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 This paper offers a comprehensive review of current developments in artificial 

intelligence (AI)-based 3D model creation, with an emphasis on techniques 

utilizing variational autoencoders (VAEs) and generative adversarial 

networks (GANs). 3DGAN, paired 3D model generation with GAN, 

conditional GAN, FaceVAE, voxel-based 3D object reconstruction, and 3D-

VAE-SDFRaGAN are the six main techniques that are studied in this work. 

Each method is discussed, highlighting its architectural framework, data 

representation, and specific approach to generating 3D models. First, the 

paper introduces basic terms and classical 3D modeling techniques and 

provides a comparative analysis of them based on their workflow, purpose 

and field of application. In subsequent chapters, methods for generating 3D 

models based on the use of GANs and VAEs are reviewed, describing its 

methodology, experimentation technique, results, and comparison with other 

methods. The review outlines the strengths and limitations of each approach 

and their applications in object reconstruction, shape generation, and 

maintaining model consistency. It concludes by emphasizing how AI-driven 

methods can advance 3D modeling, underscoring the need for further research 

to enhance quality, control, and training reliability. The findings show AI’s 

significant impact on automating complex modeling tasks and enabling new 

creative opportunities in 3D content development. 
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1. INTRODUCTION 

The field of computer graphics enables the generation and manipulation of visual content using digital 

computing resources, facilitating the creation of interactive, immersive, and photorealistic environments across 

diverse domains [1], [2]. In entertainment, automated adaptive lighting enhances dramatic and aesthetic effects 

in real-time interactive media [3], while advanced facial animation techniques bring lifelike expression to 

virtual characters [4]. Mobile graphics and augmented-reality frameworks further extend these interactive 

experiences to handheld and wearable devices [5], and shaded-graphics methods laid the groundwork for 

realistic rendering in cinematic and training simulators [6]. 

In scientific research, high-fidelity 3D visualization and virtual environment simulations support 

medical diagnosis and treatment planning [7], and visualization techniques originally developed for 

entertainment have been repurposed for molecular and engineering analysis [8], [9]. Industrial design 
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applications leverage high-performance graphics workstations and computer-aided design (CAD) integration 

to streamline prototyping and manufacturing workflows [10], as well as immersive virtual environments for 

professional training and simulation [11]. Despite sharing core technologies—such as 3D visualization, real-

time rendering, and virtual environments—each field adapts these tools to meet its unique performance, 

fidelity, and usability requirements [2]. 

Advances in 3D graphics enable scenes to be rendered in full three-dimensional depth, interactive 

virtual environments via VR headsets, imaginative storytelling through animated films, and visualization of 

novel objects using sophisticated visual effects. The rapid spread of artificial intelligence (AI) application 

demonstrates a new perspective at the process of creating 3D objects, providing opportunities to increase the 

efficiency of working with 3D models. Therefore, today, in addition to traditional techniques and tools for 

creating 3D content, there is also a need to have skills in working with AI in the process of 3D modeling. 

The use of AI to the field of 3D modeling is essential because it fits with the larger trend of AI 

changing a number of fields, including research, education, and the arts [12]. AI is already present in many 

modern devices, such as cameras and smartphones, and it will drastically change how people interact with 

technology while also opening up new creative and technological possibilities. AI improves productivity in 3D 

modeling by automating tedious activities and facilitating the construction of intricate designs that would be 

difficult or time-consuming to accomplish by hand. Standard methods are changing as a result of this 

integration, creating new opportunities for creativity and innovation. Before discussing AI-based 3D modeling, 

it is necessary to define 3D models precisely and explain the traditional methods used to create them prior to 

the incorporation of AI. 

The urgency of this research lies in the exponential growth in demand for automated 3D content 

creation across fields such as augmented reality (AR), digital twin engineering, real-time simulation, medical 

imaging, and virtual manufacturing. As industries accelerate toward digitization and automation, the need for 

scalable and accurate 3D modeling solutions has become critical. Traditional manual modeling techniques, 

while effective, are increasingly inadequate for handling the vast volume and complexity of 3D data required 

in real-time applications. The recent advancement of generative AI, particularly variational autoencoders 

(VAEs), generative adversarial networks (GANs), and diffusion models, has opened promising opportunities 

for addressing these challenges through automated and data-driven modeling frameworks [13], [14]. Several 

recent studies underscore the transformative impact of such deep generative approaches in reducing modeling 

time and improving the fidelity of 3D reconstructions [15]-[18]. From 2020–2025, several studies report 

concrete gains from GAN/VAE families in 3D generation, especially in medical imaging: 3D-StyleGAN 

variants improve FID, bMMD², and MS-SSIM at 1–2 mm resolutions [19], domain-adaptive VAE improves 

SSIM/PSNR/Dice over baselines [20], and VQ-VAE exceeds GAN/Disc-VAE on SSIM/PSNR for synthetic 

augmentation [21]. In creative engineering and gaming, hybrid GAN+implicit/NeRF pipelines show better 

generative quality while still facing artifacts and mesh-diversity limits [22]. Across domains, the literature flags 

non-standardized benchmarks (outside medicine) and limited external validation, further motivating a 

consolidated comparative review [23]. Therefore, this review is urgently needed to consolidate ongoing 

developments, evaluate comparative strengths and limitations, and guide future innovation in this rapidly 

evolving research area. 

In this article we aim to answer the following research questions:  

Q1: What are the key advancements in using GANs and VAEs for 3D model generation? 

Q2: What are the key datasets and evaluation metrics used in GAN- and VAE-based 3D model generation 

studies, and how do they influence the performance of these models? 

Q3: How does VAE-based models compare to GAN-based models in generating 3D models, particularly in 

terms of computational efficiency? 

This paper is structured as follows: section 2 provides an overview of traditional 3D modeling 

techniques. In section 3, the methodology employed in this study is detailed. Section 4 offers an overview of 

GAN- and VAE-based approaches for 3D model generation. Section 5 delves into a comparative analysis of 

the reviewed methods, highlighting their strengths and weaknesses. Section 6 identifies the challenges and 

potential avenues for future research in this field. Section 7 contains results and discussion part. Finally,  

section 8 summarizes the key findings and conclusions of the study. 

 

 

2. BACKGROUND 

2.1.  Traditional 3D modeling techniques 

3D model is a 3 dimensional figure which represents a certain object or scene and consists of 

components such as vertices, edges and polygons [24]. These models are used in various fields such as 

animation, game development, architectural reconstruction, engineering, virtual reality, simulation, 3D 

printing, and visualization. They can represent both real-world objects and imaginary concepts. The classic 

method of building 3D models implies the use of special software like 3Ds Max, Maya, and Blender. At first, 
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user has to learn certain tools and operations, which change the structure and shape of the model and directly 

affect on a final result. Often 3D modelers or digital artists use reference images as a base for future 3D model. 

They may consider overall shape or some specific details from the image and recreate them in a 3D space. 

First, artists create the concept art of the character, object or a scene. After that 3D modeler recreate it. This 

method is used almost in every industry related to 3D graphics: for creating models for games, animated 

movies, visual effects, and motion design. In the age of emergence of AI, this workflow may be reinterpreted 

by using different tools and technologies, but keeping the main idea–creating a 3D model based on image. 

 

2.1.1. Box modeling 

Box modeling is a foundational technique in 3D modeling that involves utilizing traditional tools to 

construct shapes from elementary geometric items, such as cubes or spheres [25]. The process commences with 

selecting a base shape characterized by a low polygon count. Because it gives modelers precise control over 

the shape's various elements—faces, edges, and vertices—this method is highly acclaimed for its accuracy. 

Box modeling differs from other modeling approaches due to its mechanical character. Instead of initially 

concentrating on little details, it focuses on the manipulation of entire shapes and larger portions of the model. 

Using quads, or four-sided faces, is a crucial part of box modeling. These are preferred because they work with 

the majority of modeling software, which is primarily made to manage quads effectively. In spite of this choice, 

models are often triangulated to guarantee stability and compatibility with different rendering engines, either 

manually by the user or automatically by the program in the background. Hard-surface objects, like those in 

manufactured goods and architectural visualizations, are especially well-suited for box modeling. The tools 

frequently used in the process, including as extrusion, loop cuts, and beveling, are responsible for the 

technique's effectiveness in these areas. These tools make it easier to transform basic shapes into intricate, 

accurate forms. Furthermore, to increase the model's level of detail, box modeling is frequently used with 

subdivision surface techniques. The process of creating subdivision surfaces entails introducing new geometry 

between the preexisting faces, vertices, and edges. This geometry can then be altered using common modeling 

tools. The modeler can more precisely and flexibly mold the object's divided form thanks to this extra geometry, 

which serves as a control cage as shown in Figure 1. 

 

 

 
 

Figure 1. Box modeling of a head 

 

 

2.1.2. Polygon modeling 

Polygon modeling is a technique that involves starting with a vertex and gradually building the model 

edge by edge until the entire surface or object is complete. This process is similar to box modeling, as it often 

includes a subdivision process to smooth or even out the geometry of the object being modeled. It is particularly 

useful for visualizing 3D models of intricate designs such as statues and ornaments, where precise detail is 

essential [25]. The flexibility of polygon modeling allows for the creation of unique, organic-looking designs, 

making it a popular choice in scenarios requiring high levels of complexity and detail [25]. 

Like box modeling, polygon modeling typically emphasizes the use of quads in the topology, as many 

tools are designed to function within a quad-based framework. Using quads in 3D models is important because 
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quads provide predictable and even deformation, which is essential for objects that will undergo organic 

deformation, like moving muscles. Quads squash and stretch uniformly, making them ideal for character 

modeling. However, for non-deforming objects, such as video game props, quads are less critical, and factors 

like poly count may take precedence. Additionally, in software like Maya, using triangles as illustrated in 

Figure 2, can complicate adding edge loops needed to improve deformation in certain areas, making quads 

more advantageous for character animation. 

 

 

 
 

Figure 2. Triangulated polygons of the tractor model 

 

 

2.1.3.  Non-uniform rational b-splines and curve modeling 

Figure 3 illustrates the non-uniform rational b-splines (NURBS) and curve modeling technique, which 

uses control points to define curves that generate surfaces rather than directly manipulating vertices and edges. 

Using operations like scaling, moving, and rotating the control points, this method makes it possible to create 

curved, smooth 3D models. The method offers more control over the model's resolution and detail and is 

especially beneficial for producing more consistent and organic-looking [25] characters. This technique is often 

employed in software and engineering design, especially in CAD settings where smooth and accurate surfaces 

are needed. 

 

 

 
 

Figure 3. NURBS modeling 

 

 

2.1.4. 3D sculpting 

Digital sculpting offers a more fluid and artistic technique. It is similar to traditional clay sculpting 

method and differs from polygonal modeling, which is about the manipulation of polygons, edges, and vertices 

[26]. Polygonal modeling is the ideal choice for objects that need accurate measurements and defined 

geometries, such mechanical components, architectural designs, and hard-surfaced environments, because it 
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requires meticulous adjustments to each polygon, edge, and vertex. The models produced by this technique are 

well known for their fine features and crisp edges, which are signs of the structural integrity that polygonal 

modeling ensures. Digital sculpting, on the other hand, is a workflow that lets artists work with digital material 

in a number of ways, including pinching, pushing, pulling, and carving, to produce naturally curved shapes as 

shown in Figure 4. This method effectively produces complex, organic structures that would be challenging to 

build with traditional polygonal procedures. When making realistic humans, inventive animals, and other 

shapes that benefit from a flowing, organic style, it works particularly well. The sophisticated features of digital 

sculpting tools allow artists to add fine details and textures, such as skin pores, wrinkles, and other surface 

anomalies, creating models with exceptional realism and complexity. 
 

 

 
 

Figure 4. Sculpting in Zbrush 

 

 

2.1.5. Procedural modeling 

Procedural modeling is an automated technique for generating three-dimensional models, allowing 

for dynamic modification without manual intervention. This method simplifies the modeling process by using 

a predetermined set of guidelines [26], algorithms, or directives. Procedural modeling works similarly to 

deformation systems in that it applies changes to a basic mesh inside a layered framework. Changes to the base 

mesh require recalculating overlaying operations, and subsequent modifications are piled on top of this 

foundation. Individual modeling phases can be independently adjusted thanks to this layered architecture, 

which doesn't impact other model elements as illustrated in the example shown in Figure 5. 
 

 

 
 

Figure 5. Procedural modeling in 3Ds Max 
 

 

There are various benefits to procedural modeling compared to manual approaches. It is efficient in 

automating the building of complex models and saving a significant amount of time. Because of the flexibility 

of editing, the created meshes can be dynamically altered and animated. Its modular design encourages 

adaptability since various parts can be changed separately. The limited control over particular elements is a 

major drawback, too, as the algorithmic nature can occasionally provide surprising outcomes. 
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2.1.6. Boolean modeling 

In Boolean modeling, new shapes are created by adding or subtracting elements from an existing 

model [24]. This method is frequently paired with box modeling, which creates simple shapes that are 

subsequently merged to build more complicated objects. As illustrated in Figure 6, this procedure relies heavily 

on Boolean operations such as union, intersection, and difference. Whereas intersection retains only the 

overlapping portions, union unites two shapes, and difference subtracts one from the other. Compared to 

traditional modeling techniques, Boolean modeling greatly speeds up the construction of complex designs, 

particularly when mixing curved and hard-edged forms. 

 

 

 
 

Figure 6. Boolean operations in Maya 

 

 

In Table 1 the most common 3D modeling techniques are compared in terms of methodology, 

workflow, purpose, output, and usage. Also, specific programs were presented that most often use the indicated 

methods. Some of them like Maya or 3Ds Max are capable of providing an opportunity to use all the mentioned 

techniques in one project.  

 

 

Table 1. Comparison of traditional modeling techniques comparative analysis of traditional techniques of 3D 

modeling 
Ref Technique Methodology Workflow Purpose Output Usage Software 

[25] Polygonal 

modeling 

Creating models 

by manipulating 
vertices, edges, 

and faces to 

form polygons. 

Build a base 

mesh, add 
details, and 

refine topology. 

Creating hard-

surface models, 
characters, and 

environments with 

precise control. 

Polygonal 

mesh 

Game 

development, 
animation, 

VFX, and 3D 

printing 

Blender, 

Maya, 3ds 
Max, and 

Modo 

[25] NURBS 

modeling 

Using 

mathematical 

equations to 
define curves 

and surfaces. 

Create control 

points, 

manipulate 
curves, and 

refine surface. 

Creating smooth, 

organic shapes, 

and precise 
industrial designs. 

NURBS 

surface 

Automotive 

design, 

architecture, 
shipbuilding, 

and animation 

Rhino, 

Maya, 

SolidWork, 
and CATIA 

[26] 3D 
sculpting 

Digitally 
sculpting models 

using virtual 

tools. 

Start with a 
basic shape, add 

details through 

sculpting, and 
refine form. 

Creating organic 
shapes with high 

detail and 

character 
modeling. 

High-
resolution 

mesh 

Character 
modeling, 

animation, 

VFX, and 
concept art 

ZBrush, 
Sculptri, 

Blender, 

and 
Mudbox 

[26] Procedural 

modeling 

Generating 

models based on 
rules, 

algorithms, and 

parameters. 

Define rules and 

parameters, 
generate model, 

and iterate on 

parameters. 

Creating complex 

and repetitive 
geometry, 

generating 

variations. 

Procedural 

definition, 
generated 

mesh 

Environment 

creation, 
game 

development, 

VFX, and 
architecture 

Houdini, 

Blender, 
Unreal 

Engine, and 

Unity 

[24] Boolean 
modeling 

Combining or 
subtracting 

shapes to create 

new forms. 

Create base 
shapes, apply 

Boolean 

operations, and 
refine result. 

Creating complex 
shapes from 

simple primitives 

and hard-surface 
modeling. 

Combined 
or 

subtracted 

shapes 

Industrial 
design, 

architecture, 

product 
design, and 

game 

development 

Blender, 
Maya, 3ds 

Max, and 

SolidWorks 

 

 

While traditional 3D modeling methods have been essential to fields like industrial design, gaming, 

and animation, novel advances in 3D generative AI are expanding the field by automating modeling tasks, 
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speeding up design procedures, and enabling anyone to create 3D content. To address the limitations of 

traditional methods in terms of time and expertise required to produce high-quality results, the integration of 

AI into 3D modeling has emerged as a promising solution to automate complex tasks, create highly detailed 

models, and explore new creative possibilities. 

 

 

3. METHOD 

3.1.  Literature search strategy 

A comprehensive literature search was conducted to identify and analyze scholarly articles focusing 

on 3D model generation techniques leveraging GANs and VAEs. Figure 7 demonstrates the flowchart of the 

literature review strategy employed in this study. The search focused on preprint repositories, conference 

proceedings, and peer-reviewed publications. To guarantee extensive coverage of the subject, academic 

databases including arXiv, IEEE Xplore, and Scopus were used. The goal of this multi-database strategy was 

to include both established research that was published in reputable journals and innovative work that was 

shared via preprints or conference proceedings.  

 

 

 
 

Figure 7. Flowchart of literature review strategy 

 

 

Keywords like “3D model generation,” “GANs,” “Variational Autoencoder,” “AI 3D reconstruction,” 

“Image to 3D,” “3D shape generation,” “3D model generation using AI,” and “GAN-based 3D object 

reconstruction” were carefully chosen and used both singly and in combination to retrieve relevant articles. In 

order to optimize the inclusion of papers pertaining to AI-based 3D model generation, these terms were 

modified and improved upon during preliminary searches. After the articles were first retrieved, duplicates 

were eliminated, and the remaining entries were filtered using abstracts and titles. At this point, studies that 

had no direct connection to the creation of 3D models, that only dealt with non-AI-based techniques, or that 

did not explicitly highlight GAN or VAE designs were excluded. A full-text review was then conducted on 

potentially relevant articles to confirm that they met the inclusion criteria. 
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3.2.  Inclusion and exclusion criteria 

To ensure the quality and relevance of the chosen studies, a set of predetermined inclusion and 

exclusion criteria was developed. Articles required to; i) investigate or suggest 3D model generation techniques 

utilizing GAN and VAE architectures, ii) be published in publications with a Scopus index, accessible on IEEE 

Xplore, or housed on arXiv, and iii) offer quantitative evaluation criteria for performance evaluation in order 

to be considered. Furthermore, the included research required to present or talk about tests carried out on 

popular 3D model datasets as the IKEA Dataset, ModelNet, and ShapeNet. 

On the other hand, studies that; i) did not specifically address GAN or VAE architectures, ii) mainly 

dealt with non-AI-based 3D modeling techniques, and iii) did not give enough information about the training 

datasets, model configurations, or evaluation metrics used for performance assessment were excluded. Only 

the most relevant and methodologically sound studies were kept for additional assessment by implementing 

these criteria. 

 

3.3.  Data extraction 

To assist in comparison analysis, important parameters were methodically retrieved and assessed for 

each chosen study. The GAN or VAE architecture, including network layers, activation functions, and other 

architectural modifications that can affect model performance, has to be fully described during this procedure. 

In order to appropriately assess the extent of each approach, information on the training datasets was also 

reviewed. Following that, the models' performance was assessed using established evaluation metrics such as 

chamfer distance, intersection over union (IoU), and other domain-specific benchmarks. Finally, reported 

results were compared, highlighting both advantages and limitations observed within the reviewed literature. 

 

 

4. REVIEWED AI METHODS FOR 3D MODEL GENERATION 

AI-driven methods that make use of GANs and VAEs have demonstrated encouraging results in 

producing 3D models. Rapid prototyping and modeling have been made easier by these techniques. The next 

sections will explore several 3D model generation techniques that use GANs and VAEs in their designs. 

 

4.1.  Generative adversarial networks 

GANs are a type of deep learning model introduced by Goodfellow et al. [27] are designed to solve 

the generative modeling problem, aiming to learn the probability distribution of training data and generate new 

examples from it [27], [28]. This unsupervised learning technique utilizes two neural networks: a generator 

and a discriminator, which compete against each other [27], [29]. GANs have been used for a variety of tasks 

in research settings and have shown great success in producing realistic high-resolution images. In spite of 

their achievements, GANs pose distinct difficulties since they are game-theoretic, which sets them apart from 

previous optimization-based generative models [27]. GANs' architecture has changed over time, with many 

iterations created to cater to certain uses and boost efficiency [29]. 

 

4.2.  3DGAN 

In order to create 3D objects, the authors suggest 3D-GAN [30], a framework that makes use of current 

developments in GANs and volumetric convolutional networks. Using an adversarial criterion is the main 

innovation of this concept, enabling the generator to synthesize 3D objects in a realistic and high-quality way 

while implicitly capturing their structure. 

To represent an object in 3D voxel space, the generator G transfers a 200-dimensional latent vector z, 

randomly sampled from a probabilistic latent space, to a 64×64×64 cube. Then, a confidence value D(x) 

indicating whether a 3D object input (x) is synthetic or real is produced by the discriminator D. As a 

classification loss, authors used binary cross entropy and formulated adversarial loss function as (1): 

 

𝑥3𝐷−𝐺𝐴𝑁 = 𝑙𝑜𝑔𝐷(𝑥) + 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) (1) 

 

In (1), x represents a real object in a space, while z is a randomly sampled noise vector from distribution p(z). 

Inspired by the work of [31], the authors developed an all-convolutional neural network in which the 

generator is composed of five volumetric fully convolutional layers, each featuring 4×4×4 kernels and strides 

of 2, with batch normalization and ReLU activations included between layers, culminating in a Sigmoid layer. 

The discriminator mirrors this structure but substitutes Leaky ReLU for the ReLU activations.  

During the training of the model authors faced with the problem of different learning speeds of the 

generator and discriminator. The generator was struggling with extracting signals for improvement from 

discriminator, since the discriminator was learning much faster and was way ahead than generator. 

Theoretically, this happened because of difficulty of generation of 3D object in a voxel space than 

distinguishing if the object is real or not. To solve this problem, the authors adapted training process, making 
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the discriminator updated only when its accuracy in the most recent batch is less than 80%. This approach 

improved training stability and yields better outcomes. 

Following the idea of recovering 3D object from 2D image mapping, authors also introduced 3D-

VAE-GAN [30] model, which consist of image encoder, decoder, and discriminator. Five spatial convolution 

layers with kernel sizes of {11, 5, 5, 5, 8} and strides of {4, 2, 2, 2, 1} make up the image encoder. In between 

are layers for batch normalization and ReLU, and at the end is a sampler that takes a sample of a 200-

dimensional vector that the 3D-GAN uses. The loss function used is similar to VAE-GAN [32], consisting 

object reconstruction loss, cross entropy loss and KL divergence loss. 

Table 2 demonstrates the superiority of 3D-GAN over previous state-of-the-art methods in 

unsupervised learning. Testing was performed using ModelNet [33] and the proposed method outperformed 

VConv-DAE model [34], T-L Network [35], LFD [36], and SPH [37] models learned without supervision. On 

ModelNet40, 3D-GAN outperformed SPH by 22.1%, LFD by 10.3%, T-L Network by 12.0%, and VConv-

DAE by 10.3%. Speaking about ModelNet10, 3D-GAN outperformed SPH by 14.0%, LFD by 14.0%, and 

VConv-DAE by 13.0%. 

 

 

Table 2. Comparison of 3D-GAN with previous methods in unsupervised learning [30] 

Method 
ModelNet40 

accuracy (%) 
Improvement over others (%) 

ModelNet10 

accuracy (%) 
Improvement over others (%) 

SPH [37] 68.2 22.1 (compared to SPH) 79.8 14.0 (compared to SPH) 
LFD [36] 75.5 10.3 (compared to LFD) 79.9 14.0 (compared to LFD) 

T-L Network [35] 74.4 12.0 (compared to T-L Network)   

VConv-DAE [34] 75.5 10.3 (compared to VConv-DAE) 80.5 13.0 (compared to VConv-DAE) 
3D-GAN [30] 83.3 - 91.0 - 

 

 

4.3.  Paired 3D model generation with generative adversarial network 

The paper presents a novel approach to generating paired 3D models using conditional generative 

adversarial networks (CGANs) [38]. The authors address the challenge of generating the same 3D object in 

different conditions, such as varying rotation angles, without altering the standard CGAN architecture. 

The primary issue tackled is the inability of conventional CGANs to generate consistent object pairs 

under different conditions. CGAN offers a way to manipulate the features of generated data by providing 

specific conditions. However, despite being able to set these conditions, the resulting samples are still random. 

This makes it difficult to generate paired samples under different conditions. The core issue is that changing 

the condition while keeping the input constant doesn't produce consistent outputs. This is because the 

relationship between the input and output is complex and intertwined, meaning any alteration to the condition 

significantly impacts the final result. 

The authors used a baseline CGAN model that they modified for 3D model production as a 

comparison for their suggested approach. The identical dataset and set of parameters were used to train both 

the baseline and the suggested approach [38]. Under varying conditions, the baseline CGAN produced 

completely different objects, as demonstrated by the quantitative and visual results. On the other hand, models 

consistent with all conditions were generated by the suggested approach.  

To evaluate the results, authors introduced 2 different evaluation metrics: average absolute difference 

(AAD), which measures the difference between generated models and average voxel agreement ratio (AVAR), 

which measures the consistency of voxel grids between different conditions [38]. A lower AAD shows greater 

similarity between the models created under various situations and a higher AVAR reflects greater consistency 

and similarity in voxel structures between the models. 

The results in Table 3 clearly demonstrate that the proposed method achieved significantly lower 

AAD values and higher AVAR values, indicating less difference and greater consistency. The suggested 

approach continued to provide significant advantages over the baseline CGAN even after the experiments were 

expanded to four conditions. The suggested approach outperformed the baseline, yielding more consistent 

models, even though the problem complexity increased with the number of conditions. 

The authors suggested a novel approach to address this issue, which includes adding a training step to 

the CGAN framework. This step involves generating multiple samples with the same noise vector but different 

conditions and then merging these samples to enforce consistency. This additional step can be implemented 

without altering the CGAN design. Instead, it is incorporated as an additional training phase, which allows the 

method to be applied to any CGAN model. 

The authors' approach, which entailed building 3D models of furniture like couches, beds, and chairs 

at different rotations, was validated using the ModelNet dataset [33]. 2 experiment types were conducted in 

this work which involved 2 conditions and 4 conditions. 
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Table 3. Comparison of baseline and proposed methods AAD and AVAR values of generated objects [38]  
Category Condition Method AAD AVAR 

Chair 2-Condition Baseline 0.027 0.32 
Chair 2-Condition Proposed 0.009 0.79 

Chair 4-Condition Baseline 0.034 0.36 

Chair 4-Condition Proposed 0.024 0.61 
Bed 2-Condition Baseline 0.029 0.69 

Bed 2-Condition Proposed 0.012 0.89 

Bed 4-Condition Baseline 0.043 0.65 
Bed 4-Condition Proposed 0.021 0.82 

Sofa 2-Condition Baseline 0.018 0.74 

Sofa 2-Condition Proposed 0.004 0.95 
Sofa 4-Condition Baseline 0.034 0.62 

Sofa 4-Condition Proposed 0.013 0.90 

 

 

4.4.  Conditional generative adversarial network 

The challenge of random and uncontrollable generations is the focus of another study on 3D model 

reconstruction using GAN, which was conducted by [39]. The authors specifically note that although GANs are 

capable of producing 3D models, it is difficult to produce particular models depending on desired circumstances 

because the outcomes are frequently random and uncontrollable. The generative process of GANs is usually 

uncontrollable, which leads to unanticipated model properties and frequently mode collapse, in which the 

generator generates a limited diversity of outputs. Furthermore, it is still difficult to effectively recreate 3D 

models from a single 2D image, particularly when occlusions or insufficient visual information are present. 

The authors suggest a unique architecture that combines a 3D reconstruction network with CGANs in 

order to get through these limitations. While the reconstruction network uses a combination of conditional 

variational autoencoder (CVAE), GAN, and classifier components to accurately reconstruct 3D objects from 

single images, even under challenging conditions, the CGAN incorporates class information to produce more 

controlled and lifelike 3D models. Experiments were conducted using ModelNet10 dataset and they 

demonstrated high efficiency in generating realistic 3D models that match provided class labels [39]. 

The proposed method was compared with several existing approaches using the IKEA dataset [40], 

across categories such as “Bed,” “Bookcase,” “Chair,” “Desk,” “Sofa,” and “Table.” The comparison involved 

AlexNet-fc8 [35], AlexNet-conv4 [35], T-L Network [35], and both jointly and separately trained versions of 

3D-VAE-GAN [30], and 3D-VAE-IWGAN [41]. The suggested approach outperformed the other methods by 

achieving the highest mean average precision of 70.9% across all categories. The 3D-VAE-IWGAN (separately 

trained) is the closest competitor, scoring 61.7%. 

Table 4 summarizes the performance comparison between the proposed CGAN method and 3D-VAE-

IWGAN across six furniture categories. With a remarkable mean average precision (mAP) of 86.8% in the 

“Bed” category, it outperformed the nearest rival, 3D-VAE-IWGAN (separately trained), which received a 

score of 77.7%. Likewise, with a mAP of 85.2%, the suggested approach outperformed the next best solution 

in the “Bookcase” category, which was just 51.8%. With a robust mAP of 60.3% for “Chair,” the approach 

maintained its lead over the second-best result of 56.2%. It held onto its lead in the “Desk” area, scoring 52.4%, 

just higher than the 50.6% of the rival approach. The suggested approach showed strong performance even 

though its mAP of 80.2% in the “Sofa” category was not far behind the 3D-VAE-IWGAN (separately trained) 

method. Lastly, the approach achieved a mAP of 60.1% in the “Table” category, surpassing the 3D-VAE-

IWGAN (separately trained) method, which received a score of 52.6%. Overall, the suggested technique 

demonstrated its capacity to produce precise and excellent 3D models across a variety of object kinds by 

regularly outperforming or matching the best state-of-the-art methods. 

 

 

Table 4. Comparison of the proposed CGAN and 3D-VAE-IWGAN in terms of mean average precision [39] 
Category Proposed method (mAP %) 3D-VAE-IWGAN (separately trained) (mAP %) 

Bed 86.8 77.7 

Bookcase 85.2 51.8 

Chair 60.3 56.2 
Desk 52.4 50.6 

Sofa 80.2 82.0 

Table 60.1 52.6 

 

 

4.5.  Variational autoencoders 

VAEs [42] are a particular kind of autoencoder and generative model that are mostly utilized in 

unsupervised learning, that are often used in many different applications, including as data compression, 
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dimensionality reduction, and generating new data, like new images, and text. Several studies already 

integrated VAEs for 3D model reconstruction and demonstrated good results. 

 

4.6.  FaceVAE: generation of a 3d geometric object using variational autoencoders 

FaceVAE [43] is a model that uses VAEs to build 3D geometric objects. The study focuses on face-

based geometric data, especially polygons, which are frequently utilized in industrial settings. Through the 

direct use of polygon-based data, the research seeks to directly leverage existing 3D data production methods, 

which mostly rely on voxels, 2D pictures, and point clouds, to build more accurate and useful 3D models. 

The absence of direct application of deep learning techniques to 3D data based on polygons, which is 

common in industrial settings, is the difficulty that the authors address [43]. The efficiency of traditional 

approaches is limited in practical applications because they concentrate on simpler data formats like point 

clouds and voxels, which are unable to adequately capture the complexity of 3D polygonal geometry. 

The paper's methodology section outlines a methodical procedure for creating the faceVAE model. 

The first step in the process is data structurization, which involves employing adjacency matrices that are 

designed for learning to transform unstructured polygonal geometric data into a structured format. In order to 

prepare the data for the VAE model, this step is essential. Next, three types of adjacency matrices are proposed 

by the study: face adjacency (AF), which focuses on the relationships between faces that share edges with each 

other; vertex-face adjacency (AVF), which reflects the relationships between vertices and the faces they form; 

and vertex adjacency (AV), which captures the connections between vertices sharing an edge. 

To help the VAE model learn, a feature matrix is built with the vertices' coordinates alongside these 

matrices. The vertice positions are normalized and recorded as binary data. The main component of the 

technique is the use of a modified VAE model for both encoding and decoding the structured data. This model 

consists of three hidden layers, each with 1,000 nodes. By first transforming the input into a latent space and 

then reconstructing it, this VAE model effectively handles the geometric data. 

At last, the model reconstructs the geometric data from the latent space following the encoding and 

decoding procedure. In order to assess the model's effectiveness, the reconstructed data undergo voxelization, 

which turns them into a three-dimensional grid of voxels. This enables a comparison of the degree of similarity 

between the created and original geometries. Using the FaceVAE model, this structured method allows the 

direct production of 3D geometric data from polygonal representations. 

 

4.6.1. Experiments 

The ModelNet10 [33] dataset, which contains 3D geometric data of interior furniture, was employed 

in the experiments. The dataset is organized into ten categories, each of which contains geometric objects 

represented by vertex coordinates and face indices. Sixty-four geometric instances with fewer than 300 vertices 

were chosen as training data and sixteen instances as test data for the experiments. Given that every input node 

in the multilayer perceptron (MLP) employed in the study corresponds to a vertex or a feature, the choice was 

taken to match the model's capacity restrictions. 

 

4.6.2. Training 

During the training phase, the latent variable z was changed to various values (such as 2, 5, 10) and 

the impact on the model's capacity to learn and rebuild 3D geometry was monitored. The training losses for 

each kind of input data were compared. The outcomes demonstrated that learning adjacency matrices (AV and 

AVF) was superior to learning just vertex features (FV) in terms of effectiveness. Better performance was also 

seen when adjacency and feature information (AV || FV, AVF || FV) were combined, however significant 

overfitting was noticed, especially when using the AVF || FV combination. 

 

4.6.3. Evaluation 

Metrics including accuracy, precision, and recall were used to assess the model's performance. Since 

a high percentage of voxels in voxelized data are empty, precision and recall were thought to be more 

informative metrics than accuracy. 

According to the results shown in Table 5, adjacency information was essential for efficient learning, 

with AV and AVF matrices considerably outperforming FV in terms of precision (72.32 and 63.48, 

respectively) and recall (69.86 and 59.78, respectively) on test data. 

 

4.7.  Voxel-based 3D object reconstruction from single 2D image using variational autoencoder 

Another work employing VAE for 3D object reconstruction based on voxel, proposed by [44] 

addresses the challenge of correctly creating 3D objects out of a single 2D picture. Even with several images 

or substantial computer resources, traditional 3D reconstruction approaches are unable to generate smooth, 
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high-resolution 3D models [44]. A single 2D image contains just a limited amount of geometric information, 

making this challenge very difficult. 
 

 

Table 5. 3D geometry generation performance [43] 
G type Training accuracy Training precision Training recall Test accuracy Test precision Test recall 

FV(z=5) 99.99 98.95 100.00 78.25 12.41 33.84 
AV(z=5) 99.72 97.82 98.64 95.84 72.32 69.86 

AVF(z=5) 100.00 100.00 100.00 94.08 63.48 59.78 

AV||FV(z=2) 93.20 7.44 8.24 92.54 0 0 
AV||FV(z=5) 88.92 49.01 71.27 81.80 10.91 8.63 

AV||FV(z=10) 98.61 88.26 96.91 82.06 8.63 16.28 

AVF||FV (z=2) 93.63 6.25 6.25 92.54 0 0 
AVF||FV (z=5) 93.72 61.94 80.14 80.25 11.53 27.78 

AVF||FV (z=10) 99.99 99.99 100.00 80.57 10.28 25.86 

 
 

For voxel-based 3D object reconstruction (V3DOR) from a single 2D image, the authors propose two 

approaches: V3DOR-AE, which uses a simple autoencoder, and V3DOR-VAE, which uses a variational 

autoencoder. In order to create a corresponding 3D model, each model uses an encoder to extract a compressed 

latent representation from the 2D image. Specifically, the VAE-based method performs exceptionally well in 

creating new 3D models that closely resemble the features of the input data, exhibiting an improved ability to 

capture and reproduce minute details and variances. 

The AE-based approach comprises an encoder that extracts salient features from the 2D image and a 

decoder that reconstructs a 3D model. The encoder's architecture incorporates convolutional layers adept at 

capturing intricate geometric details within the image. The decoder subsequently generates a 3D representation 

as a single-channel voxel volume, where each voxel encodes the presence or absence of material at a specific 

3D location. 

The VAE model expands upon the AE architecture by incorporating a stochastic element. Instead of 

producing a fixed latent representation, the VAE's encoder generates a probability distribution characterized 

by its mean and standard deviation. This probabilistic encoding enables the generation of diverse synthetic 3D 

models through random sampling from the learned distribution.  

In order to increase the accuracy of the 3D reconstructions the models, the mean squared false cross-

entropy loss (MSFEL) [45] function is the one authors employ. This loss function is specifically designed to 

address the particular challenges that come with voxel-based 3D models, since these models frequently contain 

sparse data (a large number of empty or unoccupied voxels). 

 

4.7.1. Cross-entropy loss 

Cross-entropy loss is commonly used in tasks involving classification, where it measures the 

difference between two probability distributions: the true distribution (ground truth) and the predicted 

distribution. In the context of voxel-based 3D reconstruction, it is used to compare the predicted voxel 

occupancy (whether a voxel is part of the 3D object or empty) against the ground truth. 

 

4.7.2. False positive cross-entropy loss 

FPCE focuses on penalizing the model when it predicts that a voxel is occupied (part of the 3D object) 

when, in fact, it is empty according to the ground truth. This approach helps reduce the number of false 

positives, where the model incorrectly includes parts of the space in the 3D object. The FPCE is given by (2): 
 

𝐹𝑃𝐶𝐸 = −
1

𝑁
∑ [𝑁

𝑛=1 𝑉𝑛𝑙𝑜𝑔𝑉′𝑛 + (1 − 𝑉𝑛)𝑙𝑜𝑔(1 − 𝑉′𝑛)] (2) 

 

In (2), N denotes the total number of unoccupied voxels in the ground truth, which should ideally be 

predicted as empty by the model. The variable Vₙ represents the ground truth value for the n-th voxel; in this 

context, Vₙ would be 0 to indicate that it is unoccupied. By contrast, V'ₙ is the model’s predicted probability of 

occupancy for the n-th voxel, ranging between 0 and 1, where higher values reflect greater confidence that the 

voxel is occupied. 

 

4.7.3. False negative cross-entropy loss 

FNCE penalizes the model when it fails to predict that a voxel is occupied despite the ground truth 

indicating that it is. This penalty helps reduce the number of false negatives, where the model misses parts of 

the object. The FNCE is (3): 
 

𝐹𝑁𝐶𝐸 = −
1

𝑝
∑ [

𝑝
𝑝=1 𝑉𝑝𝑙𝑜𝑔𝑉′𝑝 + (1 − 𝑉𝑝)𝑙𝑜𝑔(1 − 𝑉′𝑝)] (3) 
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In (3), p represents the total number of occupied voxels in the ground truth, which ideally should be 

predicted as occupied by the model. The variable Vₚ denotes the ground truth value for the p-th voxel, set to 1 

when the voxel is indeed occupied. Meanwhile, V'ₚ is the predicted probability of occupancy for the ppp-th 

voxel, ranging between 0 and 1, where higher values reflect greater confidence that the voxel is occupied. 

 

4.7.4. Mean squared false cross-entropy loss 

The MSFEL creates a more thorough and balanced loss function by combining the FPCE and FNCE. 

When creating the 3D model, it makes sure the model is penalized for both kinds of errors (false positives and 

false negatives). 
 

𝑀𝑆𝐹𝐸𝐿 =  𝐹𝑃𝐶𝐸 + 𝐹𝑁𝐶𝐸 (4) 
 

This loss function tackles the problem of sparse data, which makes it very useful in the context of 

voxel-based 3D reconstruction. Since the actual object often occupies only a small section of the voxel grid, 

the model must exercise caution to avoid misidentifying empty voxels as part of the object (false positives) or 

missing occupied voxels (false negatives). 

 

4.7.5. Experiments 

The models were tested using a subset of the ShapeNet [46] data set, which includes categories like 

cars, chairs, guitars, and tables. Every object category has several photos that capture the thing's whole 360° 

view from various perspectives. In the tests, the matching 3D models of these things serve as ground truth. To 

validate their performance, the suggested V3DOR-AE and V3DOR-VAE approaches have been tested against 

a number of state-of-the-art methodologies such as 3D-R2N2 [47], OccNet [48], SoftRas [49], NMR [50], and 

3D-Recons [51]. Using the IOU [44] metric as a reference, the comparison concentrated on the accuracy of the 

3D models that were reconstructed. 

 

4.7.6. The results 

According to the experiment results, the suggested V3DOR-AE and V3DOR-VAE models 

consistently performed better than the current techniques for a variety of object categories. In particular, the 

mean IOU scores of both models were higher, showing a closer match between the reconstructed 3D models 

and the actual data. 

The V3DOR-AE model had an IOU score of 0.713 for the car category, whilst the V3DOR-VAE model 

received a score of 0.708. By contrast, OccNet had the highest score of 0.731 out of all the baseline approaches. 

This is somewhat better than V3DOR-VAE, but it's crucial to remember that V3DOR-AE performed better than 

3D-R2N2, which had an IOU of 0.661, by 0.052 points, while being within 0.018 points of OccNet. 

V3DOR-AE and V3DOR-VAE both received IOU scores in the table category of 0.508 and 0.509, 

respectively. These scores were about 0.088 to 0.089 points higher than 3D-R2N2's performance, which had 

an IOU of 0.420. They also performed 0.002 to 0.003 points better than OccNet, which had an IOU of 0.506. 

The proposed methods also produced remarkable outcomes when used to rebuild chairs and guitars. As an 

example, V3DOR-AE outperformed 3D-R2N2 by 0.072 points, with an IOU of 0.511 for chairs as opposed to 

0.439 for the latter. The suggested approaches outperformed the majority of baseline methods for guitars, with 

an IOU difference ranging from 0.03 to 0.05 points. 

The V3DOR-AE and V3DOR-VAE approaches provide notable enhancements in capturing intricate 

geometric details when compared to the LSTM-based 3D-R2N2 approach. For instance, the suggested techniques 

outperformed 3D-R2N2 by about 0.342 points in the mean IOU scores (1.814 vs 1.472 for V3DOR-AE). 

Table 6 compares the IOU scores of the proposed V3DOR-AE and V3DOR-VAE methods against 

state-of-the-art approaches across different object categories. The suggested V3DOR-AE had a modest 

advantage with a mean IOU of 1.814, indicating a 0.08-point improvement, even though the OccNet technique 

fared well with a mean IOU of 1.734. This demonstrates the enhanced capacity of the suggested models to 

produce precise and detailed 3D reconstructions. 
 
 

Table 6. IOU comparison of proposed methods with state-of-the-art methods by object category [44] 
Method Car (IOU) Table (IOU) Lamp (IOU) Chair (IOU) Mean IOU 

3D-R2N2 (LSTM) 0.661 0.420 0.281 0.439 1.472 

OccNet (CNN) 0.731 0.506 0.370 0.502 1.734 
SoftRas (CNN) 0.672 0.453 0.444 0.481 1.662 

NMR (CNN) 0.709 0.483 0.413 0.499 1.73 

3D-Recons (CNN) 0.675 0.470 0.459 0.493 1.727 
V3DOR-AE 0.713 0.508 0.465 0.511 1.814 

V3DOR-VAE 0.708 0.509 0.454 0.509 1.798 
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4.8.  3D shape generation via variational autoencoder with signed distance function relativistic average 

generative adversarial network 

3D-VAE-SDFRaGAN [52] is a new deep learning model that combines the frameworks of VAE and 

GAN. The goal of the model is to convert 2D photos into high-quality 3D shapes. It uses the SDF format to 

capture complex 3D structures and also integrates a relativistic average GAN loss function to enhance the 

stability and quality of the generated 3D shapes. 

 

4.8.1. The problem 

The main objective of the study is to overcome the difficulties that arise when creating realistic 3D 

models from 2D images. Standard approaches based on GANs and VAEs are often unstable during training 

and tend to produce inaccurate results, especially when the data has a complex structure. To address these 

shortcomings, the authors propose a more robust and efficient model capable of generating complex 3D objects 

with improved surface smoothness. 

 

4.8.2. Methods 

The process consists of developing a 3D-VAE-SDFRaGAN model that combines the strengths of 

GAN and VAE. The method starts by encoding the input 2D image into a latent space using VAE. The resulting 

latent representation is then fed into an SDF generator, which produces a 3D signed distance function, which 

is then converted into a polygonal mesh surface. A relativistic mean loss function of the GAN is used to 

stabilize training, enhance the quality of the generated 3D forms, and improve convergence. 

 

4.8.3. Architecture 

The 3D-VAE-SDFRaGAN architecture consists of three main components: a 2D-image encoder 

network, an SDF-generator network, and an SDF-discriminator network. The 2D-image encoder network 

processes 2D images and encodes them into a latent space, which is a simplified internal representation that 

the model later uses to generate 3D shapes. The five convolutional layers that make up this encoder have filter 

channels that are set to 64, 128, 256, 512, and 400. The complexity of each layer increases gradually. These 

layers' kernel sizes begin huge and get smaller, going from 11 to 8, with steps reduced correspondingly from 4 

to 1. The encoder produces a 400-dimensional vector, which is divided into two 200-dimensional vectors: a 

mean vector and a variance vector. These vectors are essential for encapsulating the characteristics and 

fluctuations of the image. The encoder uses batch normalization between layers and ReLU activation functions 

to guarantee efficient learning. It optimizes the learning process using a combination of Kullback–Leibler 

divergence, which measures how well the model’s learned distribution aligns with a standard distribution, and 

reconstruction loss, which assesses how accurately the model can recreate the original data from the latent 

space. 

After that, the SDF-generator network receives the latent vector that the encoder created, and it uses 

this latent space to create the SDF. The generator consists of five layers, each of which is a transpose 

convolutional layer with filter channels set to 512, 256, 128, 64, and 1. The strides are adjusted from 1 in the 

first layer to 2 in the subsequent layers, and the kernel sizes in each layer are always set at 4. The 64×64×64 

SDF matrix that the generator produces shows the distances to the 3D shape's surface. The values in the matrix 

range from -1 to 1. ReLU activation functions are used across network layers to precisely capture the 3D shape, 

and a Tanh activation is then used at the output layer to generate an SDF. This SDF is then transformed into a 

triangular mesh using the marching cubes technique, producing an intricate 3D representation. Finally, to 

evaluate the authenticity of the SDFs created by the model, the SDF-discriminator network compares the 

generated SDFs with real SDFs from the dataset. This discriminator also consists of five convolutional layers, 

with filter channels 64, 128, 256, 512, and 1 that reflect the structure of the generator. Except for the final layer, 

which employs a stride of 1, all layers have strides of 2. The kernel sizes remain constant at four. At the last 

layer, the network uses a Sigmoid function to provide an output between 0 and 1, which indicates the 

probability that the SDF is generated or real. In order to help control the gradient flow, leaky ReLU activation 

functions are employed throughout the layers. 

 

4.8.4. Experiments 

The studies were carried out using the ShapeNet collection, which contains 3D models of a wide 

variety of object categories, including chairs, tables, cars, lamps, couches, and cabinets. In order to generate 

the 2D photos in the collection, the 3D models were rendered from 23 different angles. The corresponding 3D 

SDFs were then constructed using these models. For the training process, these 2D pictures were used in pairs 

with the corresponding SDFs. A collection of 2D photos and the matching SDFs for every object category were 

used to train the model. Each 2D image was processed by the 2D-image encoder network during training in 

order to generate a latent vector that represents the 2D image's encoded features. This latent vector was then 

passed to the SDF-generator network, which used it to generate a signed distance function that reflected the 
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three-dimensional geometry of the item. Random noise vectors drawn from a uniform distribution were also 

supplied into the SDF-generator network in order to add variations to the SDFs that were produced. The 

generated and real SDFs from the dataset were then input into the SDF-discriminator network. The 

discriminator's task was to distinguish between the real SDFs and the ones generated by the model. The 

generator's output and the 3D forms it generated were then enhanced by using the discriminator's input. 

The discriminator network had a learning rate of 10-5, but the generator and encoder networks both 

had learning rates of 10-3. The model was trained using varying learning rates for each component. During 

training, the network weights were updated using the Adam optimizer, whose momentum was controlled by 

setting the β parameter to 0.5. 64 image-SDF pairings were processed concurrently in each training iteration 

since the model was trained with a batch size of 64. The number of epochs used to train the model varied 

according to the complexity of the object category: 1500 epochs were used for tables, lights, sofas, and cabinets, 

while 1700 epochs were used for more complex categories such as chairs and cars. Due to its complex design 

that combines the VAE and GAN frameworks, the model has high computing requirements, as evidenced by 

the training procedure taking more than 192 hours on a single Nvidia GeForce GTX 1080 GPU. 

To assess the quality of the model, the chamfer distance (CD) metric was used. It determines the 

similarity between the vertices of the generated and real 3D shapes. The lower the CD value, the more accurate 

and closer the reconstruction is to the original object. The 3D-VAE-SDFRaGAN indicators were compared 

with the results of several current non-linear models, also using CD, for different categories of objects. These 

models included 3D-R2N2 [47], SIF [53], N3MR [50], MeshSDF [54], and DISN [55]. The results in Table 7 

demonstrate that the proposed model achieved the lowest average CD score of 0.578, significantly 

outperforming other models. Visual inspection and comparison of the produced 3D shapes with those from 

other models showed that the 3D-VAE-SDFRaGAN produced results that were more realistic and detailed. 

Overall, the research showed that the 3D-VAE-SDFRaGAN model is reliable and efficient in creating high-

quality 3D shapes from 2D images, suggesting that it might be used as a tool for computer graphics, virtual 

reality, and 3D modeling. 

 

 

Table 7. Comparison of the suggested approach's performance on the ShapeNet dataset with the state-of-the-

art [52] 
Category 3D-R2N2 SIF N3MR MeshSDF DISN Proposed method 

Chair 1.432 1.540 2.084 0.590 0.754 0.589 

Table 1.116 1.570 2.383 1.070 1.329 0.672 
Car 0.845 1.080 2.298 0.960 0.492 0.491 

Lamp 4.009 3.420 3.013 1.490 2.273 0.662 

Sofa 1.135 0.800 3.512 0.780 0.871 0.566 
Cabinet 0.750 1.100 2.555 0.780 1.130 0.314 

Average 1.545 1.585 2.641 0.945 1.142 0.578 

 

 

5. COMPARATIVE ANALYSIS 

Table 8 provides a comprehensive comparative analysis of all reviewed techniques, examining their 

input/output types, architectures, performance metrics, advantages, and disadvantages. The input and output 

type columns specify the data formats used for input and output. The architecture column details the underlying 

technology employed in the method's core. Performance metrics highlight the evaluation criteria used to assess 

a method's effectiveness. Finally, the advantages and disadvantages columns summarize the key strengths and 

weaknesses of the reviewed models. 

All the generative models examined utilize deep learning architectures, such as GANs, VAEs, to 

synthesize 3D structures from various input data types. Despite their diverse output formats (voxel grids, 

meshes, and signed distance fields), they share a common goal of reconstructing or generating 3D shapes. 

However, the computational demands of these models are often substantial due to the complexity of processing 

high-dimensional 3D data. 

In terms of input types, models like 3DGAN and CGAN rely primarily on 2D images, while voxel-

based reconstruction uses point cloud data, paired 3D model GAN requires paired 2D-3D data, and 3D-VAE-

SDFRaGAN utilizes SDF. Output formats vary, with 3DGAN and voxel-based reconstruction generating voxel 

grids, whereas 3D-VAE-SDFRaGAN and FaceVAE produce meshes or other structured polygonal 

representations. FaceVAE, in particular, generates 3D geometric data directly from face-based (polygonal) 

structures, focusing on polygon geometry, and is designed for applications where direct 3D geometry 

manipulation is critical. Architectural complexity is higher in hybrid models like 3D-VAE-SDFRaGAN, which 

combine features of VAEs and GANs, while simpler autoencoder architectures are used in FaceVAE and voxel-

based reconstruction. Training difficulty is more pronounced in GAN-based models, such as 3DGAN and 
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conditional GAN, which struggle with issues like mode collapse and balancing the generator and discriminator, 

whereas VAE-based models like FaceVAE are more stable and easier to train. Hybrid models are the most 

challenging to train due to their combination of multiple architectures and loss functions. Regarding 

applications, FaceVAE is specialized for generating 3D geometric data using polygon structures, while 

3DGAN and Conditional GAN offer more flexibility for broader domains like object reconstruction and shape 

generation. Voxel-based reconstruction is particularly useful in fields requiring precision, such as robotics, due 

to its ability to capture fine details. 

 

 

Table 8. Comparative analysis of reviewed techniques 

Technique Input type 
Output 

type 
Architecture 

Performance 

metrics 
Advantages Disadvantages 

3DGAN 2D images Voxel 
grid 

GAN IoU and chamfer 
distance 

High-quality voxel-
based 3D models 

Computationally 
expensive and voxel 

resolution limited 

Conditional 
GAN 

Conditional 
labels 

Mesh and 
voxel 

GAN + 
conditional 

FID and chamfer 
distance 

Better control over 
output using 

conditional inputs 

Difficult training and 
mode collapse risks 

Paired 3D 
model GAN 

Paired data 
(2D+3D) 

Voxel 
grid and 

mesh 

GAN Average absolute 
difference 

Capable of learning 
complex shapes 

Requires paired data and 
which can be difficult to 

obtain 

FaceVAE Image (2D 
Fface) 

3D face 
mesh 

VAE AVAR and IoU Fast training and 
good for face meshes 

Model was only trained 
on geometries with 300 

or fewer vertices and 

which is a small subset of 
the full dataset 

Voxel-based 

reconstruction 

Point cloud Voxel 

grid 

Autoencoder IoU and chamfer 

distance 

Captures fine details 

of structures 

Memory-intensive, high 

computational cost 
3D-VAE-

SDFRaGAN 

Signed SDF Mesh and 

SDF 

VAE+GAN 

(hybrid) 

Chamfer distance 

and SDF loss 

Produces high-

quality mesh and 

surface details 

Training is complex and 

stability issues in training 

GANs 

 

 

All the generative models examined utilize deep learning architectures, such as GANs, VAEs to 

synthesize 3D structures from various input data types. Despite their diverse output formats (voxel grids, 

meshes, and signed distance fields), they share a common goal of reconstructing or generating 3D shapes. 

However, the computational demands of these models are often substantial due to the complexity of processing 

high-dimensional 3D data. 

In terms of input types, models like 3DGAN and conditional GAN rely primarily on 2D images, while 

Voxel-based reconstruction uses point cloud data, paired 3D Model GAN requires paired 2D-3D data, and 3D-

VAE-SDFRaGAN utilizes SDF. Output formats vary, with 3DGAN and voxel-based reconstruction generating 

voxel grids, whereas 3D-VAE-SDFRaGAN, and FaceVAE produce meshes or other structured polygonal 

representations. FaceVAE, in particular, generates 3D geometric data directly from face-based (polygonal) 

structures, focusing on polygon geometry, and is designed for applications where direct 3D geometry 

manipulation is critical. Architectural complexity is higher in hybrid models like 3D-VAE-SDFRaGAN, which 

combine features of VAEs and GANs, while simpler autoencoder architectures are used in FaceVAE and voxel-

based reconstruction. While VAE-based models like FaceVAE are more stable and simpler to train, GAN-

based models like 3DGAN and conditional GAN have more significant training difficulties due to problems 

like mode collapse and balancing the generator and discriminator. Because hybrid models combine several 

architectures and loss functions, they are the most difficult to train. In terms of applications, 3DGAN and 

conditional GAN provide greater flexibility for more general domains like object reconstruction and form 

production, whereas FaceVAE is focused on producing 3D geometric data utilizing polygon structures. 

Because it can capture precise features, voxel-based reconstruction is very helpful in fields that require 

precision. 

 

 

6. LIMITATIONS, CHALLENGES, AND FUTURE WORK 

6.1.  3DGAN 

The 3D-GAN framework has a number of drawbacks, such as the inability to produce high-resolution 

3D things because to the quick rise in computing complexity with increasing dimensions and the production 

of objects with structural irregularities like holes and fragments. Because the discriminator learns more quickly 

than the generator, training is also difficult and calls for adaptive learning methodologies. Furthermore, the 

voxel-based method is better suited for basic item categories because it can't handle complex geometries with 

fine-grained features. 
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In order to preserve computational feasibility while enhancing object detail, future 3D-GAN research 

should concentrate on improving resolution and detail using multi-resolution techniques. Enhancing training 

stability could involve techniques such as curriculum learning or progressive GAN growth to balance generator 

and discriminator learning. Integrating mesh and point cloud representations would capture more fine-grained 

details and expand the model’s applicability. Finally, improving single-image 2D to 3D reconstructions by 

incorporating multiple views or depth maps could significantly boost reconstruction accuracy. 

 

6.2.  Paired 3D model generation with conditional generative adversarial networks 

The paper on paired 3D model generation using CGANs presents several limitations and gaps. One 

of the primary limitations is that standard CGANs generate different objects even when only the condition 

value (e.g., rotation) is changed, failing to create the same object across different conditions. The research 

addresses this by introducing a new training step, but the method requires merging samples, which is domain-

specific and might not generalize well to all applications. Additionally, the process relies on voxel-based 

representations, which may limit the model's ability to generate high-resolution 3D objects due to voxel grid 

constraints. Another gap is that the research only explores 3D objects with a few fixed rotations (2 or 4), and 

extending the model to handle more conditions and larger object classes is left as future work.  

The research highlights several challenges, particularly the high computational costs and memory 

demands of 3D convolutional networks compared to 2D networks. These limitations prevent the use of higher 

resolution models, which would significantly improve the quality of the generated 3D models. Additionally, 

while the method shows promise in generating diverse and realistic 3D models based on class labels and 

reconstructing models from images, the resolution and speed remain constrained by available computational 

resources. Future work will focus on adapting super-resolution techniques from the 2D image domain to 3D 

models, with the goal of generating high-resolution 3D models efficiently. 

 

6.3.  FaceVAE 

The unresolved challenges in the FaceVAE method include difficulties in handling unstructured 

geometric data, where transforming such data into a structured format remains complex and inefficient. Sparse 

matrix representations (AF and AV) lead to computational inefficiencies, particularly with large geometric 

models, and the method also suffers from overfitting due to limited training data. Additionally, reconstruction 

of 3D geometries from adjacency and feature matrices is prone to errors, sometimes generating non-existent 

faces, which reduces the overall model fidelity. Lastly, the omission of normal vectors, texture UV, and other 

detailed surface features limits the practical applicability of the method, as the generated models lack critical 

surface details for industrial use. 

Future research on the FaceVAE method should focus on improving matrix structuring efficiency, 

potentially using hierarchical techniques like octrees to dynamically adjust matrix sizes based on geometric 

complexity. Scaling the model to handle larger geometries, along with better data compression techniques, 

could address overfitting and improve generalization. 

 

6.4.  Voxel-based 3D object reconstruction from single 2D image using variational autoencoders 

A number of significant drawbacks and difficulties are highlighted by the work on voxel-based 3D 

object reconstruction using VAEs, especially when considering dataset dependence, model complexity, and 

processing demands. When applied to diverse or unexplored data, the existing models, which were mostly 

tested on the ShapeNet dataset, show low robustness due to poor cross-dataset generalization. This limits the 

model's use in situations where there is a lot of data unpredictability.  Additionally, the simplicity of 

autoencoder and VAE designs restricts the model's capacity to capture fine features, which becomes crucial 

when working with more complicated 3D structures, even though it has advantages like quicker training and 

lower computing cost. 

The computational complexity of training 3D reconstruction models is still a major challenge, 

especially when using voxel-based techniques. Scaling output resolution requires significant processing 

resources, even with efforts to simplify the design. Additionally, the model has trouble reconstructing 

extremely complicated or irregular geometries; it does well with simpler items like chairs and vehicles but 

struggles to produce fine-grained details from a single 2D input image. 

The authors suggest a number of ways to improve future research. In order to create a more resilient 

framework that can manage novel and varied data, it is crucial to improve the model's generalization skills 

across various datasets. Furthermore, they propose adding color and texture data to the reconstructions, which 

would greatly improve the models' realism and usefulness. More complex designs and training techniques 

might be required, nevertheless. Improving resolution is another crucial topic that needs more investigation. 

The reconstructed objects' smoothness and intricacy are constrained by the current voxel grid resolution of 32³ 
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voxels. While maximizing computational efficiency, investigating higher-resolution voxel grids or other 

representations like point clouds, meshes, or implicit surfaces may provide more detail. 

 

6.5.  3D Shape generation via variational autoencoder with signed distance function relativistic average 

generative adversarial network 

The study has a number of limitations, especially with regard to the amount of data needed, the amount 

of computing power needed, and the sensitivity of the model. The method is less practical for contexts with 

limited resources because it requires a significant amount of training data and computer power. Furthermore, 

the selection of hyperparameters has a significant impact on the model's performance, necessitating careful 

adjustment to get the best outcomes. Its applicability to increasingly complicated 3D constructions is further 

limited by the architecture's difficulty in producing complex shapes and geometries, especially those involving 

non-uniform scaling or non-rigid deformations. 

The authors' recommendations for future research focus on improving the produced 3D models' 

accuracy and level of detail by adding more data sources or improving the current network architecture. 

Expanding the model's ability to manage increasingly complex shapes is another suggested approach. Lastly, 

to improve the model's practical utility in specialized fields, the authors propose adding semantic information 

or other types of prior knowledge to improve the model's capacity to produce domain-specific and application-

relevant 3D models. 

Table 9 arranges the examined approaches according to their shared drawbacks and difficulties. It 

shows that training instability affects multiple GAN-based methods including 3DGAN, Conditional GAN, and 

signed distance function GAN, while high computational demands are common across both GAN and VAE-

based approaches. 

 

 

Table 9. Methods grouped by common limitations and challenges 
Common challenges and limitations Methods 

Training instability - 3DGAN [30] 

 - Conditional GAN for paired 3D model generation [38] 

 - Signed distance function GAN [52] 
High computational and memory demands - 3DGAN [30] 

 - Voxel-based 3D object reconstruction with autoencoder [44] 

 - Signed distance function GAN [52] 
Low-resolution output - 3DGAN [30] 

 - Voxel-based 3D object reconstruction with VAE [44] 

 - Paired 3D model generation with CGAN [38] 
Generalization issues (cross-dataset validation) - Voxel-Based 3D object reconstruction with VAE [44] 

 - Paired 3D model generation with CGAN [38] 

 - Signed distance function GAN [52] 
Handling complex geometries - Paired 3D model generation with CGAN [38] 

 - Signed distance function GAN [52] 

 

 

7. RESULTS AND DISCUSSION 

7.1.  RQ1: What are the key advancements in using GANs and VAEs for 3D model generation? 

GAN-based 3D model synthesis has centered on addressing the inherent instability of training. Novel 

loss functions have been proposed to enhance training stability, leading to more reliable and consistent model 

generation. Additionally, GANs have demonstrated their capacity to generate 3D models with high-quality 

geometric details and topological accuracy. This capability, coupled with the ability to control specific object 

attributes, makes GANs a promising tool for a diverse range of applications requiring scalable and efficient 3D 

model generation. 

On the other hand, VAEs have made substantial contributions to 3D model generation by introducing 

efficient latent representations that balance computational efficiency and model performance. The ability of 

VAEs to generate synthetic 3D data has enriched datasets and promoted model diversity. While VAE-based 

3D model reconstruction from single 2D images may exhibit certain quality limitations, their capacity to 

capture and generate a wide range of 3D shapes from compact latent codes remains a significant advantage. 

The key challenges and potential future work associated with each GAN- and VAE-based method are 

summarized in Table 10. 

 

 

 

 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4988-5011 

5006 

Table 10. Unique challenges and future work for each reviewed method 
Method Unique challenges Future work 

3DGAN  Difficulty in scaling to higher resolution outputs 
due to computational overhead. 

− Improving training stability using advanced 

techniques like Wasserstein GAN. 

− Experimenting with regularization methods to 

stabilize training. 

− Enhancing the resolution of 3D models using 

super-resolution techniques. 

Conditional GAN for 

paired 3D model 
generation  

Difficulty in generating consistent 3D models 

across different rotations or viewpoints. 
− Focus on enhancing stability with optimization 

techniques and different loss functions. 

 Struggles with handling complex geometries 

when generating paired 3D models. 
− Extend the method to handle more complex 

object classes and rotations. 

− Explore more efficient cross-dataset 

generalization approaches. 
Voxel-based 3d object 

Reconstruction with 

Autoencoder  

Challenges in maintaining high-quality output 

when generating synthetic 3D models with the 

VAE method. 

− Improve cross-dataset generalization for real-

world applications. 

− Incorporate texture and color into 3D models to 

increase realism. 

− Enhance the resolution of output models using 

super-resolution methods. 

Signed distance function 
GAN  

Difficulty in capturing fine details for complex or 
irregular geometries using signed distance 

functions. 

− Work on incorporating texture and color into 3D 

models. 

− Improve generalization across datasets, 

potentially using self-supervised learning 

techniques. 

− Explore techniques to capture finer geometric 

details for high-complexity models. 

Voxel-based 3D object 
reconstruction with VAE  

Challenges in generating realistic synthetic 
models when using random noise in the VAE 

process. 

− Improve synthetic model generation with more 

realistic outputs. 

− Enhance cross-dataset validation performance. 

− Incorporate textures and color to improve the 

realism of generated 3D models. 
Paired 3D model 

generation with CGAN  

Difficulty in generating consistent object pairs 

across varying conditions (e.g., different 

rotations). 

− Improve stability in training and handling of 

complex geometries. 

 Poor performance when handling complex 

geometries. 
− Test more conditions (e.g., higher number of 

rotations). 
  − Experiment with new optimization techniques to 

improve model performance. 

 

 

7.2.  RQ2: What are the key datasets and evaluation metrics used in GAN- and VAE-based 3D model 

generation studies, and how do they influence the performance of these models? 

A variety of evaluation metrics, including IoU, chamfer distance, AAD, and AVAR, have been 

extensively utilized in the literature to provide quantitative benchmarks for assessing the accuracy and fidelity 

of 3D reconstructions.  

The choice of datasets significantly influences the adaptability of these models to new data. Models 

trained on more diverse datasets, like ShapeNet, tend to perform better on unseen data, whereas models tested 

solely on constrained datasets like ModelNet10 often exhibit dataset-specific overfitting. 

 

7.3.  Q3: How does VAE-based models compare to GAN-based models in generating 3D models, 

particularly in terms of computational efficiency? 

Although GANs excel in generating diverse 3D models, their computational demands often pose 

practical limitations. Models such as 3DGAN and CGAN require significant GPU resources and are prone to 

training instability. The paired 3D Model GAN, despite its innovative approach to generating consistent object 

pairs, incurs substantial memory and computational costs, particularly when dealing with high-resolution voxel 

grids or large datasets. These computational demands make GANs less suitable for environments with limited 

hardware resources. 

In contrast to GANs, VAEs offer a more stable and computationally efficient approach to 3D model 

generation. Models such as FaceVAE and Voxel-Based reconstruction with VAE are relatively lightweight 

and exhibit faster training times, making them suitable for real-time applications and resource-constrained 

environments. However, they often fall short of GANs in terms of output diversity and fine-grained details. 

The hybrid 3D-VAE-SDFRaGAN model aims to bridge this gap by combining the efficiency of VAEs with 

the high-quality output potential of GANs, but at the cost of increased training complexity and time. 
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The use of AI methods in 3D model generation, such as GANs and VAEs, signifies a significant 

change from earlier modeling strategies. These methods open up new possibilities for industries like 3D 

animation, virtual and AR, and gaming industry by automating difficult modeling jobs. Even with the 

encouraging outcomes, scaling these models to handle increasingly complicated forms, enhancing training 

stability, and mximizing computational efficiency are still difficult tasks. 

The advances reviewed in this paper demonstrate a clear evolutionary trajectory in AI-driven 3D 

model generation. Early methods like 3DGAN [30] established the foundational voxel-based approach but 

struggled with resolution limitations and training instability. The field has progressively advanced through 

conditional architectures [39], [38] that improved control over outputs, to more sophisticated representations 

including polygon-based structures [43] and signed distance functions [52]. Current trends indicate a shift from 

single-architecture approaches toward hybrid models that combine VAE and GAN strengths, as exemplified 

by 3D-VAE-SDFRaGAN's superior chamfer distance score of 0.578 compared to earlier methods. These 

advances represent significant progress in addressing fundamental challenges: training stability has improved 

through relativistic average loss functions, resolution limitations are being overcome through SDF 

representations, and computational efficiency has been enhanced through optimized architectures like 

FaceVAE's adjacency matrix approach. 

Methods involving GANs (3DGAN, paired 3D model generation with GAN, conditional GAN, and 

3D-VAE-SDFRaGAN) employ adversarial training, where a generator network creates 3D models, and a 

discriminator network evaluates the realism of these models. The generator aims to fool the discriminator, 

resulting in more realistic outputs over time. The adversarial nature of GANs can lead to instability during 

training, where the generator and discriminator might not converge properly, requiring careful tuning of the 

learning process. 

VAEs focus on learning a latent space representation of the input data. The model encodes data into 

a latent space and then decodes it back into the original space, aiming to minimize the difference between the 

original and reconstructed data. VAEs generally offer more stable training than GANs, as they do not involve 

an adversarial setup. The training process minimizes a combination of reconstruction loss and a regularization 

term. 

The reviewed methods utilized several well-known datasets such as ModelNet, ShapeNet and Ikea for 

training, primarily focusing on 3D objects and their corresponding 2D representations. In order to evaluate the 

results of proposed methods, authors used varios criterias: i) IOU used in V3DOR-AE and V3DOR-VAE to to 

evaluate how well the generated 3D voxel-based models match the ground truth models, ii) chamfer distance 

was used in 3D-VAE-SDFRaGAN. It measures the geometric accuracy of the generated 3D shapes by 

calculating the distance between points on the surfaces of the generated and actual models, iii) the paired 3D 

Model Generation with GAN method uses two specific evaluation criteria: AAD and AVAR. The difference 

between models created under various circumstances, such as different rotation degrees, is measured using 

AAD. By evaluating the voxel grid consistency among these produced models, on the other hand, AVAR 

makes sure that the models stay consistent even when circumstances alter. When combined, these measures 

assess the created 3D models' stability and variability, iv) mean mAP is used by the CGAN for 3D Model 

Generation and Reconstruction method to assess the accuracy of the models produced for various object 

categories. In order to guarantee that the produced models are appropriately categorized and satisfy the desired 

design standards, this criterion evaluates how well the models fit into particular classes, such as chairs, tables, 

and other categories, v) the FaceVAE technique uses precision and recall as assessment criteria to create 3D 

geometric objects using VAEs. The efficiency of learning adjacency matrices and feature information during 

the generation process is evaluated using these metrics. Error minimization—more especially, lowering the 

quantity of false positives and false negatives in the produced models—is the main goal, and vi) the 

effectiveness of the proposed 3D-GAN method was evaluated by several criteria. First, the quality of the 

generated 3D objects was analyzed. Second, the ability of the model to generalize data beyond the training set 

was tested. The classification accuracy was also assessed on popular 3D object sets, ModelNet10 and 

ModelNet40. Finally, the performance of the method in 3D reconstruction from a single image was investigated 

using the IKEA dataset. 

The comparative analysis reveals distinct advantages for different approaches: GAN-based methods 

(3DGAN and CGAN) excel in generating diverse, high-quality 3D models with fine geometric details but 

suffer from training instability and high computational costs. VAE-based methods (FaceVAE and voxel-based 

reconstruction) offer superior training stability and computational efficiency, making them ideal for real-time 

applications, though they produce less detailed outputs. Hybrid approaches like 3D-VAE-SDFRaGAN achieve 

the best overall performance (chamfer distance: 0.578) by combining both architectures' strengths, though at 

the cost of increased training complexity. 
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8. CONCLUSION 

This review summarizes the evolution of AI-driven 3D model generation by comparing traditional 

modeling methods with modern GAN- and VAE-based approaches. While classical techniques such as 

polygonal modeling, NURBS, sculpting, and procedural workflows require significant time and professional 

skill, recent AI models demonstrate the potential to automate and accelerate 3D content creation. The reviewed 

advances—ranging from 3DGAN and CGAN to FaceVAE, voxel-based reconstruction, and hybrid 

architectures—illustrate clear progress in reconstruction quality, geometric representation, training stability, 

and computational efficiency. 

The implications of these findings show that AI-based models are becoming increasingly relevant for 

applications in animation, gaming, VR/AR, industrial design, and simulation, offering scalable tools for 

complex shape generation. However, limitations remain: GANs suffer from instability and high computational 

costs, VAEs often lack fine detail, hybrid models introduce greater training complexity, and model 

performance still depends heavily on dataset characteristics. Addressing these constraints requires improved 

cross-domain benchmarks, more robust training pipelines, and methods that enhance stability, controllability, 

and generalization. Continued research following these directions will further strengthen the practical use and 

reliability of AI-driven 3D model generation. 
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