESULTS AND DISCUSSION 

This section discusses the outcomes of the solar PV-based system using intelligent MPPT control 

approaches. The comprehensive simulation results, including the ultimate output (voltage (V), current (I), and 

power (P)) utilizing FLC and NFC, are described at various temperatures and irradiances. Performance metrics 

like power loss, PMPPT efficiency and system efficiency are realized under various conditions. The solar-PV 

array and cell specifications and values considered for the suggested design model are listed in Table 4. The 

proposed Simulink model for intelligent MPPT control in solar PV systems is illustrated in Figure 6. 
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Table 4. Specification of the solar PV-based system with MPPT controllers 
Parameters Specific values and units 

Parallel strings and series-connected modules/string 1, 1 
Irradiance (W/m2) [200 400 600 800 1000] 

Temperature (⁰C) [0 25 50 75 100] 

Open circuit voltage (Voc), short circuit current (Isc) 50.93 V, 6.2 A 
Voltage and current at MPP (Vmp, Imp) 42.8 V, 5.84 A 

Number of cells per module (Nc) 72 

Diode ideality factor (Dif) and saturation current (Ids) 1.0263, 1.3617×10-11A 
Series and shunt resistance (R and Rs) 0.377759 Ω, 448.69 Ω 

Simulation time (Sec) [0, 0.5, 1, 1.5, 2] 

 

 

 
  

Figure 6. Proposed Simulink model for intelligent MPPT control in solar PV systems 

 

 

Figure 7 shows the simulation results of a solar-PV system using MPPT controllers under varying 

irradiance at 25 °C. Figures 7(a) and (b) show the BC output findings (V, I, and P) for FLC and NFC, 

respectively. By employing FLC, the BC output power is raised from 12.23 W to 244.7 W at 25 °C, with an 

irradiation of 200–1000 W/m2. Furthermore, at 25 °C and an irradiation of 200–1000 W/m2, the BC output 

power utilizing NFC is enhanced from 12.23 W to 246.5 W. 

 

 

  
(a) (b) 

 

Figure 7. Simulation results at variable irradiance at 25 ⁰C for; (a) FLC and (b) NFC 
 

 

Figure 8 shows the MPPT controller outcomes employing FLC and NFC. Figures 8(a) and (b) display 

the FLC and NFC outputs at 1000 W/m2 and 25 °C, respectively. Both the controller outputs vary from -10 to 

10. The FLC output is generated based on the fuzzy rule sets and the NFC output is generated using PV values 

based on the FIS training. 
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(a) (b) 

 

Figure 8. MPPT controller outputs at variable irradiance at 25 ⁰C for; (a) FLC (b) NFC 
 
 

The performance summary of the solar-PV system using FLC and NFC at 1000 W/m2 and 25 °C is 

tabulated in Table 5. The percentage of power loss is calculated based on the difference between the PV and 

output power and multiplied by 100. The MPPT efficiency is the ratio of the obtained PV power to the actual 

PV power. The system efficiency is the ratio of the obtained output power by PV power. The PV-power (Ppv) 

and output power (Po) of the solar-PV system using FLC are 249.1 W and 244.7 W, respectively. 

Similarly, the solar-PV system using NFC obtains the PV power (Ppv) and output power (Po) of  

248.4 W and 246.5 W, respectively. The FLC-based approach offers better PV power; however, NFC offers 

better-obtained power than FLC, which boosts the system and MPPT efficiency. The solar-PV system obtains 

the power loss of 4.4% and 1.9% using FLC and NFC, respectively. The solar-PV system obtains the MPPT 

efficiency of 97.89% and 98.61% using FLC and NFC, respectively. Similarly, the system efficiency of 98.24% 

and 99.23% is obtained for solar-PV systems using FLC and NFC, respectively. The power loss is reduced by 

around 56% using NFC than FLC in the solar-PV system. The MPPT and system efficiency are improved by 

around 0.74% and 0.99% using NFC than FLC in the solar-PV system. 

The PV and output power results using MPPT algorithms are illustrated in Figure 9. The PV and output 

powers using FLC and NFC at Variable irradiance (200 to 1000 W/m2) at 25 ⁰C are shown in Figure 9(a). The 

PV and output powers using FLC and NFC at different temperatures (0 to 50 ⁰C) at 1000 W/m2 irradiance are 

shown in Figure 9(b). The PV output power using FLC declined from 271.1 W to 225.3 W and 272.8 W to  

227.01 W using NFC at 1000 W/m2, with different temperatures (0 to 50 ⁰C). By employing FLC, the BC output 

power declined from 261.62 W to 220 W at 1000 W/m2, with different temperatures (0 to 50 ⁰C). 
 
  

Table 5. Performance summary of solar-PV system using FLC and NFC at 1000 W/m2 and 25 ⁰C 
Parameters FLC NFC 

Vpv (V) 42.05 41.72 

Ipv (A) 5.925 5.955 
Ppv (W) 249.1 248.4 

Vo (V) 44.25 44.41 

Io (A) 5.531 5.551 
Po (W) 244.7 246.5 

Power loss (W) (%) 4.4 1.9 

MPPT efficiency (%) 97.89 98.61 
System efficiency (%) 98.24 99.23 

 

 

  
(a) (b) 

 

Figure 9. PV and output power results using various MPPT algorithms at; (a) variable irradiance at 25 ⁰C and 

(b) different temperatures at 1000 W/m2 
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Furthermore, the BC output power utilizing NFC is decreased from 263.8 W to 224.9 W. As the 

irradiance value rises at 25 °C, the PV and output power values also rise. At 1000 W/m2, the PV and output 

power values decline when the temperature rises. Compared to the FLC technique, the solar PV system with 

NFC yields better PV and output power (average) outcomes. 

The % power loss (W) using MPPT algorithms is illustrated in Figure 10. The % power loss (W) using 

FLC and NFC under variable irradiance (200 to 1000 W/m2) at 25 ⁰C is shown in Figure 10(a). The NFC-based 

solar-PV system reduces the power loss by 16.6%, 23.25%, and 56.8% at 600, 800, and 1000 W/m2 than the 

FLC-based approach. However, there is no power loss at 200 and 400 W/m2 using FLC and NFC. The % power 

loss (W) using FLC and NFC at different temperatures (0 to 50 ⁰C) under 1000 W/m2 irradiance is shown in 

Figure 10(b). The NFC-based solar-PV system reduces the significant power losses at 0, 10, 20, 30, 40, and  

50 ⁰C temperatures under 1000 W/m2 than the FLC-based approach.  

 

 

  
(a) (b) 

 

Figure 10. % power loss (W) using various MPPT algorithms at; (a) variable irradiance at 25 ⁰C and (b) diff. 

temperatures at 1000 W/m2 

 

 

The system efficiency (%) using MPPT algorithms is illustrated in Figure 11. The system efficiency 

(%) using FLC and NFC under variable irradiance (200 to 1000 W/m2) at 25 ⁰C is shown in Figure 11(a). The 

NFC-based solar-PV system improves the system efficiency by 0.54% and 0.76% at 800 and 1000 W/m2 than 

the FLC-based approach. However, system efficiency remains the same at 200 and 600 W/m2 using both FLC 

and NFC. The system efficiency (%) using FLC and NFC at different temperatures (0 to 50 ⁰C) under  

1000 W/m2 irradiance is shown in Figure 11(b). The NFC-based solar-PV system improves system efficiency 

at 0, 25, 50, 75, and 100 ⁰C temperatures under 1000 W/m2 than the FLC-based approach. 

  

 

  
(a) (b) 

 

Figure 11. System efficiency (%) concerning the various MPPT algorithms at; (a) variable irradiance at 25 ⁰C 

and (b) diff. temperatures at 1000 W/m2 
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The performance comparison of proposed MPPT approaches with existing MPPT approaches  

[23]-[31] is illustrated in Table 6. The comparative realization includes the MPPT approach used, constant or 

variable irradiance, rated power (W), obtained PV power, output power and system efficiency (%) in this work. 

The proposed FLC-based MPPT approach offers better system efficiency than adaptive PO [23] by 3.65%, 

improved PO [24] by 3.02%, INC+PSO approach [25] by 1.27%, PO+PSO-based approach [26] by 6%, FLC 

[27] by 3.19%, and FLC [28] by 2.28% under constant and variable irradiance conditions. Similarly, the 

proposed NFC-based MPPT approach offers better system efficiency than NFC [29] by 0.2%, artificial bee 

colony (ABC) with NFC [30] by 0.9% and the NFC approach by 0.7% under variable irradiance conditions. 

Overall, the proposed solar-PV system with FLC and NFC approach offers better system efficiency than other 

MPPT controller approaches. 

Future research should address dynamic load changes and battery non-linearities, as the current study 

assumes optimal battery performance and a stable load, which may not accurately represent real-world PV 

systems. Comparisons of FLC, NFC, and conventional approaches' performance should also be subjected to 

statistical significance testing. This will verify if the efficiency gains (97.89–99.23%) that have been noted are 

statistically significant and not the result of chance fluctuations. 

 

 

Table 6. Performance comparison of proposed MPPT approaches with existing MPPT approaches 

Designs 
MPPT 

approach 

Irradiance 

(W/m2) 

Rated -PV 

power 

PV power 

(W) 

Output 

power (W) 

Efficiency 

(%) 

Ref. [23] Adaptive PO Constant 3000 W 2787 2637 94.65 

Ref. [24] Improved PO Constant 250 W 240.8 229.41 95.27 

Ref. [25] INC+PSO Variable 800 723.7 702 97 
Ref. [26] PO+PSO Variable 250 243.69 225.03 92.34 

Ref. [27] PID Variable 500 476.25 437.29 91.82 

Ref. [27] FLC Variable 500 495.7 471.5 95.1 
Ref. [28] FLC Constant 181 180.1 172.9 96 

Proposed work FLC Variable 250 249.1 244.7 98.24 

Ref. [29]  NFC Variable 60 54.54 54.01 99.06 
Ref. [30] ABC+NFC Variable 230 224.4 228.07 98.39 

Ref. [31] NFC Variable 440 426 420 98.59 

Proposed work NFC Variable 250 248.4 246.5 99.23 

 

 

3.1.  Discussion 

This study optimizes MPPT performance by modelling an effective solar-PV system using intelligent 

controllers, namely the FLC and the NFC. According to the simulation findings, which were performed in 

MATLAB Simulink with varying irradiance, the NFC-based method considerably lowers power loss (1.9%) 

in comparison to the FLC-based system (4.4%). With an MPPT tracking improvement of 0.74% and an overall 

system efficiency improvement of 0.99% over the FLC-based technique, the NFC method achieves 98.61% 

MPPT efficiency and 99.23% system efficiency. Furthermore, NFC uses less energy and has better tracking 

accuracy than FLC, reducing power loss by 56%. 

Prior MPPT optimization research has mostly focused on traditional techniques like PO and INC, 

which have limitations in dynamic irradiance conditions. Rule-based approximations still restrict the efficiency 

of FLC-based MPPT systems, although they have shown themselves to be more adaptable than conventional 

methods. Recent studies have shown that MPPT control can be enhanced by neuro-fuzzy techniques that 

integrate adaptive learning capabilities. These claims are supported by the study's results, which further validate 

the value of AI-driven controllers in solar PV systems by demonstrating that the NFC-based MPPT system 

outperforms FLC in reducing power loss and improving energy extraction. 

Although the NFC-based MPPT controller is more effective in terms of tracking accuracy and energy 

efficiency, further research is needed to assess its scalability and real-time deployment in large-scale solar 

farms. Future studies can include hardware-in-the-loop (HIL) testing to validate both transient and steady-state 

reactions in practical settings. Furthermore, employing RL-based MPPT approaches could further enhance 

power tracking by dynamically altering control settings in real time. Future studies could also look at how 

clever MPPT controllers affect hybrid energy storage systems to maximize power distribution between solar 

PV arrays and battery storage components [32]-[34]. 

In conclusion, the proposed solar-PV system that makes use of intelligent controllers significantly 

enhances MPPT performance and overall system efficiency. By using NFC-based control, the system offers 

more accuracy, less power loss, and improved adaptability as compared to FLC-based techniques. These 

findings show that solar energy harvesting can be maximized through the application of AI-driven MPPT 
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techniques. As solar PV technology advances and drives the transition to sustainable and efficient energy 

sources, intelligent control techniques will be crucial to optimize the use of renewable energy sources. 

Scalability is a feature of the suggested NFC-based MPPT for grid-connected and multi-panel 

configurations. While appropriate coordination with DC-link and current control loops assures stability in grid-

connected operation, it can be applied at the central level for cost efficiency or at the module level for greater 

partial shading tolerance. Due to its modest computational effort, the NFC can be implemented in real-time on 

DSPs, MCUs, or FPGAs. Practical deployment is supported by precise sensing, fixed-point arithmetic, and 

efficient PWM synchronization; nonetheless, to guarantee dependable operation, hardware limitations like 

ADC resolution, EMI resilience, and protection procedures must be addressed. 

 

 

4. CONCLUSION 

The efficient solar-PV system using intelligent controllers (FLC and NFC) is modelled in this article 

to enhance the system efficiency. The solar-PV system has solar-PV arrays, a DC-DC-based BC with an MPPT 

controller, and a pulse generator. The intelligent controllers are used to track the PV arrays' best possible MPP. 

The proposed system is modelled using the MATLAB Simulink tool. The simulation results and controller 

outcomes are analyzed under variable irradiance conditions. 

An important development in solar energy systems is an intelligent controller-based MPPT technique. 

The NFC-based MPPT controller demonstrates superior adaptability and efficiency, making it suitable for real-

time solar PV applications. Intelligent MPPT controllers will be essential for optimizing solar power use as the 

use of renewable energy sources increases. By employing intelligent controller-based MPPT techniques, the 

suggested system provides increased system efficiency with reduced power loss in a range of environmental 

circumstances.  

More processing is required by intelligent controllers, and digital signal processors (DSPs) and 

contemporary embedded systems have grown incredibly powerful and economical. Furthermore, intelligent 

MPPTs increase precision, lower power losses, which eventually result in larger energy savings that exceed 

their initial hardware expense. Adaptive learning is a feature of intelligent MPPT controllers that allows them 

to dynamically adjust their parameters while in use. Enhancing efficiency, adaptability, and integration with 

the latest technologies will be the main goals of future studies in intelligent controller-based MPPT approaches. 

For renewable energy systems to be widely adopted, AI-driven self-study, fault-tolerant, and grid-interactive 

MPPT control systems will be essential. Studies can help optimize solar energy consumption, along with 

contributing to a greener and energy-efficient future by developing such technologies. 
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