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This paper offers a comprehensive review of current developments in artificial
intelligence (Al)-based 3D model creation, with an emphasis on techniques
utilizing variational autoencoders (VAEs) and generative adversarial
networks (GANs). 3DGAN, paired 3D model generation with GAN,
conditional GAN, FaceVAE, voxel-based 3D object reconstruction, and 3D-
VAE-SDFRaGAN are the six main techniques that are studied in this work.
Each method is discussed, highlighting its architectural framework, data
representation, and specific approach to generating 3D models. First, the
paper introduces basic terms and classical 3D modeling techniques and
provides a comparative analysis of them based on their workflow, purpose
and field of application. In subsequent chapters, methods for generating 3D
models based on the use of GANs and VAEs are reviewed, describing its
methodology, experimentation technique, results, and comparison with other
methods. The review outlines the strengths and limitations of each approach
and their applications in object reconstruction, shape generation, and
maintaining model consistency. It concludes by emphasizing how Al-driven

methods can advance 3D modeling, underscoring the need for further research
to enhance quality, control, and training reliability. The findings show AI’s
significant impact on automating complex modeling tasks and enabling new
creative opportunities in 3D content development.
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1. INTRODUCTION

The field of computer graphics enables the generation and manipulation of visual content using digital
computing resources, facilitating the creation of interactive, immersive, and photorealistic environments across
diverse domains [1], [2]. In entertainment, automated adaptive lighting enhances dramatic and aesthetic effects
in real-time interactive media [3], while advanced facial animation techniques bring lifelike expression to
virtual characters [4]. Mobile graphics and augmented-reality frameworks further extend these interactive
experiences to handheld and wearable devices [5], and shaded-graphics methods laid the groundwork for
realistic rendering in cinematic and training simulators [6].

In scientific research, high-fidelity 3D visualization and virtual environment simulations support
medical diagnosis and treatment planning [7], and visualization techniques originally developed for
entertainment have been repurposed for molecular and engineering analysis [8], [9]. Industrial design

Journal homepage: http://beei.org


https://creativecommons.org/licenses/by-sa/4.0/
mailto:shyngys.adilkhan@sdu.edu.kz

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4989

applications leverage high-performance graphics workstations and computer-aided design (CAD) integration
to streamline prototyping and manufacturing workflows [10], as well as immersive virtual environments for
professional training and simulation [11]. Despite sharing core technologies—such as 3D visualization, real-
time rendering, and virtual environments—each field adapts these tools to meet its unique performance,
fidelity, and usability requirements [2].

Advances in 3D graphics enable scenes to be rendered in full three-dimensional depth, interactive
virtual environments via VR headsets, imaginative storytelling through animated films, and visualization of
novel objects using sophisticated visual effects. The rapid spread of artificial intelligence (Al) application
demonstrates a new perspective at the process of creating 3D objects, providing opportunities to increase the
efficiency of working with 3D models. Therefore, today, in addition to traditional techniques and tools for
creating 3D content, there is also a need to have skills in working with Al in the process of 3D modeling.

The use of Al to the field of 3D modeling is essential because it fits with the larger trend of Al
changing a number of fields, including research, education, and the arts [12]. Al is already present in many
modern devices, such as cameras and smartphones, and it will drastically change how people interact with
technology while also opening up new creative and technological possibilities. Al improves productivity in 3D
modeling by automating tedious activities and facilitating the construction of intricate designs that would be
difficult or time-consuming to accomplish by hand. Standard methods are changing as a result of this
integration, creating new opportunities for creativity and innovation. Before discussing Al-based 3D modeling,
it is necessary to define 3D models precisely and explain the traditional methods used to create them prior to
the incorporation of Al.

The urgency of this research lies in the exponential growth in demand for automated 3D content
creation across fields such as augmented reality (AR), digital twin engineering, real-time simulation, medical
imaging, and virtual manufacturing. As industries accelerate toward digitization and automation, the need for
scalable and accurate 3D modeling solutions has become critical. Traditional manual modeling techniques,
while effective, are increasingly inadequate for handling the vast volume and complexity of 3D data required
in real-time applications. The recent advancement of generative Al, particularly variational autoencoders
(VAESs), generative adversarial networks (GANSs), and diffusion models, has opened promising opportunities
for addressing these challenges through automated and data-driven modeling frameworks [13], [14]. Several
recent studies underscore the transformative impact of such deep generative approaches in reducing modeling
time and improving the fidelity of 3D reconstructions [15]-[18]. From 2020-2025, several studies report
concrete gains from GAN/VAE families in 3D generation, especially in medical imaging: 3D-StyleGAN
variants improve FID, bMMD?, and MS-SSIM at 1-2 mm resolutions [19], domain-adaptive VAE improves
SSIM/PSNR/Dice over baselines [20], and VQ-VAE exceeds GAN/Disc-VAE on SSIM/PSNR for synthetic
augmentation [21]. In creative engineering and gaming, hybrid GAN+implicit/NeRF pipelines show better
generative quality while still facing artifacts and mesh-diversity limits [22]. Across domains, the literature flags
non-standardized benchmarks (outside medicine) and limited external validation, further motivating a
consolidated comparative review [23]. Therefore, this review is urgently needed to consolidate ongoing
developments, evaluate comparative strengths and limitations, and guide future innovation in this rapidly
evolving research area.

In this article we aim to answer the following research questions:

Q1: What are the key advancements in using GANs and VAEs for 3D model generation?

Q2: What are the key datasets and evaluation metrics used in GAN- and VAE-based 3D model generation
studies, and how do they influence the performance of these models?

Q3: How does VAE-based models compare to GAN-based models in generating 3D models, particularly in
terms of computational efficiency?

This paper is structured as follows: section 2 provides an overview of traditional 3D modeling
techniques. In section 3, the methodology employed in this study is detailed. Section 4 offers an overview of
GAN- and VAE-based approaches for 3D model generation. Section 5 delves into a comparative analysis of
the reviewed methods, highlighting their strengths and weaknesses. Section 6 identifies the challenges and
potential avenues for future research in this field. Section 7 contains results and discussion part. Finally,
section 8 summarizes the key findings and conclusions of the study.

2. BACKGROUND
2.1. Traditional 3D modeling techniques

3D model is a 3 dimensional figure which represents a certain object or scene and consists of
components such as vertices, edges and polygons [24]. These models are used in various fields such as
animation, game development, architectural reconstruction, engineering, virtual reality, simulation, 3D
printing, and visualization. They can represent both real-world objects and imaginary concepts. The classic
method of building 3D models implies the use of special software like 3Ds Max, Maya, and Blender. At first,
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user has to learn certain tools and operations, which change the structure and shape of the model and directly
affect on a final result. Often 3D modelers or digital artists use reference images as a base for future 3D model.
They may consider overall shape or some specific details from the image and recreate them in a 3D space.
First, artists create the concept art of the character, object or a scene. After that 3D modeler recreate it. This
method is used almost in every industry related to 3D graphics: for creating models for games, animated
movies, visual effects, and motion design. In the age of emergence of Al, this workflow may be reinterpreted
by using different tools and technologies, but keeping the main idea—creating a 3D model based on image.

2.1.1. Box modeling

Box modeling is a foundational technique in 3D modeling that involves utilizing traditional tools to
construct shapes from elementary geometric items, such as cubes or spheres [25]. The process commences with
selecting a base shape characterized by a low polygon count. Because it gives modelers precise control over
the shape's various elements—faces, edges, and vertices—this method is highly acclaimed for its accuracy.
Box modeling differs from other modeling approaches due to its mechanical character. Instead of initially
concentrating on little details, it focuses on the manipulation of entire shapes and larger portions of the model.
Using quads, or four-sided faces, is a crucial part of box modeling. These are preferred because they work with
the majority of modeling software, which is primarily made to manage quads effectively. In spite of this choice,
models are often triangulated to guarantee stability and compatibility with different rendering engines, either
manually by the user or automatically by the program in the background. Hard-surface objects, like those in
manufactured goods and architectural visualizations, are especially well-suited for box modeling. The tools
frequently used in the process, including as extrusion, loop cuts, and beveling, are responsible for the
technique's effectiveness in these areas. These tools make it easier to transform basic shapes into intricate,
accurate forms. Furthermore, to increase the model's level of detail, box modeling is frequently used with
subdivision surface techniques. The process of creating subdivision surfaces entails introducing new geometry
between the preexisting faces, vertices, and edges. This geometry can then be altered using common modeling
tools. The modeler can more precisely and flexibly mold the object's divided form thanks to this extra geometry,
which serves as a control cage as shown in Figure 1.

Figure 1. Box modeling of a head

2.1.2. Polygon modeling

Polygon modeling is a technique that involves starting with a vertex and gradually building the model
edge by edge until the entire surface or object is complete. This process is similar to box modeling, as it often
includes a subdivision process to smooth or even out the geometry of the object being modeled. It is particularly
useful for visualizing 3D models of intricate designs such as statues and ornaments, where precise detail is
essential [25]. The flexibility of polygon modeling allows for the creation of unique, organic-looking designs,
making it a popular choice in scenarios requiring high levels of complexity and detail [25].

Like box modeling, polygon modeling typically emphasizes the use of quads in the topology, as many
tools are designed to function within a quad-based framework. Using quads in 3D models is important because
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quads provide predictable and even deformation, which is essential for objects that will undergo organic
deformation, like moving muscles. Quads squash and stretch uniformly, making them ideal for character
modeling. However, for non-deforming objects, such as video game props, quads are less critical, and factors
like poly count may take precedence. Additionally, in software like Maya, using triangles as illustrated in
Figure 2, can complicate adding edge loops needed to improve deformation in certain areas, making quads
more advantageous for character animation.

Figure 2. Triangulated polygons of the tractor model

2.1.3. Non-uniform rational b-splines and curve modeling

Figure 3 illustrates the non-uniform rational b-splines (NURBS) and curve modeling technique, which
uses control points to define curves that generate surfaces rather than directly manipulating vertices and edges.
Using operations like scaling, moving, and rotating the control points, this method makes it possible to create
curved, smooth 3D models. The method offers more control over the model's resolution and detail and is
especially beneficial for producing more consistent and organic-looking [25] characters. This technique is often
employed in software and engineering design, especially in CAD settings where smooth and accurate surfaces
are needed.

Figure 3. NURBS modeling

2.1.4. 3D sculpting

Digital sculpting offers a more fluid and artistic technique. It is similar to traditional clay sculpting
method and differs from polygonal modeling, which is about the manipulation of polygons, edges, and vertices
[26]. Polygonal modeling is the ideal choice for objects that need accurate measurements and defined
geometries, such mechanical components, architectural designs, and hard-surfaced environments, because it
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requires meticulous adjustments to each polygon, edge, and vertex. The models produced by this technique are
well known for their fine features and crisp edges, which are signs of the structural integrity that polygonal
modeling ensures. Digital sculpting, on the other hand, is a workflow that lets artists work with digital material
in a number of ways, including pinching, pushing, pulling, and carving, to produce naturally curved shapes as
shown in Figure 4. This method effectively produces complex, organic structures that would be challenging to
build with traditional polygonal procedures. When making realistic humans, inventive animals, and other
shapes that benefit from a flowing, organic style, it works particularly well. The sophisticated features of digital
sculpting tools allow artists to add fine details and textures, such as skin pores, wrinkles, and other surface
anomalies, creating models with exceptional realism and complexity.

Figure 4. Sculpting in Zbrush

2.1.5. Procedural modeling

Procedural modeling is an automated technique for generating three-dimensional models, allowing
for dynamic modification without manual intervention. This method simplifies the modeling process by using
a predetermined set of guidelines [26], algorithms, or directives. Procedural modeling works similarly to
deformation systems in that it applies changes to a basic mesh inside a layered framework. Changes to the base
mesh require recalculating overlaying operations, and subsequent modifications are piled on top of this
foundation. Individual modeling phases can be independently adjusted thanks to this layered architecture,
which doesn't impact other model elements as illustrated in the example shown in Figure 5.

Figure 5. Procedural modeling in 3Ds Max

There are various benefits to procedural modeling compared to manual approaches. It is efficient in
automating the building of complex models and saving a significant amount of time. Because of the flexibility
of editing, the created meshes can be dynamically altered and animated. Its modular design encourages
adaptability since various parts can be changed separately. The limited control over particular elements is a
major drawback, too, as the algorithmic nature can occasionally provide surprising outcomes.
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2.1.6. Boolean modeling

In Boolean modeling, new shapes are created by adding or subtracting elements from an existing
model [24]. This method is frequently paired with box modeling, which creates simple shapes that are
subsequently merged to build more complicated objects. As illustrated in Figure 6, this procedure relies heavily
on Boolean operations such as union, intersection, and difference. Whereas intersection retains only the
overlapping portions, union unites two shapes, and difference subtracts one from the other. Compared to
traditional modeling techniques, Boolean modeling greatly speeds up the construction of complex designs,

particularly when mixing curved and hard-edged forms.

Figure 6. Boolean operations in Maya

In Table 1 the most common 3D modeling techniques are compared in terms of methodology,
workflow, purpose, output, and usage. Also, specific programs were presented that most often use the indicated
methods. Some of them like Maya or 3Ds Max are capable of providing an opportunity to use all the mentioned
techniques in one project.

Table 1. Comparison of traditional modeling techniques comparative analysis of traditional techniques of 3D

modeling
Ref  Technique Methodology Workflow Purpose Output Usage Software
[25]  Polygonal Creating models  Build a base Creating hard- Polygonal Game Blender,
modeling by manipulating  mesh, add surface models, mesh development,  Maya, 3ds
vertices, edges, details, and characters, and animation, Max, and
and faces to refine topology.  environments with VFX,and3D  Modo
form polygons. precise control. printing
[25] NURBS Using Create control Creating smooth, NURBS Automotive Rhino,
modeling mathematical points, organic shapes, surface design, Maya,
equations to manipulate and precise architecture, SolidWork,
define curves curves, and industrial designs. shipbuilding, and CATIA
and surfaces. refine surface. and animation
[26] 3D Digitally Start with a Creating organic High- Character ZBrush,
sculpting sculpting models  basic shape, add  shapes with high resolution modeling, Sculptri,
using virtual details through detail and mesh animation, Blender,
tools. sculpting, and character VEX, and and
refine form. modeling. concept art Mudbox
[26]  Procedural  Generating Define rulesand  Creating complex Procedural ~ Environment Houdini,
modeling models based on  parameters, and repetitive definition,  creation, Blender,
rules, generate model,  geometry, generated game Unreal
algorithms, and and iterate on generating mesh development,  Engine, and
parameters. parameters. variations. VEX, and Unity
architecture
[24] Boolean Combining or Create base Creating complex Combined Industrial Blender,
modeling subtracting shapes, apply shapes from or design, Maya, 3ds
shapes to create Boolean simple primitives subtracted  architecture, Max, and
new forms. operations, and and hard-surface shapes product SolidWorks
refine result. modeling. design, and
game

development

While traditional 3D modeling methods have been essential to fields like industrial design, gaming,
and animation, novel advances in 3D generative Al are expanding the field by automating modeling tasks,
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speeding up design procedures, and enabling anyone to create 3D content. To address the limitations of
traditional methods in terms of time and expertise required to produce high-quality results, the integration of
Al into 3D modeling has emerged as a promising solution to automate complex tasks, create highly detailed
models, and explore new creative possibilities.

3. METHOD
3.1. Literature search strategy

A comprehensive literature search was conducted to identify and analyze scholarly articles focusing
on 3D model generation techniques leveraging GANs and VAEs. Figure 7 demonstrates the flowchart of the
literature review strategy employed in this study. The search focused on preprint repositories, conference
proceedings, and peer-reviewed publications. To guarantee extensive coverage of the subject, academic
databases including arXiv, IEEE Xplore, and Scopus were used. The goal of this multi-database strategy was
to include both established research that was published in reputable journals and innovative work that was
shared via preprints or conference proceedings.

Included in databases: —
Scopus
4 IEEE Xplore

Search by keywords: arXiv
"3D model generation”
"Generative Adversarial Networks”
“Variational Autoencoder”
“Al 3D reconstruction” ( f

‘Image to 3D Generative
“3D shape generation” Adversarial Variational Other Review and
3D model generation using Al Networks Autoencoders | | technologies analysis

“GAN-based 3D object

reconstruction.” /—)

« ModelNet
. Include to the
ShapeNet .
Include review paper
experiments with KEA Dataset
datasets

no experiments

Figure 7. Flowchart of literature review strategy

Keywords like “3D model generation,” “GANS,” “Variational Autoencoder,” “Al 3D reconstruction,”
“Image to 3D,” “3D shape generation,” “3D model generation using Al,” and “GAN-based 3D object
reconstruction” were carefully chosen and used both singly and in combination to retrieve relevant articles. In
order to optimize the inclusion of papers pertaining to Al-based 3D model generation, these terms were
modified and improved upon during preliminary searches. After the articles were first retrieved, duplicates
were eliminated, and the remaining entries were filtered using abstracts and titles. At this point, studies that
had no direct connection to the creation of 3D models, that only dealt with non-Al-based techniques, or that
did not explicitly highlight GAN or VAE designs were excluded. A full-text review was then conducted on
potentially relevant articles to confirm that they met the inclusion criteria.
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3.2. Inclusion and exclusion criteria

To ensure the quality and relevance of the chosen studies, a set of predetermined inclusion and
exclusion criteria was developed. Articles required to; i) investigate or suggest 3D model generation techniques
utilizing GAN and VAE architectures, ii) be published in publications with a Scopus index, accessible on IEEE
Xplore, or housed on arXiv, and iii) offer quantitative evaluation criteria for performance evaluation in order
to be considered. Furthermore, the included research required to present or talk about tests carried out on
popular 3D model datasets as the IKEA Dataset, ModelNet, and ShapeNet.

On the other hand, studies that; i) did not specifically address GAN or VAE architectures, ii) mainly
dealt with non-Al-based 3D modeling techniques, and iii) did not give enough information about the training
datasets, model configurations, or evaluation metrics used for performance assessment were excluded. Only
the most relevant and methodologically sound studies were kept for additional assessment by implementing
these criteria.

3.3. Data extraction

To assist in comparison analysis, important parameters were methodically retrieved and assessed for
each chosen study. The GAN or VAE architecture, including network layers, activation functions, and other
architectural modifications that can affect model performance, has to be fully described during this procedure.
In order to appropriately assess the extent of each approach, information on the training datasets was also
reviewed. Following that, the models' performance was assessed using established evaluation metrics such as
chamfer distance, intersection over union (loU), and other domain-specific benchmarks. Finally, reported
results were compared, highlighting both advantages and limitations observed within the reviewed literature.

4. REVIEWED Al METHODS FOR 3D MODEL GENERATION

Al-driven methods that make use of GANs and VAEs have demonstrated encouraging results in
producing 3D models. Rapid prototyping and modeling have been made easier by these techniques. The next
sections will explore several 3D model generation techniques that use GANs and VAEs in their designs.

4.1. Generative adversarial networks

GAN:Ss are a type of deep learning model introduced by Goodfellow et al. [27] are designed to solve
the generative modeling problem, aiming to learn the probability distribution of training data and generate new
examples from it [27], [28]. This unsupervised learning technique utilizes two neural networks: a generator
and a discriminator, which compete against each other [27], [29]. GANSs have been used for a variety of tasks
in research settings and have shown great success in producing realistic high-resolution images. In spite of
their achievements, GANSs pose distinct difficulties since they are game-theoretic, which sets them apart from
previous optimization-based generative models [27]. GANSs' architecture has changed over time, with many
iterations created to cater to certain uses and boost efficiency [29].

4.2. 3DGAN

In order to create 3D objects, the authors suggest 3D-GAN [30], a framework that makes use of current
developments in GANs and volumetric convolutional networks. Using an adversarial criterion is the main
innovation of this concept, enabling the generator to synthesize 3D objects in a realistic and high-quality way
while implicitly capturing their structure.

To represent an object in 3D voxel space, the generator G transfers a 200-dimensional latent vector z,
randomly sampled from a probabilistic latent space, to a 64x64x64 cube. Then, a confidence value D(x)
indicating whether a 3D object input (x) is synthetic or real is produced by the discriminator D. As a
classification loss, authors used binary cross entropy and formulated adversarial loss function as (1):

X3p-gan = logD(x) + log(1 — D(G(2))) 1)

In (1), x represents a real object in a space, while z is a randomly sampled noise vector from distribution p(z).

Inspired by the work of [31], the authors developed an all-convolutional neural network in which the
generator is composed of five volumetric fully convolutional layers, each featuring 4x4x4 kernels and strides
of 2, with batch normalization and ReL U activations included between layers, culminating in a Sigmoid layer.
The discriminator mirrors this structure but substitutes Leaky ReL U for the ReL U activations.

During the training of the model authors faced with the problem of different learning speeds of the
generator and discriminator. The generator was struggling with extracting signals for improvement from
discriminator, since the discriminator was learning much faster and was way ahead than generator.
Theoretically, this happened because of difficulty of generation of 3D object in a voxel space than
distinguishing if the object is real or not. To solve this problem, the authors adapted training process, making
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the discriminator updated only when its accuracy in the most recent batch is less than 80%. This approach
improved training stability and yields better outcomes.

Following the idea of recovering 3D object from 2D image mapping, authors also introduced 3D-
VAE-GAN [30] model, which consist of image encoder, decoder, and discriminator. Five spatial convolution
layers with kernel sizes of {11, 5, 5, 5, 8} and strides of {4, 2, 2, 2, 1} make up the image encoder. In between
are layers for batch normalization and ReLU, and at the end is a sampler that takes a sample of a 200-
dimensional vector that the 3D-GAN uses. The loss function used is similar to VAE-GAN [32], consisting
object reconstruction loss, cross entropy loss and KL divergence loss.

Table 2 demonstrates the superiority of 3D-GAN over previous state-of-the-art methods in
unsupervised learning. Testing was performed using ModelNet [33] and the proposed method outperformed
VConv-DAE model [34], T-L Network [35], LFD [36], and SPH [37] models learned without supervision. On
ModelNet40, 3D-GAN outperformed SPH by 22.1%, LFD by 10.3%, T-L Network by 12.0%, and VVConv-
DAE by 10.3%. Speaking about ModelNet10, 3D-GAN outperformed SPH by 14.0%, LFD by 14.0%, and
VConv-DAE by 13.0%.

Table 2. Comparison of 3D-GAN with previous methods in unsupervised learning [30]
ModelNet40 ModelNet10

Method Improvement over others (%) Improvement over others (%)
accuracy (%) accuracy (%)
SPH [37] 68.2 22.1 (compared to SPH) 79.8 14.0 (compared to SPH)
LFD [36] 75.5 10.3 (compared to LFD) 79.9 14.0 (compared to LFD)
T-L Network [35] 74.4 12.0 (compared to T-L Network)
VConv-DAE [34] 75.5 10.3 (compared to VConv-DAE) 80.5 13.0 (compared to VConv-DAE)
3D-GAN [30] 83.3 - 91.0 -

4.3. Paired 3D model generation with generative adversarial network

The paper presents a novel approach to generating paired 3D models using conditional generative
adversarial networks (CGANS) [38]. The authors address the challenge of generating the same 3D object in
different conditions, such as varying rotation angles, without altering the standard CGAN architecture.

The primary issue tackled is the inability of conventional CGANSs to generate consistent object pairs
under different conditions. CGAN offers a way to manipulate the features of generated data by providing
specific conditions. However, despite being able to set these conditions, the resulting samples are still random.
This makes it difficult to generate paired samples under different conditions. The core issue is that changing
the condition while keeping the input constant doesn't produce consistent outputs. This is because the
relationship between the input and output is complex and intertwined, meaning any alteration to the condition
significantly impacts the final result.

The authors used a baseline CGAN model that they modified for 3D model production as a
comparison for their suggested approach. The identical dataset and set of parameters were used to train both
the baseline and the suggested approach [38]. Under varying conditions, the baseline CGAN produced
completely different objects, as demonstrated by the quantitative and visual results. On the other hand, models
consistent with all conditions were generated by the suggested approach.

To evaluate the results, authors introduced 2 different evaluation metrics: average absolute difference
(AAD), which measures the difference between generated models and average voxel agreement ratio (AVAR),
which measures the consistency of voxel grids between different conditions [38]. A lower AAD shows greater
similarity between the models created under various situations and a higher AVAR reflects greater consistency
and similarity in voxel structures between the models.

The results in Table 3 clearly demonstrate that the proposed method achieved significantly lower
AAD values and higher AVAR values, indicating less difference and greater consistency. The suggested
approach continued to provide significant advantages over the baseline CGAN even after the experiments were
expanded to four conditions. The suggested approach outperformed the baseline, yielding more consistent
models, even though the problem complexity increased with the number of conditions.

The authors suggested a novel approach to address this issue, which includes adding a training step to
the CGAN framework. This step involves generating multiple samples with the same noise vector but different
conditions and then merging these samples to enforce consistency. This additional step can be implemented
without altering the CGAN design. Instead, it is incorporated as an additional training phase, which allows the
method to be applied to any CGAN model.

The authors' approach, which entailed building 3D models of furniture like couches, beds, and chairs
at different rotations, was validated using the ModelNet dataset [33]. 2 experiment types were conducted in
this work which involved 2 conditions and 4 conditions.
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Table 3. Comparison of baseline and proposed methods AAD and AVAR values of generated objects [38]
Category  Condition Method AAD AVAR

Chair 2-Condition  Baseline  0.027 0.32
Chair 2-Condition  Proposed  0.009 0.79
Chair 4-Condition  Baseline  0.034 0.36
Chair 4-Condition  Proposed  0.024 0.61
Bed 2-Condition  Baseline  0.029 0.69
Bed 2-Condition  Proposed  0.012 0.89
Bed 4-Condition  Baseline  0.043 0.65
Bed 4-Condition  Proposed  0.021 0.82
Sofa 2-Condition  Baseline  0.018 0.74
Sofa 2-Condition  Proposed  0.004 0.95
Sofa 4-Condition  Baseline  0.034 0.62
Sofa 4-Condition  Proposed  0.013 0.90

4.4. Conditional generative adversarial network

The challenge of random and uncontrollable generations is the focus of another study on 3D model
reconstruction using GAN, which was conducted by [39]. The authors specifically note that although GANSs are
capable of producing 3D models, it is difficult to produce particular models depending on desired circumstances
because the outcomes are frequently random and uncontrollable. The generative process of GANSs is usually
uncontrollable, which leads to unanticipated model properties and frequently mode collapse, in which the
generator generates a limited diversity of outputs. Furthermore, it is still difficult to effectively recreate 3D
models from a single 2D image, particularly when occlusions or insufficient visual information are present.

The authors suggest a unique architecture that combines a 3D reconstruction network with CGANS in
order to get through these limitations. While the reconstruction network uses a combination of conditional
variational autoencoder (CVAE), GAN, and classifier components to accurately reconstruct 3D objects from
single images, even under challenging conditions, the CGAN incorporates class information to produce more
controlled and lifelike 3D models. Experiments were conducted using ModelNetl0 dataset and they
demonstrated high efficiency in generating realistic 3D models that match provided class labels [39].

The proposed method was compared with several existing approaches using the IKEA dataset [40],
across categories such as “Bed,” “Bookcase,” “Chair,” “Desk,” “Sofa,” and “Table.” The comparison involved
AlexNet-fc8 [35], AlexNet-conv4 [35], T-L Network [35], and both jointly and separately trained versions of
3D-VAE-GAN [30], and 3D-VAE-IWGAN [41]. The suggested approach outperformed the other methods by
achieving the highest mean average precision of 70.9% across all categories. The 3D-VAE-IWGAN (separately
trained) is the closest competitor, scoring 61.7%.

Table 4 summarizes the performance comparison between the proposed CGAN method and 3D-VAE-
IWGAN across six furniture categories. With a remarkable mean average precision (mAP) of 86.8% in the
“Bed” category, it outperformed the nearest rival, 3D-VAE-IWGAN (separately trained), which received a
score of 77.7%. Likewise, with a mAP of 85.2%, the suggested approach outperformed the next best solution
in the “Bookcase” category, which was just 51.8%. With a robust mAP of 60.3% for “Chair,” the approach
maintained its lead over the second-best result of 56.2%. It held onto its lead in the “Desk” area, scoring 52.4%,
just higher than the 50.6% of the rival approach. The suggested approach showed strong performance even
though its mAP of 80.2% in the “Sofa” category was not far behind the 3D-VAE-IWGAN (separately trained)
method. Lastly, the approach achieved a mAP of 60.1% in the “Table” category, surpassing the 3D-VAE-
IWGAN (separately trained) method, which received a score of 52.6%. Overall, the suggested technique
demonstrated its capacity to produce precise and excellent 3D models across a variety of object kinds by
regularly outperforming or matching the best state-of-the-art methods.

Table 4. Comparison of the proposed CGAN and 3D-VAE-IWGAN in terms of mean average precision [39]
Category  Proposed method (MAP %)  3D-VAE-IWGAN (separately trained) (mAP %)

Bed 86.8 71.7
Bookcase 85.2 51.8
Chair 60.3 56.2
Desk 52.4 50.6
Sofa 80.2 82.0
Table 60.1 52.6

4.5. Variational autoencoders
VAEs [42] are a particular kind of autoencoder and generative model that are mostly utilized in
unsupervised learning, that are often used in many different applications, including as data compression,
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dimensionality reduction, and generating new data, like new images, and text. Several studies already
integrated VAEs for 3D model reconstruction and demonstrated good results.

4.6. FaceVAE: generation of a 3d geometric object using variational autoencoders

FaceVAE [43] is a model that uses VAESs to build 3D geometric objects. The study focuses on face-
based geometric data, especially polygons, which are frequently utilized in industrial settings. Through the
direct use of polygon-based data, the research seeks to directly leverage existing 3D data production methods,
which mostly rely on voxels, 2D pictures, and point clouds, to build more accurate and useful 3D models.

The absence of direct application of deep learning techniques to 3D data based on polygons, which is
common in industrial settings, is the difficulty that the authors address [43]. The efficiency of traditional
approaches is limited in practical applications because they concentrate on simpler data formats like point
clouds and voxels, which are unable to adequately capture the complexity of 3D polygonal geometry.

The paper's methodology section outlines a methodical procedure for creating the faceVAE model.
The first step in the process is data structurization, which involves employing adjacency matrices that are
designed for learning to transform unstructured polygonal geometric data into a structured format. In order to
prepare the data for the VAE model, this step is essential. Next, three types of adjacency matrices are proposed
by the study: face adjacency (AF), which focuses on the relationships between faces that share edges with each
other; vertex-face adjacency (AVF), which reflects the relationships between vertices and the faces they form;
and vertex adjacency (AV), which captures the connections between vertices sharing an edge.

To help the VAE model learn, a feature matrix is built with the vertices' coordinates alongside these
matrices. The vertice positions are normalized and recorded as binary data. The main component of the
technique is the use of a modified VAE model for both encoding and decoding the structured data. This model
consists of three hidden layers, each with 1,000 nodes. By first transforming the input into a latent space and
then reconstructing it, this VAE model effectively handles the geometric data.

At last, the model reconstructs the geometric data from the latent space following the encoding and
decoding procedure. In order to assess the model's effectiveness, the reconstructed data undergo voxelization,
which turns them into a three-dimensional grid of voxels. This enables a comparison of the degree of similarity
between the created and original geometries. Using the FaceVAE model, this structured method allows the
direct production of 3D geometric data from polygonal representations.

4.6.1. Experiments

The ModelNet10 [33] dataset, which contains 3D geometric data of interior furniture, was employed
in the experiments. The dataset is organized into ten categories, each of which contains geometric objects
represented by vertex coordinates and face indices. Sixty-four geometric instances with fewer than 300 vertices
were chosen as training data and sixteen instances as test data for the experiments. Given that every input node
in the multilayer perceptron (MLP) employed in the study corresponds to a vertex or a feature, the choice was
taken to match the model's capacity restrictions.

4.6.2. Training

During the training phase, the latent variable z was changed to various values (such as 2, 5, 10) and
the impact on the model's capacity to learn and rebuild 3D geometry was monitored. The training losses for
each kind of input data were compared. The outcomes demonstrated that learning adjacency matrices (AV and
AVF) was superior to learning just vertex features (FV) in terms of effectiveness. Better performance was also
seen when adjacency and feature information (AV || FV, AVF || FV) were combined, however significant
overfitting was noticed, especially when using the AVF || FV combination.

4.6.3. Evaluation

Metrics including accuracy, precision, and recall were used to assess the model's performance. Since
a high percentage of voxels in voxelized data are empty, precision and recall were thought to be more
informative metrics than accuracy.

According to the results shown in Table 5, adjacency information was essential for efficient learning,
with AV and AVF matrices considerably outperforming FV in terms of precision (72.32 and 63.48,
respectively) and recall (69.86 and 59.78, respectively) on test data.

4.7. Voxel-based 3D object reconstruction from single 2D image using variational autoencoder
Another work employing VAE for 3D object reconstruction based on voxel, proposed by [44]

addresses the challenge of correctly creating 3D objects out of a single 2D picture. Even with several images

or substantial computer resources, traditional 3D reconstruction approaches are unable to generate smooth,
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high-resolution 3D models [44]. A single 2D image contains just a limited amount of geometric information,
making this challenge very difficult.

Table 5. 3D geometry generation performance [43]

G type Training accuracy  Training precision  Training recall  Test accuracy  Test precision  Test recall
FV(z=5) 99.99 98.95 100.00 78.25 12.41 33.84
AV(z=5) 99.72 97.82 98.64 95.84 72.32 69.86
AVF(z=5) 100.00 100.00 100.00 94.08 63.48 59.78
AV|FV(z=2) 93.20 7.44 8.24 92.54 0 0
AV/|[FV(z=5) 88.92 49.01 71.27 81.80 10.91 8.63
AV/|[FV(z=10) 98.61 88.26 96.91 82.06 8.63 16.28
AVF|FV (z=2) 93.63 6.25 6.25 92.54 0 0
AVF|[FV (z=5) 93.72 61.94 80.14 80.25 11.53 27.78
AVF|FV (z=10) 99.99 99.99 100.00 80.57 10.28 25.86

For voxel-based 3D object reconstruction (V3DOR) from a single 2D image, the authors propose two
approaches: V3DOR-AE, which uses a simple autoencoder, and V3DOR-VAE, which uses a variational
autoencoder. In order to create a corresponding 3D model, each model uses an encoder to extract a compressed
latent representation from the 2D image. Specifically, the VAE-based method performs exceptionally well in
creating new 3D models that closely resemble the features of the input data, exhibiting an improved ability to
capture and reproduce minute details and variances.

The AE-based approach comprises an encoder that extracts salient features from the 2D image and a
decoder that reconstructs a 3D model. The encoder's architecture incorporates convolutional layers adept at
capturing intricate geometric details within the image. The decoder subsequently generates a 3D representation
as a single-channel voxel volume, where each voxel encodes the presence or absence of material at a specific
3D location.

The VAE model expands upon the AE architecture by incorporating a stochastic element. Instead of
producing a fixed latent representation, the VAE's encoder generates a probability distribution characterized
by its mean and standard deviation. This probabilistic encoding enables the generation of diverse synthetic 3D
models through random sampling from the learned distribution.

In order to increase the accuracy of the 3D reconstructions the models, the mean squared false cross-
entropy loss (MSFEL) [45] function is the one authors employ. This loss function is specifically designed to
address the particular challenges that come with voxel-based 3D models, since these models frequently contain
sparse data (a large number of empty or unoccupied voxels).

4.7.1. Cross-entropy loss

Cross-entropy loss is commonly used in tasks involving classification, where it measures the
difference between two probability distributions: the true distribution (ground truth) and the predicted
distribution. In the context of voxel-based 3D reconstruction, it is used to compare the predicted voxel
occupancy (whether a voxel is part of the 3D object or empty) against the ground truth.

4.7.2. False positive cross-entropy loss

FPCE focuses on penalizing the model when it predicts that a voxel is occupied (part of the 3D object)
when, in fact, it is empty according to the ground truth. This approach helps reduce the number of false
positives, where the model incorrectly includes parts of the space in the 3D object. The FPCE is given by (2):

FPCE = =< ¥N_,[VylogV'n + (1 = V)log(1 = V',)] )

In (2), N denotes the total number of unoccupied voxels in the ground truth, which should ideally be
predicted as empty by the model. The variable V, represents the ground truth value for the n-th voxel; in this
context, V, would be 0 to indicate that it is unoccupied. By contrast, V', is the model’s predicted probability of
occupancy for the n-th voxel, ranging between 0 and 1, where higher values reflect greater confidence that the
voxel is occupied.

4.7.3. False negative cross-entropy loss

FNCE penalizes the model when it fails to predict that a voxel is occupied despite the ground truth
indicating that it is. This penalty helps reduce the number of false negatives, where the model misses parts of
the object. The FNCE is (3):

FNCE = — 53, [logV', + (1= )log(1 = V',)] )
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In (3), p represents the total number of occupied voxels in the ground truth, which ideally should be
predicted as occupied by the model. The variable V,, denotes the ground truth value for the p-th voxel, set to 1
when the voxel is indeed occupied. Meanwhile, V', is the predicted probability of occupancy for the ppp-th
voxel, ranging between 0 and 1, where higher values reflect greater confidence that the voxel is occupied.

4.7.4. Mean squared false cross-entropy loss

The MSFEL creates a more thorough and balanced loss function by combining the FPCE and FNCE.
When creating the 3D model, it makes sure the model is penalized for both kinds of errors (false positives and
false negatives).

MSFEL = FPCE + FNCE 4)

This loss function tackles the problem of sparse data, which makes it very useful in the context of
voxel-based 3D reconstruction. Since the actual object often occupies only a small section of the voxel grid,
the model must exercise caution to avoid misidentifying empty voxels as part of the object (false positives) or
missing occupied voxels (false negatives).

4.7.5. Experiments

The models were tested using a subset of the ShapeNet [46] data set, which includes categories like
cars, chairs, guitars, and tables. Every object category has several photos that capture the thing's whole 360°
view from various perspectives. In the tests, the matching 3D models of these things serve as ground truth. To
validate their performance, the suggested V3DOR-AE and V3DOR-VAE approaches have been tested against
a number of state-of-the-art methodologies such as 3D-R2N2 [47], OccNet [48], SoftRas [49], NMR [50], and
3D-Recons [51]. Using the 10U [44] metric as a reference, the comparison concentrated on the accuracy of the
3D models that were reconstructed.

4.7.6. The results

According to the experiment results, the suggested V3DOR-AE and V3DOR-VAE models
consistently performed better than the current techniques for a variety of object categories. In particular, the
mean 10U scores of both models were higher, showing a closer match between the reconstructed 3D models
and the actual data.

The V3DOR-AE model had an 10U score of 0.713 for the car category, whilst the V3DOR-VAE model
received a score of 0.708. By contrast, OccNet had the highest score of 0.731 out of all the baseline approaches.
This is somewhat better than V3DOR-VAE, but it's crucial to remember that V3DOR-AE performed better than
3D-R2N2, which had an 10U of 0.661, by 0.052 points, while being within 0.018 points of OccNet.

V3DOR-AE and V3DOR-VAE both received 10U scores in the table category of 0.508 and 0.509,
respectively. These scores were about 0.088 to 0.089 points higher than 3D-R2N2's performance, which had
an 10U of 0.420. They also performed 0.002 to 0.003 points better than OccNet, which had an IOU of 0.506.
The proposed methods also produced remarkable outcomes when used to rebuild chairs and guitars. As an
example, V3DOR-AE outperformed 3D-R2N2 by 0.072 points, with an IOU of 0.511 for chairs as opposed to
0.439 for the latter. The suggested approaches outperformed the majority of baseline methods for guitars, with
an 10U difference ranging from 0.03 to 0.05 points.

The V3DOR-AE and V3DOR-VAE approaches provide notable enhancements in capturing intricate
geometric details when compared to the LSTM-based 3D-R2N2 approach. For instance, the suggested techniques
outperformed 3D-R2N2 by about 0.342 points in the mean 10U scores (1.814 vs 1.472 for V3DOR-AE).

Table 6 compares the IOU scores of the proposed V3DOR-AE and V3DOR-VAE methods against
state-of-the-art approaches across different object categories. The suggested V3DOR-AE had a modest
advantage with a mean 10U of 1.814, indicating a 0.08-point improvement, even though the OccNet technique
fared well with a mean 10U of 1.734. This demonstrates the enhanced capacity of the suggested models to
produce precise and detailed 3D reconstructions.

Table 6. IOU comparison of proposed methods with state-of-the-art methods by object category [44]

Method Car (IOV) Table (I0U) Lamp (IOU)  Chair (I0U) Mean 10U
3D-R2N2 (LSTM) 0.661 0.420 0.281 0.439 1.472
OccNet (CNN) 0.731 0.506 0.370 0.502 1.734
SoftRas (CNN) 0.672 0.453 0.444 0.481 1.662
NMR (CNN) 0.709 0.483 0.413 0.499 1.73
3D-Recons (CNN) 0.675 0.470 0.459 0.493 1.727
V3DOR-AE 0.713 0.508 0.465 0.511 1.814
V3DOR-VAE 0.708 0.509 0.454 0.509 1.798
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4.8. 3D shape generation via variational autoencoder with signed distance function relativistic average
generative adversarial network

3D-VAE-SDFRaGAN [52] is a new deep learning model that combines the frameworks of VAE and
GAN. The goal of the model is to convert 2D photos into high-quality 3D shapes. It uses the SDF format to
capture complex 3D structures and also integrates a relativistic average GAN loss function to enhance the
stability and quality of the generated 3D shapes.

4.8.1. The problem

The main objective of the study is to overcome the difficulties that arise when creating realistic 3D
models from 2D images. Standard approaches based on GANs and VAEs are often unstable during training
and tend to produce inaccurate results, especially when the data has a complex structure. To address these
shortcomings, the authors propose a more robust and efficient model capable of generating complex 3D objects
with improved surface smoothness.

4.8.2. Methods

The process consists of developing a 3D-VAE-SDFRaGAN model that combines the strengths of
GAN and VAE. The method starts by encoding the input 2D image into a latent space using VAE. The resulting
latent representation is then fed into an SDF generator, which produces a 3D signed distance function, which
is then converted into a polygonal mesh surface. A relativistic mean loss function of the GAN is used to
stabilize training, enhance the quality of the generated 3D forms, and improve convergence.

4.8.3. Architecture

The 3D-VAE-SDFRaGAN architecture consists of three main components: a 2D-image encoder
network, an SDF-generator network, and an SDF-discriminator network. The 2D-image encoder network
processes 2D images and encodes them into a latent space, which is a simplified internal representation that
the model later uses to generate 3D shapes. The five convolutional layers that make up this encoder have filter
channels that are set to 64, 128, 256, 512, and 400. The complexity of each layer increases gradually. These
layers' kernel sizes begin huge and get smaller, going from 11 to 8, with steps reduced correspondingly from 4
to 1. The encoder produces a 400-dimensional vector, which is divided into two 200-dimensional vectors: a
mean vector and a variance vector. These vectors are essential for encapsulating the characteristics and
fluctuations of the image. The encoder uses batch normalization between layers and ReL. U activation functions
to guarantee efficient learning. It optimizes the learning process using a combination of Kullback—Leibler
divergence, which measures how well the model’s learned distribution aligns with a standard distribution, and
reconstruction loss, which assesses how accurately the model can recreate the original data from the latent
space.

After that, the SDF-generator network receives the latent vector that the encoder created, and it uses
this latent space to create the SDF. The generator consists of five layers, each of which is a transpose
convolutional layer with filter channels set to 512, 256, 128, 64, and 1. The strides are adjusted from 1 in the
first layer to 2 in the subsequent layers, and the kernel sizes in each layer are always set at 4. The 64x64x64
SDF matrix that the generator produces shows the distances to the 3D shape's surface. The values in the matrix
range from -1 to 1. ReL.U activation functions are used across network layers to precisely capture the 3D shape,
and a Tanh activation is then used at the output layer to generate an SDF. This SDF is then transformed into a
triangular mesh using the marching cubes technique, producing an intricate 3D representation. Finally, to
evaluate the authenticity of the SDFs created by the model, the SDF-discriminator network compares the
generated SDFs with real SDFs from the dataset. This discriminator also consists of five convolutional layers,
with filter channels 64, 128, 256, 512, and 1 that reflect the structure of the generator. Except for the final layer,
which employs a stride of 1, all layers have strides of 2. The kernel sizes remain constant at four. At the last
layer, the network uses a Sigmoid function to provide an output between 0 and 1, which indicates the
probability that the SDF is generated or real. In order to help control the gradient flow, leaky ReL U activation
functions are employed throughout the layers.

4.8.4. Experiments

The studies were carried out using the ShapeNet collection, which contains 3D models of a wide
variety of object categories, including chairs, tables, cars, lamps, couches, and cabinets. In order to generate
the 2D photos in the collection, the 3D models were rendered from 23 different angles. The corresponding 3D
SDFs were then constructed using these models. For the training process, these 2D pictures were used in pairs
with the corresponding SDFs. A collection of 2D photos and the matching SDFs for every object category were
used to train the model. Each 2D image was processed by the 2D-image encoder network during training in
order to generate a latent vector that represents the 2D image's encoded features. This latent vector was then
passed to the SDF-generator network, which used it to generate a signed distance function that reflected the
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three-dimensional geometry of the item. Random noise vectors drawn from a uniform distribution were also
supplied into the SDF-generator network in order to add variations to the SDFs that were produced. The
generated and real SDFs from the dataset were then input into the SDF-discriminator network. The
discriminator's task was to distinguish between the real SDFs and the ones generated by the model. The
generator's output and the 3D forms it generated were then enhanced by using the discriminator's input.

The discriminator network had a learning rate of 10, but the generator and encoder networks both
had learning rates of 10 The model was trained using varying learning rates for each component. During
training, the network weights were updated using the Adam optimizer, whose momentum was controlled by
setting the B parameter to 0.5. 64 image-SDF pairings were processed concurrently in each training iteration
since the model was trained with a batch size of 64. The number of epochs used to train the model varied
according to the complexity of the object category: 1500 epochs were used for tables, lights, sofas, and cabinets,
while 1700 epochs were used for more complex categories such as chairs and cars. Due to its complex design
that combines the VAE and GAN frameworks, the model has high computing requirements, as evidenced by
the training procedure taking more than 192 hours on a single Nvidia GeForce GTX 1080 GPU.

To assess the quality of the model, the chamfer distance (CD) metric was used. It determines the
similarity between the vertices of the generated and real 3D shapes. The lower the CD value, the more accurate
and closer the reconstruction is to the original object. The 3D-VAE-SDFRaGAN indicators were compared
with the results of several current non-linear models, also using CD, for different categories of objects. These
models included 3D-R2N2 [47], SIF [53], N3MR [50], MeshSDF [54], and DISN [55]. The results in Table 7
demonstrate that the proposed model achieved the lowest average CD score of 0.578, significantly
outperforming other models. Visual inspection and comparison of the produced 3D shapes with those from
other models showed that the 3D-VAE-SDFRaGAN produced results that were more realistic and detailed.
Overall, the research showed that the 3D-VAE-SDFRaGAN model is reliable and efficient in creating high-
quality 3D shapes from 2D images, suggesting that it might be used as a tool for computer graphics, virtual
reality, and 3D modeling.

Table 7. Comparison of the suggested approach's performance on the ShapeNet dataset with the state-of-the-

art [52]
Category  3D-R2N2 SIF N3MR  MeshSDF  DISN  Proposed method
Chair 1.432 1540 2.084 0.590 0.754 0.589
Table 1.116 1570 2.383 1.070 1.329 0.672
Car 0.845 1.080 2.298 0.960 0.492 0.491
Lamp 4.009 3.420 3.013 1.490 2.273 0.662
Sofa 1.135 0.800 3.512 0.780 0.871 0.566
Cabinet 0.750 1.100  2.555 0.780 1.130 0.314
Average 1.545 1.585 2.641 0.945 1.142 0.578

5. COMPARATIVE ANALYSIS

Table 8 provides a comprehensive comparative analysis of all reviewed techniques, examining their
input/output types, architectures, performance metrics, advantages, and disadvantages. The input and output
type columns specify the data formats used for input and output. The architecture column details the underlying
technology employed in the method's core. Performance metrics highlight the evaluation criteria used to assess
a method's effectiveness. Finally, the advantages and disadvantages columns summarize the key strengths and
weaknesses of the reviewed models.

All the generative models examined utilize deep learning architectures, such as GANs, VAEs, to
synthesize 3D structures from various input data types. Despite their diverse output formats (voxel grids,
meshes, and signed distance fields), they share a common goal of reconstructing or generating 3D shapes.
However, the computational demands of these models are often substantial due to the complexity of processing
high-dimensional 3D data.

In terms of input types, models like 3DGAN and CGAN rely primarily on 2D images, while voxel-
based reconstruction uses point cloud data, paired 3D model GAN requires paired 2D-3D data, and 3D-VAE-
SDFRaGAN utilizes SDF. Output formats vary, with 3DGAN and voxel-based reconstruction generating voxel
grids, whereas 3D-VAE-SDFRaGAN and FaceVAE produce meshes or other structured polygonal
representations. FaceVAE, in particular, generates 3D geometric data directly from face-based (polygonal)
structures, focusing on polygon geometry, and is designed for applications where direct 3D geometry
manipulation is critical. Architectural complexity is higher in hybrid models like 3D-VAE-SDFRaGAN, which
combine features of VAEs and GANs, while simpler autoencoder architectures are used in FaceVAE and voxel-
based reconstruction. Training difficulty is more pronounced in GAN-based models, such as 3DGAN and
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conditional GAN, which struggle with issues like mode collapse and balancing the generator and discriminator,
whereas VAE-based models like FaceVAE are more stable and easier to train. Hybrid models are the most
challenging to train due to their combination of multiple architectures and loss functions. Regarding
applications, FaceVAE is specialized for generating 3D geometric data using polygon structures, while
3DGAN and Conditional GAN offer more flexibility for broader domains like object reconstruction and shape
generation. VVoxel-based reconstruction is particularly useful in fields requiring precision, such as robotics, due
to its ability to capture fine details.

Table 8. Comparative analysis of reviewed techniques

. Output . Performance .
Technique Input type type Acrchitecture metrics Advantages Disadvantages
3DGAN 2D images Voxel GAN loU and chamfer High-quality voxel- Computationally
grid distance based 3D models expensive and  voxel
resolution limited
Conditional Conditional Mesh and GAN + FID and chamfer Better control over Difficult training and
GAN labels voxel conditional distance output using  mode collapse risks
conditional inputs
Paired 3D Paired data Voxel GAN Average absolute  Capable of learning  Requires paired data and
model GAN (2D+3D) grid and difference complex shapes which can be difficult to
mesh obtain
FaceVAE Image (2D 3D face VAE AVAR and loU Fast training and Model was only trained
Fface) mesh good for face meshes  on geometries with 300
or fewer vertices and
which is a small subset of
the full dataset
Voxel-based Point cloud  Voxel Autoencoder  loU and chamfer  Captures fine details Memory-intensive, high
reconstruction grid distance of structures computational cost
3D-VAE- Signed SDF  Meshand VAE+GAN  Chamfer distance  Produces high-  Training is complex and
SDFRaGAN SDF (hybrid) and SDF loss quality mesh and stability issues in training
surface details GANs

All the generative models examined utilize deep learning architectures, such as GANs, VAEs to
synthesize 3D structures from various input data types. Despite their diverse output formats (voxel grids,
meshes, and signed distance fields), they share a common goal of reconstructing or generating 3D shapes.
However, the computational demands of these models are often substantial due to the complexity of processing
high-dimensional 3D data.

In terms of input types, models like 3DGAN and conditional GAN rely primarily on 2D images, while
Voxel-based reconstruction uses point cloud data, paired 3D Model GAN requires paired 2D-3D data, and 3D-
VAE-SDFRaGAN utilizes SDF. Output formats vary, with SDGAN and voxel-based reconstruction generating
voxel grids, whereas 3D-VAE-SDFRaGAN, and FaceVAE produce meshes or other structured polygonal
representations. FaceVAE, in particular, generates 3D geometric data directly from face-based (polygonal)
structures, focusing on polygon geometry, and is designed for applications where direct 3D geometry
manipulation is critical. Architectural complexity is higher in hybrid models like 3D-VAE-SDFRaGAN, which
combine features of VAEs and GANs, while simpler autoencoder architectures are used in FaceVAE and voxel-
based reconstruction. While VAE-based models like FaceVAE are more stable and simpler to train, GAN-
based models like 3DGAN and conditional GAN have more significant training difficulties due to problems
like mode collapse and balancing the generator and discriminator. Because hybrid models combine several
architectures and loss functions, they are the most difficult to train. In terms of applications, 3DGAN and
conditional GAN provide greater flexibility for more general domains like object reconstruction and form
production, whereas FaceVAE is focused on producing 3D geometric data utilizing polygon structures.
Because it can capture precise features, voxel-based reconstruction is very helpful in fields that require
precision.

6. LIMITATIONS, CHALLENGES, AND FUTURE WORK
6.1. 3DGAN

The 3D-GAN framework has a number of drawbacks, such as the inability to produce high-resolution
3D things because to the quick rise in computing complexity with increasing dimensions and the production
of objects with structural irregularities like holes and fragments. Because the discriminator learns more quickly
than the generator, training is also difficult and calls for adaptive learning methodologies. Furthermore, the
voxel-based method is better suited for basic item categories because it can't handle complex geometries with
fine-grained features.
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In order to preserve computational feasibility while enhancing object detail, future 3D-GAN research
should concentrate on improving resolution and detail using multi-resolution techniques. Enhancing training
stability could involve techniques such as curriculum learning or progressive GAN growth to balance generator
and discriminator learning. Integrating mesh and point cloud representations would capture more fine-grained
details and expand the model’s applicability. Finally, improving single-image 2D to 3D reconstructions by
incorporating multiple views or depth maps could significantly boost reconstruction accuracy.

6.2. Paired 3D model generation with conditional generative adversarial networks

The paper on paired 3D model generation using CGANs presents several limitations and gaps. One
of the primary limitations is that standard CGANSs generate different objects even when only the condition
value (e.g., rotation) is changed, failing to create the same object across different conditions. The research
addresses this by introducing a new training step, but the method requires merging samples, which is domain-
specific and might not generalize well to all applications. Additionally, the process relies on voxel-based
representations, which may limit the model's ability to generate high-resolution 3D objects due to voxel grid
constraints. Another gap is that the research only explores 3D objects with a few fixed rotations (2 or 4), and
extending the model to handle more conditions and larger object classes is left as future work.

The research highlights several challenges, particularly the high computational costs and memory
demands of 3D convolutional networks compared to 2D networks. These limitations prevent the use of higher
resolution models, which would significantly improve the quality of the generated 3D models. Additionally,
while the method shows promise in generating diverse and realistic 3D models based on class labels and
reconstructing models from images, the resolution and speed remain constrained by available computational
resources. Future work will focus on adapting super-resolution techniques from the 2D image domain to 3D
models, with the goal of generating high-resolution 3D models efficiently.

6.3. FaceVAE

The unresolved challenges in the FaceVAE method include difficulties in handling unstructured
geometric data, where transforming such data into a structured format remains complex and inefficient. Sparse
matrix representations (AF and AV) lead to computational inefficiencies, particularly with large geometric
models, and the method also suffers from overfitting due to limited training data. Additionally, reconstruction
of 3D geometries from adjacency and feature matrices is prone to errors, sometimes generating non-existent
faces, which reduces the overall model fidelity. Lastly, the omission of normal vectors, texture UV, and other
detailed surface features limits the practical applicability of the method, as the generated models lack critical
surface details for industrial use.

Future research on the FaceVAE method should focus on improving matrix structuring efficiency,
potentially using hierarchical techniques like octrees to dynamically adjust matrix sizes based on geometric
complexity. Scaling the model to handle larger geometries, along with better data compression techniques,
could address overfitting and improve generalization.

6.4. Voxel-based 3D object reconstruction from single 2D image using variational autoencoders

A number of significant drawbacks and difficulties are highlighted by the work on voxel-based 3D
object reconstruction using VAEs, especially when considering dataset dependence, model complexity, and
processing demands. When applied to diverse or unexplored data, the existing models, which were mostly
tested on the ShapeNet dataset, show low robustness due to poor cross-dataset generalization. This limits the
model's use in situations where there is a lot of data unpredictability. Additionally, the simplicity of
autoencoder and VAE designs restricts the model's capacity to capture fine features, which becomes crucial
when working with more complicated 3D structures, even though it has advantages like quicker training and
lower computing cost.

The computational complexity of training 3D reconstruction models is still a major challenge,
especially when using voxel-based techniques. Scaling output resolution requires significant processing
resources, even with efforts to simplify the design. Additionally, the model has trouble reconstructing
extremely complicated or irregular geometries; it does well with simpler items like chairs and vehicles but
struggles to produce fine-grained details from a single 2D input image.

The authors suggest a number of ways to improve future research. In order to create a more resilient
framework that can manage novel and varied data, it is crucial to improve the model's generalization skills
across various datasets. Furthermore, they propose adding color and texture data to the reconstructions, which
would greatly improve the models' realism and usefulness. More complex designs and training techniques
might be required, nevertheless. Improving resolution is another crucial topic that needs more investigation.
The reconstructed objects' smoothness and intricacy are constrained by the current voxel grid resolution of 323
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voxels. While maximizing computational efficiency, investigating higher-resolution voxel grids or other
representations like point clouds, meshes, or implicit surfaces may provide more detail.

6.5. 3D Shape generation via variational autoencoder with signed distance function relativistic average
generative adversarial network

The study has a number of limitations, especially with regard to the amount of data needed, the amount
of computing power needed, and the sensitivity of the model. The method is less practical for contexts with
limited resources because it requires a significant amount of training data and computer power. Furthermore,
the selection of hyperparameters has a significant impact on the model's performance, necessitating careful
adjustment to get the best outcomes. Its applicability to increasingly complicated 3D constructions is further
limited by the architecture's difficulty in producing complex shapes and geometries, especially those involving
non-uniform scaling or non-rigid deformations.

The authors' recommendations for future research focus on improving the produced 3D models'
accuracy and level of detail by adding more data sources or improving the current network architecture.
Expanding the model's ability to manage increasingly complex shapes is another suggested approach. Lastly,
to improve the model's practical utility in specialized fields, the authors propose adding semantic information
or other types of prior knowledge to improve the model's capacity to produce domain-specific and application-
relevant 3D models.

Table 9 arranges the examined approaches according to their shared drawbacks and difficulties. It
shows that training instability affects multiple GAN-based methods including 3DGAN, Conditional GAN, and
signed distance function GAN, while high computational demands are common across both GAN and VAE-
based approaches.

Table 9. Methods grouped by common limitations and challenges
Common challenges and limitations Methods

Training instability - 3DGAN [30]
- Conditional GAN for paired 3D model generation [38]
- Signed distance function GAN [52]

High computational and memory demands - 3DGAN [30]
- Voxel-based 3D object reconstruction with autoencoder [44]
- Signed distance function GAN [52]

Low-resolution output - 3DGAN [30]
- Voxel-based 3D object reconstruction with VAE [44]
- Paired 3D model generation with CGAN [38]

Generalization issues (cross-dataset validation) - VVoxel-Based 3D object reconstruction with VAE [44]
- Paired 3D model generation with CGAN [38]
- Signed distance function GAN [52]

Handling complex geometries - Paired 3D model generation with CGAN [38]
- Signed distance function GAN [52]

7. RESULTS AND DISCUSSION
7.1. RQ1: What are the key advancements in using GANs and VAEs for 3D model generation?

GAN-based 3D model synthesis has centered on addressing the inherent instability of training. Novel
loss functions have been proposed to enhance training stability, leading to more reliable and consistent model
generation. Additionally, GANs have demonstrated their capacity to generate 3D models with high-quality
geometric details and topological accuracy. This capability, coupled with the ability to control specific object
attributes, makes GANs a promising tool for a diverse range of applications requiring scalable and efficient 3D
model generation.

On the other hand, VAES have made substantial contributions to 3D model generation by introducing
efficient latent representations that balance computational efficiency and model performance. The ability of
VAEs to generate synthetic 3D data has enriched datasets and promoted model diversity. While VAE-based
3D model reconstruction from single 2D images may exhibit certain quality limitations, their capacity to
capture and generate a wide range of 3D shapes from compact latent codes remains a significant advantage.

The key challenges and potential future work associated with each GAN- and VAE-based method are
summarized in Table 10.
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Table 10. Unique challenges and future work for each reviewed method

Method Unigue challenges Future work
3DGAN Difficulty in scaling to higher resolution outputs Improving training stability using advanced
due to computational overhead. techniques like Wasserstein GAN.

Experimenting with regularization methods to
stabilize training.
Enhancing the resolution of 3D models using
super-resolution techniques.

Conditional GAN for Difficulty in generating consistent 3D models Focus on enhancing stability with optimization

paired 3D model  across different rotations or viewpoints. techniques and different loss functions.

generation

Voxel-based 3d object
Reconstruction with
Autoencoder

Struggles with handling complex geometries
when generating paired 3D models.

Challenges in maintaining high-quality output
when generating synthetic 3D models with the
VAE method.

Extend the method to handle more complex
object classes and rotations.
Explore more efficient
generalization approaches.
Improve cross-dataset generalization for real-
world applications.

Incorporate texture and color into 3D models to

cross-dataset

increase realism.
— Enhance the resolution of output models using
super-resolution methods.

Signed distance function  Difficulty in capturing fine details for complex or ~ — Work on incorporating texture and color into 3D
GAN irregular geometries using signed distance models.
functions. — Improve  generalization across  datasets,
potentially using self-supervised learning
techniques.

— Explore techniques to capture finer geometric
details for high-complexity models.

Voxel-based 3D object Challenges in generating realistic synthetic — Improve synthetic model generation with more
reconstruction with VAE ~ models when using random noise in the VAE realistic outputs.
process. — Enhance cross-dataset validation performance.

— Incorporate textures and color to improve the
realism of generated 3D models.

Paired 3D model  Difficulty in generating consistent object pairs - Improve stability in training and handling of
generation with CGAN across varying conditions (e.g., different complex geometries.
rotations).
Poor performance when handling complex — Test more conditions (e.g., higher number of
geometries. rotations).

— Experiment with new optimization techniques to
improve model performance.

7.2. RQ2: What are the key datasets and evaluation metrics used in GAN- and VAE-based 3D model
generation studies, and how do they influence the performance of these models?

A variety of evaluation metrics, including loU, chamfer distance, AAD, and AVAR, have been
extensively utilized in the literature to provide quantitative benchmarks for assessing the accuracy and fidelity
of 3D reconstructions.

The choice of datasets significantly influences the adaptability of these models to new data. Models
trained on more diverse datasets, like ShapeNet, tend to perform better on unseen data, whereas models tested
solely on constrained datasets like ModelNet10 often exhibit dataset-specific overfitting.

7.3. Q3: How does VAE-based models compare to GAN-based models in generating 3D models,
particularly in terms of computational efficiency?

Although GANs excel in generating diverse 3D models, their computational demands often pose
practical limitations. Models such as 3DGAN and CGAN require significant GPU resources and are prone to
training instability. The paired 3D Model GAN, despite its innovative approach to generating consistent object
pairs, incurs substantial memory and computational costs, particularly when dealing with high-resolution voxel
grids or large datasets. These computational demands make GANS less suitable for environments with limited
hardware resources.

In contrast to GANs, VAEs offer a more stable and computationally efficient approach to 3D model
generation. Models such as FaceVAE and Voxel-Based reconstruction with VAE are relatively lightweight
and exhibit faster training times, making them suitable for real-time applications and resource-constrained
environments. However, they often fall short of GANs in terms of output diversity and fine-grained details.
The hybrid 3D-VAE-SDFRaGAN model aims to bridge this gap by combining the efficiency of VAEs with
the high-quality output potential of GANS, but at the cost of increased training complexity and time.
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The use of Al methods in 3D model generation, such as GANs and VAEs, signifies a significant
change from earlier modeling strategies. These methods open up new possibilities for industries like 3D
animation, virtual and AR, and gaming industry by automating difficult modeling jobs. Even with the
encouraging outcomes, scaling these models to handle increasingly complicated forms, enhancing training
stability, and mximizing computational efficiency are still difficult tasks.

The advances reviewed in this paper demonstrate a clear evolutionary trajectory in Al-driven 3D
model generation. Early methods like 3DGAN [30] established the foundational voxel-based approach but
struggled with resolution limitations and training instability. The field has progressively advanced through
conditional architectures [39], [38] that improved control over outputs, to more sophisticated representations
including polygon-based structures [43] and signed distance functions [52]. Current trends indicate a shift from
single-architecture approaches toward hybrid models that combine VAE and GAN strengths, as exemplified
by 3D-VAE-SDFRaGAN's superior chamfer distance score of 0.578 compared to earlier methods. These
advances represent significant progress in addressing fundamental challenges: training stability has improved
through relativistic average loss functions, resolution limitations are being overcome through SDF
representations, and computational efficiency has been enhanced through optimized architectures like
FaceVAE's adjacency matrix approach.

Methods involving GANs (3DGAN, paired 3D model generation with GAN, conditional GAN, and
3D-VAE-SDFRaGAN) employ adversarial training, where a generator network creates 3D models, and a
discriminator network evaluates the realism of these models. The generator aims to fool the discriminator,
resulting in more realistic outputs over time. The adversarial nature of GANs can lead to instability during
training, where the generator and discriminator might not converge properly, requiring careful tuning of the
learning process.

VAEs focus on learning a latent space representation of the input data. The model encodes data into
a latent space and then decodes it back into the original space, aiming to minimize the difference between the
original and reconstructed data. VAEs generally offer more stable training than GANs, as they do not involve
an adversarial setup. The training process minimizes a combination of reconstruction loss and a regularization
term.

The reviewed methods utilized several well-known datasets such as ModelNet, ShapeNet and Ikea for
training, primarily focusing on 3D objects and their corresponding 2D representations. In order to evaluate the
results of proposed methods, authors used varios criterias: i) IOU used in V3DOR-AE and V3DOR-VAE to to
evaluate how well the generated 3D voxel-based models match the ground truth models, ii) chamfer distance
was used in 3D-VAE-SDFRaGAN. It measures the geometric accuracy of the generated 3D shapes by
calculating the distance between points on the surfaces of the generated and actual models, iii) the paired 3D
Model Generation with GAN method uses two specific evaluation criteria: AAD and AVAR. The difference
between models created under various circumstances, such as different rotation degrees, is measured using
AAD. By evaluating the voxel grid consistency among these produced models, on the other hand, AVAR
makes sure that the models stay consistent even when circumstances alter. When combined, these measures
assess the created 3D models' stability and variability, iv) mean mAP is used by the CGAN for 3D Model
Generation and Reconstruction method to assess the accuracy of the models produced for various object
categories. In order to guarantee that the produced models are appropriately categorized and satisfy the desired
design standards, this criterion evaluates how well the models fit into particular classes, such as chairs, tables,
and other categories, v) the FaceVAE technique uses precision and recall as assessment criteria to create 3D
geometric objects using VAEs. The efficiency of learning adjacency matrices and feature information during
the generation process is evaluated using these metrics. Error minimization—more especially, lowering the
quantity of false positives and false negatives in the produced models—is the main goal, and vi) the
effectiveness of the proposed 3D-GAN method was evaluated by several criteria. First, the quality of the
generated 3D objects was analyzed. Second, the ability of the model to generalize data beyond the training set
was tested. The classification accuracy was also assessed on popular 3D object sets, ModelNet10 and
ModelNet40. Finally, the performance of the method in 3D reconstruction from a single image was investigated
using the IKEA dataset.

The comparative analysis reveals distinct advantages for different approaches: GAN-based methods
(3DGAN and CGAN) excel in generating diverse, high-quality 3D models with fine geometric details but
suffer from training instability and high computational costs. VAE-based methods (FaceVAE and voxel-based
reconstruction) offer superior training stability and computational efficiency, making them ideal for real-time
applications, though they produce less detailed outputs. Hybrid approaches like 3D-VAE-SDFRaGAN achieve
the best overall performance (chamfer distance: 0.578) by combining both architectures' strengths, though at
the cost of increased training complexity.
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8. CONCLUSION

This review summarizes the evolution of Al-driven 3D model generation by comparing traditional
modeling methods with modern GAN- and VAE-based approaches. While classical techniques such as
polygonal modeling, NURBS, sculpting, and procedural workflows require significant time and professional
skill, recent Al models demonstrate the potential to automate and accelerate 3D content creation. The reviewed
advances—ranging from 3DGAN and CGAN to FaceVAE, voxel-based reconstruction, and hybrid
architectures—illustrate clear progress in reconstruction quality, geometric representation, training stability,
and computational efficiency.

The implications of these findings show that Al-based models are becoming increasingly relevant for
applications in animation, gaming, VR/AR, industrial design, and simulation, offering scalable tools for
complex shape generation. However, limitations remain: GANs suffer from instability and high computational
costs, VAEs often lack fine detail, hybrid models introduce greater training complexity, and model
performance still depends heavily on dataset characteristics. Addressing these constraints requires improved
cross-domain benchmarks, more robust training pipelines, and methods that enhance stability, controllability,
and generalization. Continued research following these directions will further strengthen the practical use and
reliability of Al-driven 3D model generation.
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