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Power

Solar photovoltaic array

A solar-photovoltaic (PV) system cannot optimize power transfer from the
generator to the load due to the nonlinear characteristics of the PV arrays.
Maximum power point tracking (MPPT) approaches are necessary to optimize
the power output of PV arrays. This study introduces a dual intelligent MPPT
framework using fuzzy-logic controller (FLC) and neuro-fuzzy controller
(NFC) to enhance solar PV efficiency under dynamic environmental
conditions. The FLC uses 49 fuzzy rules with seven membership functions
(MFs) in a fuzzy interface system (FIS). The NFC is an extension of FLC and
is constructed using the artificial neuro-fuzzy interface system (ANFIS). The
work analyzes the simulation results and performance realization, including
% power loss, system efficiency, and MPPT efficiency under variable
irradiance and temperatures. The solar-PV system utilizes FLC and NFC to
achieve MPPT efficiencies of 97.89% and 98.61%, respectively. Similarly,
the solar-PV system employing FLC and NFC yields system efficiencies of

98.24% and 99.23% respectively. The proposed system using both FLC and
NFC is compared with existing MPPT approaches, with better improvement
in system efficiency.
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1. INTRODUCTION

The renewable energy sources significantly influence the production of electricity. The four types of
renewable energy are hydro, geothermal, wind, and solar. The first human era made several uses of them for
various purposes. These sources lessen the generation of greenhouse gases, such as carbon dioxide and nitrogen
oxides, which cause climate change. Cutting-edge technologies are using these energies to generate incredible
profits [1]. One rapidly developing technology is solar energy, which has affordable equipment costs. One of
the most successful innovations is photovoltaic (PV) technology, which uses a PV cell, panel, or array to
convert solar radiation into electric energy [2] directly. The photoelectric effect is the PV system's direct light
conversion into energy. PV power systems are classified according to their operational requirements, how their
machinery is connected to other power sources, the arrangement of their components, electrical loads, and their
efficiency. PV systems can be divided into two main categories: standalone and grid-connected [3]. The
standalone system's construction aims to supply specific direct current (DC) and alternating current (AC)
electric loads and an independent electric grid utility. Grid-connected PV systems use solar PV systems to
generate power and are linked to the grid utilities. Solar PV arrays, power conditioning devices, converters,
and grid-connected equipment are all part of the grid-connected system [4].
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Since PV arrays are not linear, there is no maximizing of power transmission from PV generation to
load usage in solar-based PV systems. These properties are determined mainly by external factors such as
temperature and irradiance, which depend on the solar-PV cell's temperature and irradiance. PV efficiency is
impacted by the power transfer from electricity to solar, making maximizing solar energy challenging [5].
Nonetheless, to continue supplying energy without experiencing a decline in performance, it is crucial to
generate the PV system's maximum efficiency. The PV array's maximum power point (MPP) must be obtained
to increase the PV system's power production. As a result, to maximize power from PV arrays and make
efficient use of their power, maximum power point tracking (MPPT) techniques are required. The majority of
current research offers a wide variety of MPPT-based techniques. Several factors, including cost, difficulty
level, hardware needs, method of execution, converging speed, and many more, are considered while
developing and implementing these MPPT techniques [6]. There are two types of MPPT approaches: soft
computing and traditional. Incremental conductance (INC) and perturb and observe (PO) procedures
are examples of conventional MPPT techniques. These conventional methods have moderate MPP tracking, a
straightforward structure, and simple implementation. Changes in the MPP limit conventional techniques,
causing a rapid impact on accuracy and a loss of usable power [7].

Intelligent and bio-inspired techniques are used to construct the soft-computing MPPT approaches.
Examples of intelligent techniques are the genetic algorithm (GA), artificial neural networks (ANNS), and
fuzzy-logic controllers (FLCs) [8]. When handling the nonlinear features of current (I)-voltage (V) and power
(P)—voltage (V) curves, intelligent approaches need more processing but track the MPP more accurately and
with a minor power loss. Bio-inspired MPPT techniques include cuckoo search (CS) engines, colony
optimization, and particle swarm optimization (PSO) [9]. The bio-inspired MPPT algorithms offer superior
exploration capabilities with minimal computational effort. Because the methods may quickly attain a global
highest, they can minimize power loss regardless of settings with partial shading. The more gradual
convergence of the bio-inspired MPPT techniques is a disadvantage that keeps them from being used as cloud-
based alternatives in practical scenarios [10]. Table 1 illustrates the comparison of MPPT approaches.

Table 1. Comparison of MPPT approaches

MPPT techniques Description Strengths Limitations

P&O [6] Simple hill-climbingto  Low cost; easy to implement; Steady-state oscillations; poor PS
track MPP requires minimal hardware performance; drift under rapid changes

INC [7] Uses the dI/dV relation  Better accuracy than P&O; reduced  Sensitive to noise; higher complexity
for precise MPP oscillation
detection

FLC [8] Rule-based decision Handles nonlinearities well; robust Rule design and tuning complexity
making for MPPT response

ANN [8] Learns a nonlinear High accuracy; fast after training; Requires a large dataset; offline training; risk
mapping between adaptive of overfitting
inputs and MPP

GA [8] Evolutionary Global search: effective under Slower convergence; computationally
optimization appliedto  complex conditions intensive
MPPT

PSO [9] Swarm-based global Good accuracy under PS; global Iterative and slower than conventional
optimization of MPP optimum search methods

Ant colony Mimics ant foragingto  Avoids local minima; strong Iterative process; parameter sensitivity

optimization find the global MPP exploration capability

(ACO) [9]

CS[9] Uses Lévy flights for Robust exploration; fewer Convergence speed variable; tuning needed
global MPP search parameters than GA/PSO

Problem statement: due to its widespread adoption in the last ten years, solar energy has seen an
exponential surge in demand. Through the clean reception of light, energy, solar panels generate electricity.
Solar panels are highly dependent on external factors such as temperatures and irradiance to produce the MPP.
Due to the nonlinear IV properties of PV cells, the PV current also influences the PV's output voltage, which
prevents the load impedance from directly forecasting the output power. Thus, a PV MPPT control system is
required to reach the MPP of the PV. To ascertain the practical MPP, an observation control system
continuously adjusts its operating position and changes the voltage or current state of the power input.
Numerous methods for tracking the MPP have been published in the scientific literature. Nevertheless, most
existing methods need improved accuracy, efficiency, and response time. Traditional MPPT methods struggle
with accuracy and adaptability under fluctuating irradiance. This study proposes intelligent controllers to
address these limitations intelligent controllers to address these limitations and this research aims to identify
the most precise and adaptable mechanism for obtaining the required PV power under various environmental
circumstances.
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The work aims to develop an effective solar PV system and optimize its MPPT algorithm to maximize
system efficiency under various environmental conditions. The work aims to develop intelligent controller-
based MPPT algorithms for solar PV systems, such as FLC and neuro-fuzzy controller (NFC), which increase
system efficiency by lowering power loss. In order to improve flexibility under changing temperature and
irradiance conditions, an artificial neuro-fuzzy interface system (ANFIS)-based NFC is created, along with a
49-rule FLC with seven membership functions (MFs). The suggested solution outperforms traditional MPPT
techniques in terms of both MPPT efficiency and system efficiency. Additionally, the NFC shows a great deal
of promise in lowering power losses and enhancing PV systems' overall performance.

This section includes the work done on various MPPT techniques for PV systems to achieve
performance parameters and system efficiency. Riquelme-Dominguez and Martinez [11] present PV-based
MPPT methods employing a state-space framework in several test circumstances. This work studies the PO
and drift-free-based MPPT approaches. At the EN50530 irradiance examination, the system achieves a
dynamic efficiency of 96.77% and 96.77% for conventional PO and drift-free PO-based MPPT methods,
respectively. Alcaide et al. [12] discuss the effect of MPPT techniques on capacitor longevity throughout the
PV array. The work analyses the PV voltage and power outcomes using a PO-based MPPT technique. The PO
and INC-based MPPT techniques provide 91.56% and 91.82% efficiency, respectively, for the system. Zouga
et al. [13] present the backstepping control-based PSO for PV-based electrical networks under fluctuating
loads. Backstepping and PSO processes design the PV voltage and power factor regulators. The study examined
the injected current, DC-link, and PV voltage at different loads, both with and without control. Malarvili and
Vinothkumar [14] present the artificial intelligence-based PSO for MPPT of solar energy systems under PSCs.
The FLC—merged with PSO—is regarded as an artificial intelligence technique to enhance PV system
efficiency under PSCs. With PSO and FLC+PSO under PSCs, the PV system achieves steady state convergence
of 0.6 and 0.3 sec. Jamaludin et al. [15] describe the Salp-swarm algorithm (SSA)- based MPPT for PV systems
under partial shade conditions (PSCs). When operating under uniform illumination conditions (UICs), the
system achieves 97.87% tracking efficiency using the SSA. Bouakkaz et al. [16] present the FL-based modified
Hill climbing (MHC) MPPT technique with adaptive step characteristics for PV systems. To build the MHC,
the FLC output response is attached to the HC method. This paper analyses the PV and boost-converter
findings.

Hayder et al. [17] discuss FLC-based MPPT for PV systems. This work investigates the changing
irradiance and temperature conditions of solar PV and 1V and includes the duty cycle, voltage, current, and
power results under various temperature and irradiance circumstances. Salem et al. [18] describe the PO and
FLC-Hill climbing (HC)-based MPPT techniques for PV generators. The study covers the individual
algorithms for PO, FLC, and FLC-HC. They discuss the PV system outcomes utilizing FLC-HC and PO.
Ali et al. [19] present the FLC-INC-based MPPT technique with variable-step capabilities for grid-connected
solar energy systems. The grid-connected PV system analyses solar PV and IV. The duty cycle, voltage,
current, and power outcomes under various temperature and irradiance circumstances are included in the work.
Bag et al. [20] cover the combined sliding-mode control (SMC) and reinforcement learning (RL)—based
MPPT technique for grid-connected PV systems. The hybrid model achieves a THD of 2.95% for load voltage
in steady-state settings and provides 98.80% efficiency. Roy et al. [21] address the comparative study of ANN
based MPPT energy harvesting techniques for solar-PV systems. Using ANN-based methods, the maximum
PV voltage at various temperatures and irradiances is analyzed. Padmanaban et al. [22] describe the ANN and
Newton-Raphson (ANN-NR) based selective harmonic elimination (SHE) strategy in the cascaded multilevel
inverter (CMLI) for PV applications. By employing a symmetric technique, the PV system achieves an
efficiency of 89.39% with a power loss of 97.73 W. Similarly, by employing the symmetrical technique with
ANN-NR, the PV system achieves an efficiency of 93.14% with a power loss of 58.64 W. Table 2 shows the
summary of existing works using various approaches on the solar-PV system.

The efficiency and dynamic response of current MPPT techniques are increased, but accuracy,
convergence speed, computational complexity, and real-time application are all traded off. Under partial
shading, conventional methods perform poorly, whereas intelligent and hybrid methods become more difficult
and expensive. Efficiency and power quality are rarely optimized together in studies. Therefore, this study aims
to address the market gaps for an MPPT method that ensures high efficiency, rapid tracking, and adaptability
with reduced implementation complexity.
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Table 2. Summary of existing works

Authors (Ref.) Method Results Advantages Limitations
Riguelme- PO and drift- Dynamic efficiency: High dynamic efficiency; Limited to test conditions;
Dominguez and  free PO (state- 96.77% (both PO and drift- drift-free reduces scalability to large PV arrays
Martinez [11] space) free PO) at EN50530 test oscillations not shown
Alcaide et al. PO and INC PO: 91.56% efficiency, Good efficiency under the Lower efficiency compared to
[12] INC: 91.82% efficiency capacitor longevity study advanced techniques; limited
dynamic testing
Zouga et al. Backstepping + Improved current injection, Handles load fluctuation; Computationally complex;
[13] PSO DC-link, and PV voltage better power factor requires tuning of
under varying loads regulation backstepping+PSO
Malarvili and FLC + PSO Steady-state convergence: Fast convergence under Requires fuzzy rule base;
Vinothkumar (Al-based) 0.6 sec (PSO), 0.3 sec PSCs; hybrid improves sensitive to parameter tuning
[14] (FLC+PSO) under PSCs efficiency
Jamaludinetal. SSA 97.87% tracking efficiency High efficiency; effective Performance under highly
[15] under UICs under PSC and UICs dynamic PSCs is not fully
addressed
Bouakkaz etal.  FLC-based Improved PV and boost Adaptive step size Complexity increases; it
[16] MHC converter (BC) performance  improves tracking; avoids depends on the fuzzy system's
oscillations accuracy
Hayder et al. FLC-based Duty cycle, voltage, current,  Handles Performance metrics
[17] MPPT and power were analyzed irradiance/temperature (efficiency %) not quantified
under varying irradiance. variations
Salem et al. PO, FLC, and PV system tested with Hybrid FLC-HC Implementation complexity;
[18] FLC-HC individual PO and hybrid outperforms conventional lacks quantitative efficiency
FLC-HC PO data
Alietal. [19] FLC-INC Grid-connected PV Variable-step improves Increased computational

(variable step)

analyzed under varying
conditions

adaptability; grid-connected
application

demand; system complexity

Bag et al. [20] Sliding mode Achieves 98.80% High efficiency; low THD; ~ Computationally intensive;
control + RL efficiency; THD=2.95% in adaptive learning capability ~ may require large training
steady state datasets
Roy et al. [21] ANN-based PV voltage at various Learns nonlinear PV Requires training;
MPPT temperatures and characteristics; adaptable performance depends on
irradiances analyzed dataset quality
Padmanabanet ~ ANN-NR, SHE  Efficiency: 89.39% (ANN),  Reduced power loss with Lower efficiency compared to

al. [22]

93.14% (ANN-NR); Loss:
97.73 W vs 58.64 W

ANN-NR; improved SHE

other Al techniques;
implementation complexity

2. PROPOSED WORK
The two MPPT algorithms, including FLC and NFC, are implemented in this study. The difficulty,

expense, speed of convergence, and ease of implementation of these algorithms may all differ. The work
involves implementing various MPPT techniques in varying temperature and irradiance circumstances to
determine the power supplied by the solar-PV array. The solar-PV array's MPPT technique will increase the
dependability and efficiency of MPP. Implementing the MPPT algorithms, which adapt dynamically for
extracting the MPP in the solar-PV system, is essential. The main parts of the design model are a 250 W solar
PV array panel, a DC-DC-based pulse width modulation (PWM) generator, an MPPT controller with FLC/NFC
techniques, and a BC with the necessary load. The MPPT mechanism based on solar PV is shown in Figure 1.
The BC gives the solar PV-based MPPT system's output voltage, current, and power values. After receiving
the temperature and irradiance data, the PV array model delivers the PV voltage, current, and power in DC.
The DC-to-DC-based BC receives the PV-based DC voltages, which use an MPPT controller to transform them
to DC. Two MPPT techniques, including NFC and FLC, are used in constructing the MPPT controller. The
duty cycle (D) is supplied by the MPPT controller and sent into the PWM generator. At the switching frequency
of 10 kHz, the PWM generator gets the duty cycle and produces the gate pulses. The insulated-gate bipolar
transistor (IGBT) of the BC makes additional use of these gate pulses. A load resistor is attached to this BC to
calculate the resulting power of the solar PV-based MPPT system.

The solar PV module produces the PV and VI graphs under different operating circumstances, such
as temperature and irradiance. Determining the MPP from the PV curve is challenging. Therefore, the DC-DC-
based BC with an MPPT control mechanism is required to overcome these problems. Several algorithms are
used to determine the MPPT control mechanism. The solar-PV module and the load resistance are interfaced
through this DC-DC converter. The BC reaches the designated DC output voltage by increasing the obtained
input PV voltage. In Figure 2, the BC representation is depicted. CR (capacitor (Cou) and load resistor (RL) in
parallel, input capacitance (Ciy)), an IGBT-followed diode as the inductance, and a gate pulse from a PWM
generator are the critical components of the BC. Inductance (L) is connected to the BC, which collects the input
voltage from the PV array. The parallel Ci, and L of the IGBT module serve as a switch and link it to the BC
input. Situated in parallel to CR, the diode functions as an additional switch.

Intelligent maximum power point tracking control for solar photovoltaic ... (Mohankumar Venugopal)
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Figure 1. Solar-PV system using MPPT controller
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Figure 2. DC-DC-based BC

The load resistor is connected across the voltage sensor unit to produce the anticipated final DC output
voltage (Vou). A steady input current is produced using an inductance link to the PV voltage. The MPPT
controller uses PWM to operate the IGBT switch in both "ON" and "OFF" modes. The DC to DC-based PWM
generators' gate pulses are linked to the IGBT switch end. The PWM generator produces gate pulses with a
switching frequency of 10 kHz. With the diode "ON" and the switch "OFF," the polarity of the inductor is
changed. To maintain the current's flow direction, the inductor releases the accumulated energy and transfers
it to the resistor. The final power (Pouwy is computed using the final voltage (Vou) and current (lou). The output
of the BC is the DC output voltage and current. In (1) can be used to express the DC output current of the BC
as (1):

(1-D)Vout(a—2).Ipy(a—1) 1)
2Vout(a—2)-Voutr(a-3)

Loyt (@) =

2.1. Fuzzy-logic controller

For industry sectors, the FLC is more efficient than the conventional PID controller and provides more
options for output response. Failsafe execution, fast information set interpretation, and fault tolerance are only
a few of the FLC's benefits. The five main components of the FLC operation are the evaluation unit, ruleset,
fuzzification, defuzzification, database, and MPPT (which functions as the plant). The FLC operating with the
MPPT is seen in Figure 3. The fuzzification process changes the absolute (crisp) value into a fuzzy (linguistic)
value. PV values (power and voltage) give the input data (error signal) for the fuzzification process, as crisp
data into variables (fuzzy variables). The fuzzy variables can detect fuzzy values and act as fuzzy sets. The
MFs deal with the fuzzy sets in the small, high, low, or massive values.

The rule base, which consists of fuzzy rules based on the MFs, improves the efficiency of the plant.
The assessment process provides the decision logic predicated on the rules stored in the database. The essential
logic operations AND, OR, and NOT implement the fuzzy rules. As the defuzzification process progresses, the
fuzzy values become crisp values. Three key components are utilized in FLC activities: MFs, fuzzy rules, and
fuzzy variables.
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Figure 3. FLC with MPPT

Fuzzy variables: considering the Mamdani model, the FLC is designed using the fuzzy interface
system (FIS) in the MATLAB Simulink environment. The FLC variables error (E) value and change in error
(CE value) are defined as follows using (2) and (3). PV power is measured using P (a) and P (a-1). PV voltages
V (a) and V (a-1) represent the current and previous values. The prior error input value is E (a-1). Figure 4
depicts the formation of errors and CE indications for FLC. PV power and voltage values are inputted into (2)
to determine the error (E) estimate.

B@ = Yoy @
CE(a) =E(a) — E(a —1) (3)

Membership function: using fuzzy set MF, the fuzzy components E, CE, and FLC output (FO) values
for the given discourse domain are shown in the interval [-500 to 500]. The range of possibilities for MFs for
E and CE is based on the triangular-shaped MFs. The range decision of the FLC output (FO) MF is based on
the triangle-shaped MF. Indicators for performance and robustness will rise with a triangle-shaped MF inside
certain bounds. Positive large (PB), positive medium (PM), positive small (PS), zero (ZO), negative big (NB),
negative medium (NM), and negative small (NS) are the seven fuzzy variables (FVs) and act as MFs that the
E and CE use. The fuzzy variables are retained in the knowledge base and will be used later in the rule-building
process. MFs are categorized as tiny or large based on their range.

>+
P > »| - > L
@ - P (1) X ' FLC —»

. r - > Lyl - Duty Cycle (D)
+ E CE

V@ D V (a-1) ]

Figure 4. Error and CE generation used in FLC

Fuzzy rules: about the rule set, the rule base is created using the fuzzy rules. The collection of fuzzy
rules is shown in Table 3. The Mamdani-based FIS is used in the construction of the FLC system. Forty-nine
rules and 7 MFs are used in FIS for the E and CE variables. This rule set contains 49 fuzzy rules that
can generate a single FO output as Duty cycle (D) for two inputs. The FLC output is produced based on (4) as
follows for the nt-order rule base. For the n" fuzzy rule set, n=1, 2... Nm. The integer (i) is setto 1, 2, 3, 4, 5,
6, and 7. Employing the centroid technique, the ruleset is transformed into a clean output structure to complete
defuzzification.
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Rn:IF (error is E (i)) AND (Change in Error is CE (i)) then (FLC output is FO (i)  (4)

Table 3. FLC rule set used for MPPT process
Emor/lCE_NB_ _NM NS ZO PS PM _PB
NB NB NB NB NM NM NS ZO

The controller can capture nonlinear variations in PV output without becoming overly complex due
to the use of seven MFs for each input variable, which strikes a delicate balance between resolution and
computational efficiency. This setup yields 7x7=49 fuzzy rules with two inputs (E and CE), which is enough
to cover every circumstance in which the PV system could operate. This rule-based approach improves
robustness under dynamic irradiance and partial shading, minimizes steady-state oscillations, and guarantees
seamless transitions between control actions. It is the best option for real-world MPPT applications since
keeping the rule set at 49 preserves real-time implementation feasibility on digital controllers.

2.2. Neuro-fuzzy-controller

The NFC extends FLC using an ANFIS. The FIS of NFC is automatically realized by neural networks
(NNSs). The practical process of converting from crisp to fuzzy and vice versa is provided by NFC. The ANFIS
framework is used to construct the FIS optimization using NNs. Figure 5 illustrates the implementation of NFC
operation through ANFIS. Training and testing the FIS is possible, and the NFC has the unique ability to learn
fresh abilities. The four primary operations are FIS generation, training data unit, FIS testing, and FIS training.

Input
data

Output
data

—>» Training Data —>» FIS Generation —» Train FIS > Test FIS >

Figure 5. ANFIS-based NFC implementation

For NFC training, the PV power and voltage data are considered. The ANFIS editor for NN training
loads these data. Grid partitioning is the method used to generate FIS. The FIS produces the constant MF output
after considering the seven MFs with a kind of Gaussian MF as input. The FIS employs seven rules and the
AND operation to produce a single FIS output. Two optimization strategies—back-propagation and hybrid
mode—can be used for FIS training. This work considers the hybrid optimization strategy to train the FIS.
With three epochs, the error tolerance is set to zero. To produce the final NFC output, test the FIS against the
training data when it has finished training. The final NFC output is the FIS output generated during the testing
process. The NFC output is utilized in PWM generators and is regarded as a duty cycle.

Hybrid optimization was chosen because it combined the benefits of back-propagation and least-
squares estimation. Slow and prone to local minima is simple back-propagation is. Least-squares evaluation is
fast for linear parameters but poor for nonlinear ones. Both are balanced in the hybrid technique, which ensures
faster convergence and higher precision. ANFIS significantly reduces training timeframes by avoiding local
minima and achieving robust adjustment of MFs and rule parameters. This makes it ideal for MPPT, where
speed and accuracy are critical.

3. RESULTS AND DISCUSSION

This section discusses the outcomes of the solar PV-based system using intelligent MPPT control
approaches. The comprehensive simulation results, including the ultimate output (voltage (V), current (1), and
power (P)) utilizing FLC and NFC, are described at various temperatures and irradiances. Performance metrics
like power loss, PMPPT efficiency and system efficiency are realized under various conditions. The solar-PV
array and cell specifications and values considered for the suggested design model are listed in Table 4. The
proposed Simulink model for intelligent MPPT control in solar PV systems is illustrated in Figure 6.
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Table 4. Specification of the solar PV-based system with MPPT controllers

Parameters

Specific values and units

Parallel strings and series-connected modules/string

Irradiance (W/m?)
Temperature (°C)

Open circuit voltage (Voc), short circuit current (Is)

Voltage and current at MPP (Vmp, Imp)
Number of cells per module (N;)

Diode ideality factor (Dj) and saturation current (lgs)

Series and shunt resistance (R and Ry)

1,1
[200 400 600 800 1000]
[0 25 50 75 100]
50.93V, 6.2 A
42.8V,5.84 A
72
1.0263, 1.3617x10°1A
0377759 Q, 448.69 Q

Variable Tempature [l

PV Array

Vo

Simulation time (Sec) [0,05,1,15, 2]
v PV d flc
Continuous Vpv /
D P »  pu_flc
: D N
Ipv
PWM Generator
) ‘ (DC-DC)
Variable Irradiance FLC/INFC
(W/m2)
- I_FLC
eI ° z s o + ‘
L1 ‘ L
io
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oy IGBT1 b Cout _
w
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Vo(V)

lo(A)
o N A O o

< 200
k3
S 100

0

Figure 6. Proposed Simulink model for intelligent MPPT control in solar PV systems

Figure 7 shows the simulation results of a solar-PV system using MPPT controllers under varying
irradiance at 25 °C. Figures 7(a) and (b) show the BC output findings (V, I, and P) for FLC and NFC,
respectively. By employing FLC, the BC output power is raised from 12.23 W to 244.7 W at 25 °C, with an
irradiation of 200-1000 W/m?. Furthermore, at 25 °C and an irradiation of 200-1000 W/m?, the BC output
power utilizing NFC is enhanced from 12.23 W to 246.5 W.

I 1 1:5 2 2.5
Time (secs)

@)

0 0.5

40

Vo(V)
b

lo(A)
o N A @ o

< 200
=3
5 100
o

0

] 0.5 1 1.5 2 2.5
Time (secs)

(b)

Figure 7. Simulation results at variable irradiance at 25 °C for; (a) FLC and (b) NFC

Figure 8 shows the MPPT controller outcomes employing FLC and NFC. Figures 8(a) and (b) display
the FLC and NFC outputs at 1000 W/m? and 25 °C, respectively. Both the controller outputs vary from -10 to
10. The FLC output is generated based on the fuzzy rule sets and the NFC output is generated using PV values
based on the FIS training.

Intelligent maximum power point tracking control for solar photovoltaic ... (Mohankumar Venugopal)



ISSN: 2302-9285

a

4298

-
=]

FLC Qutput
2 e
NFC Cutput

=]

05 1_ 15 2 25 '] 05 q 1.5 P S8
Time (secs) Time {secs)

(@) (b)
Figure 8. MPPT controller outputs at variable irradiance at 25 °C for; (a) FLC (b) NFC

The performance summary of the solar-PV system using FLC and NFC at 1000 W/m? and 25 °C is
tabulated in Table 5. The percentage of power loss is calculated based on the difference between the PV and
output power and multiplied by 100. The MPPT efficiency is the ratio of the obtained PV power to the actual
PV power. The system efficiency is the ratio of the obtained output power by PV power. The PV-power (Ppv)
and output power (Po) of the solar-PV system using FLC are 249.1 W and 244.7 W, respectively.

Similarly, the solar-PV system using NFC obtains the PV power (Ppv) and output power (Po) of
248.4 W and 246.5 W, respectively. The FLC-based approach offers better PV power; however, NFC offers
better-obtained power than FLC, which boosts the system and MPPT efficiency. The solar-PV system obtains
the power loss of 4.4% and 1.9% using FLC and NFC, respectively. The solar-PV system obtains the MPPT
efficiency of 97.89% and 98.61% using FLC and NFC, respectively. Similarly, the system efficiency of 98.24%
and 99.23% is obtained for solar-PV systems using FLC and NFC, respectively. The power loss is reduced by
around 56% using NFC than FLC in the solar-PV system. The MPPT and system efficiency are improved by
around 0.74% and 0.99% using NFC than FLC in the solar-PV system.

The PV and output power results using MPPT algorithms are illustrated in Figure 9. The PV and output
powers using FLC and NFC at Variable irradiance (200 to 1000 W/m?) at 25 °C are shown in Figure 9(a). The
PV and output powers using FLC and NFC at different temperatures (0 to 50 °C) at 1000 W/m? irradiance are
shown in Figure 9(b). The PV output power using FLC declined from 271.1 W to 225.3 W and 272.8 W to
227.01 W using NFC at 1000 W/m?, with different temperatures (0 to 50 °C). By employing FLC, the BC output
power declined from 261.62 W to 220 W at 1000 W/m?, with different temperatures (0 to 50 °C).

Table 5. Performance summary of solar-PV system using FLC and NFC at 1000 W/m? and 25 °C

Parameters FLC NFC
Vpv (V) 42.05 41.72
Ipv (A) 5925 5.955
Ppv (W) 249.1 2484
Vo (V) 4425 44.41
lo (A) 5531 5551
Po (W) 2447 2465
Power loss (W) (%) 44 19

MPPT efficiency (%) 97.89 98.61
System efficiency (%) 98.24  99.23
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Figure 9. PV and output power results using various MPPT algorithms at; (a) variable irradiance at 25 °C and
(b) different temperatures at 1000 W/m?
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Furthermore, the BC output power utilizing NFC is decreased from 263.8 W to 224.9 W. As the
irradiance value rises at 25 °C, the PV and output power values also rise. At 1000 W/m?, the PV and output
power values decline when the temperature rises. Compared to the FLC technique, the solar PV system with
NFC yields better PV and output power (average) outcomes.

The % power loss (W) using MPPT algorithms is illustrated in Figure 10. The % power loss (W) using
FLC and NFC under variable irradiance (200 to 1000 W/m?) at 25 °C is shown in Figure 10(a). The NFC-based
solar-PV system reduces the power loss by 16.6%, 23.25%, and 56.8% at 600, 800, and 1000 W/m? than the
FLC-based approach. However, there is no power loss at 200 and 400 W/m? using FLC and NFC. The % power
loss (W) using FLC and NFC at different temperatures (0 to 50 °C) under 1000 W/m? irradiance is shown in
Figure 10(b). The NFC-based solar-PV system reduces the significant power losses at 0, 10, 20, 30, 40, and
50 °C temperatures under 1000 W/m? than the FLC-based approach.

5 SFLC ®NFC 12

4.?1 & 1 . OFLC ®NFC

35 ll S s NB Qe .
- \ . N N NN N
g 25 N 37N N N w
= 2 '\\“ [ \ \ \ \
: 15 NB N N N N
R 8 2 siziz N[ N N
~ 05 §§ 0 B NE N[5 E

0 N S kN 0 20 40 50

200 800 1000
Diff. Irradienec (W/m?) Diff. Temparature (OC)
(@) (b)

Figure 10. % power loss (W) using various MPPT algorithms at; (a) variable irradiance at 25 °C and (b) diff.
temperatures at 1000 W/m?

The system efficiency (%) using MPPT algorithms is illustrated in Figure 11. The system efficiency
(%) using FLC and NFC under variable irradiance (200 to 1000 W/m?) at 25 °C is shown in Figure 11(a). The
NFC-based solar-PV system improves the system efficiency by 0.54% and 0.76% at 800 and 1000 W/m? than
the FLC-based approach. However, system efficiency remains the same at 200 and 600 W/m? using both FLC
and NFC. The system efficiency (%) using FLC and NFC at different temperatures (0 to 50 °C) under
1000 W/m? irradiance is shown in Figure 11(b). The NFC-based solar-PV system improves system efficiency
at 0, 25, 50, 75, and 100 °C temperatures under 1000 W/m? than the FLC-based approach.
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Figure 11. System efficiency (%) concerning the various MPPT algorithms at; (a) variable irradiance at 25 °C
and (b) diff. temperatures at 1000 W/m?
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The performance comparison of proposed MPPT approaches with existing MPPT approaches
[23]-[31] is illustrated in Table 6. The comparative realization includes the MPPT approach used, constant or
variable irradiance, rated power (W), obtained PV power, output power and system efficiency (%) in this work.
The proposed FLC-based MPPT approach offers better system efficiency than adaptive PO [23] by 3.65%,
improved PO [24] by 3.02%, INC+PSO approach [25] by 1.27%, PO+PSO-based approach [26] by 6%, FLC
[27] by 3.19%, and FLC [28] by 2.28% under constant and variable irradiance conditions. Similarly, the
proposed NFC-based MPPT approach offers better system efficiency than NFC [29] by 0.2%, artificial bee
colony (ABC) with NFC [30] by 0.9% and the NFC approach by 0.7% under variable irradiance conditions.
Overall, the proposed solar-PV system with FLC and NFC approach offers better system efficiency than other
MPPT controller approaches.

Future research should address dynamic load changes and battery non-linearities, as the current study
assumes optimal battery performance and a stable load, which may not accurately represent real-world PV
systems. Comparisons of FLC, NFC, and conventional approaches' performance should also be subjected to
statistical significance testing. This will verify if the efficiency gains (97.89-99.23%) that have been noted are
statistically significant and not the result of chance fluctuations.

Table 6. Performance comparison of proposed MPPT approaches with existing MPPT approaches

Designs MPPT Irradiance Rated -PV PV power Output Efficiency
approach (W/m?) power (W) power (W) (%)
Ref. [23] Adaptive PO Constant 3000 W 2787 2637 94.65
Ref. [24] Improved PO Constant 250 W 240.8 229.41 95.27
Ref. [25] INC+PSO Variable 800 723.7 702 97
Ref. [26] PO+PSO Variable 250 243.69 225.03 92.34
Ref. [27] PID Variable 500 476.25 437.29 91.82
Ref. [27] FLC Variable 500 495.7 4715 95.1
Ref. [28] FLC Constant 181 180.1 172.9 96
Proposed work FLC Variable 250 249.1 244.7 98.24
Ref. [29] NFC Variable 60 54.54 54.01 99.06
Ref. [30] ABC+NFC Variable 230 224.4 228.07 98.39
Ref. [31] NFC Variable 440 426 420 98.59
Proposed work NFC Variable 250 248.4 246.5 99.23

3.1. Discussion

This study optimizes MPPT performance by modelling an effective solar-PV system using intelligent
controllers, namely the FLC and the NFC. According to the simulation findings, which were performed in
MATLAB Simulink with varying irradiance, the NFC-based method considerably lowers power loss (1.9%)
in comparison to the FLC-based system (4.4%). With an MPPT tracking improvement of 0.74% and an overall
system efficiency improvement of 0.99% over the FLC-based technique, the NFC method achieves 98.61%
MPPT efficiency and 99.23% system efficiency. Furthermore, NFC uses less energy and has better tracking
accuracy than FLC, reducing power loss by 56%.

Prior MPPT optimization research has mostly focused on traditional techniques like PO and INC,
which have limitations in dynamic irradiance conditions. Rule-based approximations still restrict the efficiency
of FLC-based MPPT systems, although they have shown themselves to be more adaptable than conventional
methods. Recent studies have shown that MPPT control can be enhanced by neuro-fuzzy techniques that
integrate adaptive learning capabilities. These claims are supported by the study's results, which further validate
the value of Al-driven controllers in solar PV systems by demonstrating that the NFC-based MPPT system
outperforms FLC in reducing power loss and improving energy extraction.

Although the NFC-based MPPT controller is more effective in terms of tracking accuracy and energy
efficiency, further research is needed to assess its scalability and real-time deployment in large-scale solar
farms. Future studies can include hardware-in-the-loop (HIL) testing to validate both transient and steady-state
reactions in practical settings. Furthermore, employing RL-based MPPT approaches could further enhance
power tracking by dynamically altering control settings in real time. Future studies could also look at how
clever MPPT controllers affect hybrid energy storage systems to maximize power distribution between solar
PV arrays and battery storage components [32]-[34].

In conclusion, the proposed solar-PV system that makes use of intelligent controllers significantly
enhances MPPT performance and overall system efficiency. By using NFC-based control, the system offers
more accuracy, less power loss, and improved adaptability as compared to FLC-based techniques. These
findings show that solar energy harvesting can be maximized through the application of Al-driven MPPT
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techniques. As solar PV technology advances and drives the transition to sustainable and efficient energy
sources, intelligent control techniques will be crucial to optimize the use of renewable energy sources.

Scalability is a feature of the suggested NFC-based MPPT for grid-connected and multi-panel
configurations. While appropriate coordination with DC-link and current control loops assures stability in grid-
connected operation, it can be applied at the central level for cost efficiency or at the module level for greater
partial shading tolerance. Due to its modest computational effort, the NFC can be implemented in real-time on
DSPs, MCUs, or FPGAs. Practical deployment is supported by precise sensing, fixed-point arithmetic, and
efficient PWM synchronization; nonetheless, to guarantee dependable operation, hardware limitations like
ADC resolution, EMI resilience, and protection procedures must be addressed.

4. CONCLUSION

The efficient solar-PV system using intelligent controllers (FLC and NFC) is modelled in this article
to enhance the system efficiency. The solar-PV system has solar-PV arrays, a DC-DC-based BC with an MPPT
controller, and a pulse generator. The intelligent controllers are used to track the PV arrays' best possible MPP.
The proposed system is modelled using the MATLAB Simulink tool. The simulation results and controller
outcomes are analyzed under variable irradiance conditions.

An important development in solar energy systems is an intelligent controller-based MPPT technique.
The NFC-based MPPT controller demonstrates superior adaptability and efficiency, making it suitable for real-
time solar PV applications. Intelligent MPPT controllers will be essential for optimizing solar power use as the
use of renewable energy sources increases. By employing intelligent controller-based MPPT techniques, the
suggested system provides increased system efficiency with reduced power loss in a range of environmental
circumstances.

More processing is required by intelligent controllers, and digital signal processors (DSPs) and
contemporary embedded systems have grown incredibly powerful and economical. Furthermore, intelligent
MPPTs increase precision, lower power losses, which eventually result in larger energy savings that exceed
their initial hardware expense. Adaptive learning is a feature of intelligent MPPT controllers that allows them
to dynamically adjust their parameters while in use. Enhancing efficiency, adaptability, and integration with
the latest technologies will be the main goals of future studies in intelligent controller-based MPPT approaches.
For renewable energy systems to be widely adopted, Al-driven self-study, fault-tolerant, and grid-interactive
MPPT control systems will be essential. Studies can help optimize solar energy consumption, along with
contributing to a greener and energy-efficient future by developing such technologies.
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