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Despite ongoing challenges with fragmented workflows, latency in device
imports, and the main issue of limitations in object reconstruction
functionality, relying on imperfect extraction networks remains an
impractical solution for scalable object generation. To deal with these
constraints, we proposed an end-to-end pipeline that leverages a re-designed
self-consistency mechanism—aimed at reducing discrimination, along with
the beneficial enhancement from level-set projection and gradient-surface
orthogonality. In addition, our approach designs dynamic 3D object creation
with minimal manual effort by unifying surface topology and optimizing
data loading, enabling a streamlined reconstruction process and more
flexible object projection. Our method supports rapid, resource-efficient
mesh  reconstruction and consistently demonstrates performance
improvements across multiple instance benchmarks, covering virtual
projection tasks. Improvements in mesh topology reconstruction, as
measured by the L1 Chamfer distance (CD) metric, are consistently higher,
while the system also achieves significant transmission speedups—up to
56.5%x—near-instant importing—along with lowering latency in practical
rendering on virtual reality (VR) devices. This result highlights that refining
mesh binding improves re-creation fidelity. Our approach to scalability leads
to faster user engagement and allows automated deployment without
requiring human intervention during importing.
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1. INTRODUCTION

Virtual-physical space and digital twins (DTs) have grown continuously and expeditiously with
applications across intelligent spaces, smart appliances, and intelligent commerce [1]-[3]. Many DT concepts
draw from the industrial internet of things (loT), focusing on creating advanced simulation models that use
real-time data streams to enhance performance [4].

During the past few years, 3D modeling of tangible things has been a challenging task with uses in
computational graphics, gaming, virtual reality (VR), augmented reality (AR), and commercial employment
[5]. Usually, 3D parametric representations were created manually using laborious and costly methods such
as scanning for 3D models or computer-aided design (CAD) modeling [6]. Implicit sparse point
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representations (point clouds) are typically used for building models, with programs creating apparel
structures from this data [7]. Public online repositories also provide models of real-world apparel. However,
the effortless and flawless 2D-to-3D conversion continues to be a race [8].

Computer-assisted learning, such as deep learning, has emerged as a computational tool for
generating accurate 3D models from images or texts, offering the potential to revolutionize how 3D
structures are created by taking matters in 2D detail. Convolutional neural networks (CNNSs), which are
frequently employed for thorough extraction, are specifically designed to adapt to target tasks. In particular,
our emphasis on reconstruction tasks follows this study. For instance, the multi-view stereo (MVS) [9]
enables the prediction of depth maps from a single image for CNNs, while refining the estimations to create
complete 3D models. This approach has led to significant advancements in the precision and completeness of
generated 3D models [10]. In contrast, they proposed viable proof-of-concept approach when applied to
extraction via neural nets.

With the advancement of CNNSs, surface reconstruction from 3D point clouds is essential for fields
like 3D vision, robotics, and graphics, bridging raw sensor data and editable surfaces [11]. While unsigned
distance functions (UDFs) [12]-[14] are used for surface reconstruction, their effectiveness is limited by the
discontinuous nature of point clouds, hindering smooth distance field generation, even with large-scale
meshes or ground truth values. Consequently, UDF techniques often fail to extract surfaces directly. In the
practice of current states and study problems, several internal and external factors influence the use of
computation to reconstruct and map the virtual world. Key considerations include whether the granularity of
generated data should be evaluated across multiple regenerative models. Next is the smoothness of data
mapping, such as reducing reconstruction and projection time [15], seamless automatic projection [16], or
even the appeal of the user experience, like gamification [17], to entice people to drive their lives through
game-like playing. All of which are crucial for effective facilitation.

However, the previous and existing studies proposed principally theoretical computational
perspectives to build higher-dimensional or smoothly reconstructive entities. Some studies have actively
applied practical computation to real-world use cases. Consequently, most studies are still stuck on utlizing
robust computation, taking much time in running and inference, and relying on manual intervention in some
processes. This study looks at reducing many multi-resource consumption usage in practice, such as shifting
from top-down to applying on-edge and/or on-device computing and reliance on human-based management.

Therefore, our study proposes extending 2D-to-3D generation for multiple scenarios to address
these problems. Our approach aims to adapt simple low-dimensional instances, like 2D objects, sourced from
everyday life, to reconstruct them into higher-dimensional shapes seamlessly, that is, 3D objects, and
instantly map them into a cyber space, without human intervention. This further leads to adjusting the
decisions, like playing games, through VR glasses. Empowering user-generated content (UGC) and
generating items from any mobile device to create personalized scenes in virtual space adds both direct and
indirect value to the cyber world, as well as inspires individuals to engage in these spaces as they would in
the physical world, to overcome existing limitations.

To clarity, this article is arranged as follows: section 2 reviews recent studies on virtual-physical
spaces and deep generative models. Section 3 presents our method, while section 4 outlines the experimental
results, including the reconstruction and visualization phases, and comparative benchmarking. Finally,
section 5 discusses our conclusions, limitations, and leads to future research directions.

2. RELATED WORK

Beginning with the overview of digitalization, numerous studies have highlighted the importance of
DTs in human existence [18], [19]. For instance, healthcare DTs use machine learning to aid doctors with
medical recommendations and minimally invasive procedures. In smart home advancement, DT study
enables collaboration with mobile assistive robots to develop smart applicant systems [20]. In smart
agriculture, these technologies lead to cyber-physical systems (CPS), helping farmers optimize resource and
equipment usage [21].

Metaverse and DTs research provides a framework for this cultural heritage metaverse, highlighting
crucial elements and describing the mapping between actual and cyber cultural heritage worlds. The majority
of academics concentrated on the emerging trend of Metaverse, which is a digital environment [22], [23].
Some studies [24], [25] provide a three-layer structure that connects the physical world to virtual space
through user interaction. It also investigates the security and privacy concerns associated with employing
DTs in the Metaverse. Some discussed digitization and the influence of DTs on the expansion of progressive
physical-intelligent cities, alongside the key materials and fundamental technologies of DT-supported smart
communities. Urban building was organized into four steps: vision first, IoT perception, application update,
and simulation. An approach [26] for designing and implementing DTs for equipment combat damage testing
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was also developed. This development was important for furthering DT combat emergence and

validation [27].

A study explored key aspects of digital reality with 3D parametric modeling and graphic designing,
where visual realism can impact real-time interaction [28]. It outlined the VR development process, modern
3D modeling, and texture painting techniques, while also focusing on approaches to enhance interaction
speed [29]. Also, AR was discussed and shown in applications using 3D and 4D modeling, with beneficial
graphical applications [30]. Historical image textures were applied to add the fourth dimension, namely time
duration, to contemporary 3D models. Subsequently, homogenizing the models in graphic software and
exporting them into a graphic-displaying space to create the reference surface led to the formed diagram that
outlines the required features and functionalities [31].

A recent study focused on 3D reconstruction from implicit sparse points [32]. Implicit-based
generative networks (a.k.a. neural implicit function) were built to identify vector-field distance function,
handling and calculating both sign values from the point of the nearest measurement points, or occupancies,
before using the marching cubes algorithm to obtain a massive mesh topology of a continuous isometric
surface from an independent scalar field.

A previous technique used an encoder or an optimization to incorporate the shape in a global latent
code, which was afterwards regenerated using a decoder [33]. Some techniques advocate employing more
latent codes to record local shape priors, resulting in more exact geometry [34]. The sparse point cloud is first
partitioned into uniform grids or native patches, leading to a neural-based model that extracts latent coding
for each grid/patch. Further, [35]-[37] presented that the signed function made a more detailed map of the
creatable floor plan. Millane et al. [38] utilized graphic processing to accelerate the localization map further.
Some current studies [39], [40] have described agnostic learning to produce signed distance fields (SDF)
while employing properly designed network initialization, gradient restrictions, or geometrical regularization
[41]. Neural-pull [42] produced a SDF by creating adjacent rooms on their surface. While study [43]
depended on a parameterized surface reconstruction technique, it was hard to form a higher-dimensional
shape of stuff. Although one of the studies tried to produce SDFs, it was unable to reconstruct complex
structures with open or multi-layer surfaces. All these utilized an implicit generative function [44] to prepare
the implicit surface to generate explicit 3D instances easily afterwards.

On the other hand, UDF can construct surfaces directly from gradients. In this period, unsigned
distance fields (UDFs) also expanded regularization, such as neural vector fields (NVF) [45],
consistency-aware distance [46] (CAP-UDF), learning to anchor (anchor-UDF) [47], and fast meshing to
make 3D surfaces [48] (MeshUDF). Most recently, level-set UDF [49] has been proposed using the
technique of level-set surface projection, such as illustrating in UDFs, mapping points to the nearest surface
using gradient estimation and projection. The projection increases computational complexity. However,
leveraging level-set projection gradients can enhance mesh quality, making them a promising approach.

Including the perspective of human-computer interaction, many studies have advanced where they
are being integrated with real-world applications for illustration and interaction, for example, computational
sensing on 3D-MR systems [50], reconstruction specifically for projecting onto cyber worlds [51], and even
hand-sculpting 3D objects for studying real cyber environments [52], [53]. Some studies have worked on
applying many computational intelligence variations through various network topologies [54]. However, one
missing thing is the motivation for accessibility and automatic creation without human intervention.

In summary, most of the previous studies focus on the utilization of high computational usage for
only a single constructive task, namely either point-cloud or full-mesh generation only, even though a study
has established an end-to-end pipeline for full-form mesh construction, but they always face a
high-computation burden. Likewise, the part of applying edge environment like projecting, most of them still
meet limitations of several usage, and they also depend on requiring manual management. Our approach is
proposed to tackle all the above current states. Our approach is a fully computational pipeline with lower
resource usage to support an edge-computation mechanism. Our technique, following the challenge of UDF
techniques, especially the adoption into edge world applications, extends the learning function of an UDF
from an implicit 3D generative function, such as sparse point clouds, to create new 3D continuous surfaces.
The import was made seamlessly by mapping 3D objects into virtual space. We also summarize the recent
studies and our proposed framework in Table 1. Thereby, our proposed highlights have been presented as
follows:

— The proposed framework, which is self-controversial to learn different isosurfaces of self, to address our
problem setting, becomes an entrirely transformable function from the captured low-dimensional
physical- or virtual-space instances to the existing-captured shape-like explicit higher-dimensional
instances.

— Besides, a given exemplary scenario has been showcased to prove two manifolds: less-time consumption
and reliable performance for end-to-end regeneration through our aggregated near-device computation
and our instantly transformative framework.
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— Several actual implementations have been conducted the garment, object, and scene tasks have been used
to conduct comparisons from various perspectives.

Table 1. The comparative summary of recent studies and ours

End-to-end 2D-t0-3D transformation a Compatibility with edge
Studies Learning visualization into virtual environments environments
strategies 2D-to0-3D surface 3D seamless texturing Reconstructive time
) L Edge role .
extraction and visualization consumption
Implicit 3D S A - - High 1
generation [44] (2D images to
implicit 3D points)
Explicit 3D S A
generation: (Except (Implicit-to-explicit
SDF [32]-[42], [49]: 1IS) 3D surface)
UDF [45]-[49]
3D-VR/AR/MR - A A A
[50]-[53] (Hand sculpting) (Visualization only) (Edge equipment
used for projection
only)
Doungtap et al. Implicit & v A
[55] explicit 3D: (Discrete
all S transformation)
Ours Implicit N v v Lower |
3D: S (Seamless (Edge machines
Explicit transformation) used for training &
3D: SS inference)

Note: The learning strategies of the reconstruction model function are denoted by supervised (S), implicit-supervised (IS), and
self-supervised (SS). Including the symbols of -, A, V' represent none, part of, and include all, respectively.

3. OUR APPROACH

In this section, we are describing our approach in three parts. Firstly, the proposed framework,
which includes the higher dimension point cloud implicit function, a less-time explicit 3D regenerative
function, and a transformation task into virtual space, is concluded as an all-in-one approach. Next, we delve
into our modified approach of implicit regenerative function based on UDFs that are further compatible with
on-edge real-time instance generation instantly. Lastly, transformation and visualization techniques are used
to handle seamless physical-to-cyber mapping continuously.

3.1. Fully transformative function into computing infrastructure

Recent computation intelligence is truly based on deep learning that focuses on neural network
development, particularly in virtual-physical space applications, like segmentation [56] and object detection
[57]. With the rise of transitional learning, including transfer learning and deep generative modeling [58],
research in this field continues to expand. Generative models like GANs and VAEs learn the training data
distribution for image generation to generate new, similar samples. An exciting approach is the UDF,
represented as voxel grids or 3D textures storing distance values. UDFs, widely used in graphics and
geometric modeling, enable shape representation and object rendering. Thus, generative models should learn
UDF distributions to generate novel samples.

Earlier, we proposed the collaboration of machine-to-machine 2D-to-3D translation from the
large-dedicated server with the storage and distributed computing, processing client data, as mentioned in
Figure 1(a), to illustrate this infrastructure. With this current state, it was evident that a massive transmission
cost occurred for inbound-outbound offloading. The most difficult challenge is developing new reconstructed
samples, prioritizing computational efficiency over lightness.

Thus, our proposed approach in Figure 1(b) is presented by an enhanced framework that completely
separates storage in the cloud from computing at the edge. This relies on discrete data transfer for storage
outside the sample computation time from on-edge to inter-mobile on-device. Our combined techniques
become our fully transformative function. This method improves overall quality and reliability by ensuring
the final output is based on a richer, more detailed dataset, which is critical for high-fidelity reconstructions.
Shifting from a server-centric to an edge service-to-device transmission model provides several key
advantages that are particularly impactful for applications requiring real-time performance. Including
obviously reducing the transport time and the regenerative sampling time can be significantly reduced.
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Figure 1. Comparison of framework architectures; (a) previous cloud computing framework and (b) proposed
at-the-edge inter-mobile computing framework

3.2. Sparse data points-to-fully explicit instances: self-consistency-based unsigned distance fields

Initially, we still relied on the beneficial implicit function of 2D cyber- or physical-space capture
images from various circumstances, and all these are transformable into point cloud coordination-based
samples through the pixel-rearranged implicit function [44]. Besides, the highlight this effectively fastens and
rivets many points formed as a hint cloud, reconstructing it as a higher-dimensional point cloud object (in this
study we pin at three-dimension shape at most) for afterward processing.

Previously, many studies relied heavily on pinning, anchoring, or field aids, leading to prolonged
training times and inefficient resource usage. UDF is a scalar field where each point in space stores the
minimum distance to a surface, but without distinguishing between the inside and outside of the object. Our
previous employment, through the application of CAP-UDF approach [46], enhances model learning and
object reconstruction by directly leveraging the gradient field with UDFs-based sparse point rearrangement
and consistency-realized gradient fields Vf(-). Additionally, continuing from earlier, the surface projection
with level-set illustration [49] also works with UDFs, moving a point in space onto the closest surface
defined by the zero-level set of the distance field. This is typically done by finding the closest surface,
estimating the gradient, and projecting their computed gradient onto the surface, respectively; nevertheless,
the two mentioned UDFs, these higher performances come at the cost of increased computational complexity
and resource consumption. Fortunately, we still foresee that level-set projection gradient utilizes the
advantage of both gradient computation and projection to create a finer and more comprehensive mesh
surface, so we see that it can be utilized.

Technically, the estimation of cost function is estimated by the E, g~@, () formulation. This
estimation is implemented into the pulling enhancement for learning unsigned distances from raw point
clouds without ground truth. Given a raw point cloud in real-number-based 3D space P={p € R3}" with all of
N points, samples of a set of queries in real-number-based 3D space Q={q € R} surrounding the point
clouds P. The f function realizes the unsigned distances between queries Q and the shape described by
original point clouds P. The goal is to complete full-form mesh objects with indiscriminate typology. In
processing, given a query input gi, resurfacing relocates it against the gradient direction Vf(q;) at g,
Eventually, the objective loss proceeds the risk minimization between predicted moved queries O and the raw
point cloud P, becoming the cost function through Chamfer distance (CD) function as formulated in (1):

beo = B (Siew iy = al, + Ziewriplles =l ) &
where 3 = 4~ /(@0 (iqirs)

Lastly, the Level-Set UDFs technique not only mitigates the issues of fragmentation and
discontinuity but also improves the overall performance in various applications, such as point-based cloud
upsampling and normal estimation. By projecting non-zero level sets onto the zero-level set with gradient
constraints, they align gradients and correct errors, enhancing continuity. Through the perspective of multiple
regularization:

a. Projection loss aims to improve feature representation by enforcing orthogonality among class features,
enhancing inter-class separation and intra-class clustering. This loss is particularly effective in scenarios
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with adversarial attacks and label noise, demonstrating robustness across diverse tasks like image
recognition and domain generalization, as indicated in (2).

b. Gradient-surface orthogonal loss focuses on aligning gradients across different level sets in UDFs, which
helps achieve smoother and more continuous representations of surfaces. Utilizing gradient constraints
corrects errors in unsigned distances, improving surface reconstruction outcomes.

c. Surface regularize loss penalizes irregularities in surface representations, promoting smoother transitions
and continuity in learned models. This aligns with the goals of the other two losses, enhancing overall
model performance in tasks involving complex geometries. Technically, all of them were adjusted using
control weights to regulate the effect of resurface gradient activation.

o ! W (1 @@
Lproj = Epar-i0) <Zl exp(A1f (@)D <1 [Fraotsioron

+ Z?If(m)l)) O]

Where the function leads to the gradient at queries Q and the gradient at their projections O, both moving
towards the zero-level set. The exponential term determines the optimizing velocity queries Q and gradients
VI(Q) closer to the zero-level set via 4 hyper-parameter. Nonetheless, the projection with the queries and
gradients is finally degraded due to the unsigned distance limitation; thus, the behind-the-scenes term,
namely, the consistency of correcting the zero-level set. Consistency constraint distances are added to assist
in generalizing and shaping distance values.

)t(q;pi)
L =F 5 M(l_l Vi (g:)-t(qipi
ortn = Epay~2.0) Zj 177 @iz Ie(aipyll2

) ©)

Where the orthogonal surface cost is shaped by a similar projection loss but changed to an orthogonal style.
Instead of the gradient trajectories, the variable is replaced with the vectorized direction z(-, -). This
vectorized optimization uses query ¢i and raw point p; to account for inconsistencies in the learning function
between the closest point p; and the closest predicted point gi.

Lsurf = Eq~Q Zﬁw(f(q])) (4)

Where the surface regularization depends on the computation of exact point g, extracted as several field
surfaces and averaged on all samples to give a much easier and smoother shaping surface, on the other hand,
utilizing exact points to assist is analogous to calculating the uncertainty on certainty. We can conclude that it
is due to supervised certainty. Straightforwardly, the relationship of valuable ground truth of existing point
clouds present in this regularization also relies on weekly partial supervision to facilitate the smoothing of
this gradient-assisted surface enhancement.

Likewise, for an overview, while these losses show promise, we still envision the challenge in the
current state of them that the reliance on specific loss functions may limit flexibility in adapting to various
datasets or tasks, suggesting a need for further exploration of hybrid approaches that combine multiple loss
strategies for optimal performance. To address this, we proposed the modification of both the explicit
function learning and implicit regularization to enhance to more robust and accurate reconstruction of the
higher-dimension instances that are composed of two novel manifolds as follows: Firstly, the cost refinement
using reliable unsigned distance surface leads to determining the cost distance between the strong and weak
consistency; nonetheless, due to the direct distance minimization problem, which includes the problem of
concentration, predicting an unsigned distance surface is quite uncertain.

To tackle this issue, we consider that cost optimization of consistently learned unsigned distance
textures is a potential approach to understand and improve itself following the protocol of self-supervision
tasks. The weak- and strong-consistency learning approach minimizes the bias of the representations to make
the unsigned distance measure closer to each other as formulated in (5) and (6):

we =B wey + (1 =B) - f(q") ()

bue = Eegnaor-ig oy 22 (| (45109 (2)) £ (a7 105 (2)) +£])) ©

Where the present momentum of w; is used to reweight the trading-off between the previous predicted
unsigned distance w1 and the present unsigned distance g" to regulate the change of the distance field, which
is gradually preserved from earlier. The self-pairwise squared distance loss || . ||2 is utilized to measure the
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distance between two objects that are different from each other. Figuring out the logarithm of retaining
weight log(1/w) provides a rational approach to the required distances, facing mildly and strongly unsigned
distance outputs extracted by an explicit generative function.

Once, we observed that the typical neural network in use for translating from three
multi-coordinated points to the moved samples was still questionable. In the existing method,
misunderstandings and mistakes cause continuous ripples when generating polygon meshes. We therefore
have a minor modified surface extraction on the way, that is, the use of a one-dimensional depth-wise
separable convolution block is more realizable from three-axis coordinate clouds in UDFs becomes a
confident moved query. All these enhanced functions are visualized in Figure 2.
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Figure 2. Our enhanced resurfacing function with strong-weak uniformity added to the regularization of the
level-set projection to enable self-supervision-based resurfacing functionality

The aggregated function in topology mesh optimization is finalized as the base learning of
inter-mesh distance, level-set projection, vector-to-surface orthogonality, and our proposed self-discriminable
consistency, combined as formulated in (7), each of which regularization term includes the control weights to
adjust the influence of dealing with gradient direction in gradient contour space from typical Chamfer-L1
optimization.

minminlL i,
minminlagg (ps, s, Gw; &)

= Lep(Ps, 455 1,)) + Tp proj i(as:Vf(qs)) (7)
+ToLoren(qs; V1 (4s)) + TsLself(QS' w3 V(). Vf(qw))

3.3. Auto-transformation topology and objective function

Dynamic loading of assets from clouds into VR systems enhances scalability and maintains
flexibility in content delivery. The VR object application employs dynamic asset loading from cloud-based
storage, allowing users to access and interact with a wide variety of garments without the need to
pre-package assets within the application. This architecture enables on-demand streaming of models,
textures, and related metadata, thereby reducing the initial application size, improving loading performance,
and facilitating remote updates.

The system is implemented using Unity’s Addressable Asset System, which supports asynchronous
loading of assets via unique identifiers. An object asset prefabs are pre-configured, optimized, and exported
as an addressable bundle. These bundles are then uploaded to a cloud content delivery network (CDN) like
Firebase Storage or Amazon S3. The application dynamically fetches and instantiates the required assets

On-edge 2D-to-3D generative pipeline for seamless instance transformation (Jirayu Petchhan)
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during runtime based on user interactions, avatar configurations, or stylistic preferences. This dynamic
loading process consists of the following steps:

Object models, materials, and animations are labeled and bundled in asset labeling and packaging
using Unity’s Addressable. For cloud deployment, bundles are uploaded to a remote server or CDN with
public or secure access endpoints. While a runtime request, when a user selects an item, such as a jacket or
pair of shoes, the system invokes a cloud request using the asset’s unique addressable key. Including
asynchronous loading, assets are streamed and instantiated in the scene with appropriate positioning, scaling,
and reconstructed poly-mesh simulation behaviors. Furthermore, caching and reuse, loaded assets are stored
locally in the device cache for future sessions to minimize redundant data transfer.

This approach allows for real-time customization, seasonal content rotation, and personal wardrobe
configuration, all without requiring a full application update. Furthermore, it supports extensibility for UGC
and marketplace features in future iterations. By decoupling asset distribution from application builds,
dynamic cloud loading significantly improves maintainability, performance, and user experience, critical
factors in immersive VR environments where responsiveness and personalization are paramount. We have
summarized all the 3D-mapping topology in Figure 3.
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Figure 3. The mesh topology of wrapping and loading our designed automated instance transformation,
moving into an interaction space

Our system architecture is built around an end-to-end service that combines comprehensive
2D-to-implicit 3D-to-explicit-3D reconstruction V&(-) with our aggregated and minor adjusted functions.
Algorithm 1 describes our approach, which has been treated as two states for the edge server and client sides.
For instance, User U with mobile device B is sent by the 3D captured objects I. It is shifted to edge-side
computers Eg. At a computation event, the proposed transformative pipeline for inter-mobile reconstruction
and interaction functions by first generating a purpose-built, interactive instance from captured data. This
process is initiated by an event, which triggers the Fully_Reconstruction_n_Transformation_Phase. The
algorithm regenerates an implicit 2D-to-3D function to obtain well-learned representations from randomized
captured instances. An explicit 3D function is then used to reconstruct the mesh, with its topology and
learnable representations being optimized from the aggregated data. Thus, in summary, a 3D point cloud is
generated first using the implicit 3D generative function, and then our modified function is used to rebuild
fully-formed 3D regenerative objects.
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Algorithm 1. Proposed transformative pipeline for inter-mobile reconstruction and interaction

Require I: Randomize captured instances
ér: Regenerative implicit 2D-to-3D function with well-learned representations
¢=: Reconstructive explicit 3D function with learnable representations O,epr
&r: Seamless transformative function
B: Physical mobile devices (e.g., smartphone and virtual reality equipment)
Upl | Uy: Physical/virtual space through user interaction perspectives
Eg: Edge dedicated server(s) with fully learned transformative function
Output A purpose-built instance that is interactable in a virtual space
// Mobile side transmits captured sample data to near edges
Eg « (Up ° B) (I)

// Edge server(s) for object transformation purposes
Function Reconstruct (I) do
| // Create from captured data > sparse points = explicit topology objects = importing
| Perform sparse points Ipc = &r(I)
| Optimize reconstructive mesh &g « ¢e(Ipc’ 6O:pr) from aggregated function in (7)
| Perform explicit mesh topology Iz = &g(Ix)
End Function

// Implement the defined function to transform into a virtual space
OnEvent Fully Reconstruction n Transformation Phase do

| Reconstruct Isp.y « Eg(®r O &5 O D7) (Icaptured)

| Procedure projecting over B devices with U interacting Uy « (Up © B) (Isp-v)
End OnEvent

Finally, this reconstructed explicit topology is seamlessly projected onto the user's physical or
virtual space using a transformative function, which leverages a dedicated edge server for object
transformation. The entire procedure facilitates the creation of a fully reconstructed and interactive object
that can be seamlessly experienced across various mobile and VR devices. That is, they are then pushed back
to auto-map and auto-visualize into virtual fields and made interactable with virtual-projection devices B, all
this resulting in a single mainstream pipeline known as the reconstructive and transformative phases.

4. RESULTS

To affirm the feasibility of the proposed approach, we have conducted comprehensive experimental
settings and results as follows: datasets in use, system implementation details, experiments, analysis and
discussion, and real-world scenarios for simulation.

4.1. Datasets

Our verification has been proven using widespread datasets from real-world perspectives and
evaluating mapping into VR hardware. A benchmark dataset was built utilizing automobile examples from
ShapeNet data [12], [59], which contain many objects. Stanford 3D scene data [60] includes several scenarios
scanned in real-world contexts. This includes the apparel data from the Deep Fashion3D [61] dataset, which
consists of 2,078 object models generated from authentic outfits, grouped into 10 classes, and 563 garment
samples. We have illustrated all datasets in Figure 4.

D Models

1YL XN
ALEIKNEK
LY R

Figure 4. Some captured samples and higher-dimension true-form polygon meshes of scenes from a Stanford
3D scenes dataset (left) and apparel from a Deep Fashion3D dataset (right)

4.2. System implementation details

We have conducted the verification of training and testing through our prepared machines that are
composed of; i) typical-performance hardware: CPU i5-13400F with 32 GB installed physical memory and
GPU Nvidia RTX 4060Ti with 16 GB physical memory and ii) miserable-performance hardware: CPU
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i5-10400 with 16 GB physical memory and GPU Nvidia RTX 2060S with 8 GB dedicated memory, all
served as our bare metal cloud dedicated servers. The software package is installed to our experimental
machine as follows: computing accelerator (CUDA\) version 12.1, deep learning accelerator (cuDNN) version
8.9.7, a machine learning environment including PyTorch version 2.5.1, Torchvision 0.20.1, and Chamferdist
1.0.0 for measuring reconstructed polygon mesh distances.

For the preparation of data and the function of implicit and explicit extraction, a pixel-rearranged
implicit function [44] is implemented to pre-process low-rank sampled data to become high-rank multi-anchor
points of 100-1,000 points. This study is going to compare with the existing studies mentioned in our problem
issues from current states as follows: Anchor-UDF [47], CAP-UDF [46], LevelSet-UDF [49], and
Doungtap et al. [55] clarifying that all it is conducted under the protocol of tasks of supervision and semi-
supervision. In contrast, our function stands firmly for the self-supervision task with our proposed strong-weak
consistency unsigned distance measures. In this run, we adopt the strong implicit objects for up to 1,000 points
per square meter extracting, along with the weak implicit object, around 100/500 points per square meter.

For hyper-parameter setting, we follow the same setting for fairness. The Adam has an initial learning
rate of 1073, a cosine learning rate schedule, and 1,000 warm-up steps. The complete batch running of object
and scene reconstruction is conducted in up to 40,000 and 100,000 iterations. While for the surface extraction
network, all existing studies use traditional neural networks with 8 layers with skip residual input at the 4-th
layer, each of which is composed of 256 neurons. Conversely, our approach adopts the 1D-convolutional
layer, formed as a 1D-depthwise separable convolution layer composed of 6 layers and 128 or 256 neurons
with twice skipping residual input at the 2-nd and 5-th layers instead. During hyper-parameter optimization,
we fine-tuned the regularization control weights—specifically, the projection, orthogonality, and
self-consistency weights. For object-level testing, the optimal values are determined to be 1073, 10, and 1072,
respectively, while for scene-level testing, the corresponding values are found to be 2x1073, 1072, and 10",

Afterwards, to evaluate metrics, we use the CD metrics, which measures the metrics under the main
optimization of the 3D-reconstructed protocol. The CD measures the closest point in one set to the other,
summing squared distances. Both L1 and L2 normalization distances and projection loss are used for
evaluation. Traditional metrics, such as the F-score with thresholds of 0.005 and 0.01, are also considered.
Besides, we apply the F-score to measure the categorization performance of object classes.

For the provided topology details, establishing a network for our 2D-to-3D reconstructive object
pipeline requires a strategic, multi-stage procedure to ensure low latency and high data throughput. Initially,
the user's mobile device acts as a client, capturing 2D images and transmitting this raw data to a nearby edge
computer (RTX 2060S) over a low-latency wireless network, such as Wi-Fi 6, being the preferred standard
due to its high throughput and low latency. This edge device then performs the initial data processing,
converting the images into a pre-processed format like a sparse point cloud. This partially processed data is
then securely sent to a powerful central server over a high-bandwidth connection, utilizing an efficient binary
protocol like gRPC to minimize transmission overhead. With its powerful generative model, the server
reconstructs the final, high-fidelity 3D model, which is stored locally. Finally, upon request, this 3D model is
streamed or transmitted from the edge server to the user's VR/AR projection device, ensuring a seamless and
immersive interactive experience. A dedicated wireless VR/AR streaming protocol may be used. The total
bandwidth required for streaming a 3D model can vary widely, but a sustained transfer rate of at least
150-200 Mbps is a reasonable target to ensure a smooth, lag-free experience. For our generative pipeline, we
further adopt the exemplary materials from https://github.com/junshengzhou/LevelSetUDF.

4.3. Experiments

Table 2 presents a comparative evaluation of our method against several state-of-the-art approaches
on representative samples from the ShapeNet dataset, specifically a Garment (Dress) and a Vehicle (Truck),
each trained over 40Kk iterations. We report four key metrics: Chamfer-L1 distance (), Consistency (|), and
F-score at thresholds 0.005 (1) and 0.01 (1), where lower Chamfer and consistency errors and higher F-scores
indicate superior performance.

For the Garment (Dress) sample, our method achieves a Chamfer-L1 distance of 0.001580, which is
comparable to top-performing methods such as LevelSet-UDF (0.001516) and CAP-UDF (0.001536), while
outperforming all baselines in terms of consistency, achieving a significantly lower error of 5.075x107°—
close to the ground truth (3.001x107°) and substantially better than others by an order of magnitude. Our
approach also yields the highest F-score at the strict 0.005 threshold (0.970), surpassing all compared
methods. As visualized in Figures 5(a) to (d), the shoulder section of a given dress deteriorates using existing
methods, unless we can reduce the computation nodes, while achieving better reconstructed meshes through
the global objects.
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Table 2. Evaluation of metrics over exemplary dress and vehicle runs under 40Kk iterations (sampling of

ShapeNet data)
Garment (dress sample) Vehicle (truck sample)
Studies Chamfer-  Consistency F-score- F-score- Chamfer-  Consistency F-score- F-score-

L1} ! 0.005 1 0.011 L1} ! 0.005 1 0.011
Ground 0.001212 3.001x10¢ 0.9897 0.999 0.004502 7.221x10° 0.9495 0.999
truth
Implicitly 0.005122 4.209x10* 0.854 0.912 0.00601 13.101x10° 0.654 0.899
[44]
Anchor- 0.001734 1.211x10* 0.922 0.954 0.005277  11.792x10° 0.85 0.902
UDF [47]
CAP-UDF 0.001536 1.060x10* 0.94 0.995 0.005014 9.811x10° 0.8405 0.991
[46]
Doungtap 0.001534 1.034x10* 0.949 0.996 0.005001 9.798x10 0.8516 0.993
et al. [55]
LevelSet- 0.001516 6.296x10° 0.957 0.997 0.004986 8.637x10° 0.9193 0.997
UDF [49]
Ours 0.00158 5.075x10¢ 0.97 0.997 0.004919 8.496x10° 0.9229 0.998

Note: 1 and | stand for the highest one and the lowest one, those of which are the best capability that should be performed.

1l
1]

Figure 5. Heatmap and explicit dresses illustrated by; (a) CAP-UDF, (b) LevelSet-UDF, (c) ours, and (d) an
actual poly-mesh dress from left to right columns, respectively, sampling on the ShapeNet dataset

On the Vehicle (Truck) sample, our method again delivers strong results, with the lowest
Chamfer-L1 error (0.004919), a low consistency error (8.496x107%), and the highest F-scores at both
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thresholds (0.9229 at 0.005 and 0.9985 at 0.01). Compared to the same existing approaches, our method
demonstrates a consistent advantage in reconstructive accuracy and surface completeness across both object
categories. Including the illustration in Figures 6(a) to (d), which shows that the platform for stepping onto
the truck is mostly away from the existing method, our method gets even more detailed in its reconstruction.
These results validate the effectiveness of our approach in producing high-fidelity and topologically
consistent 3D reconstructions, with notable improvements especially in strict evaluation regimes.

P 5

@) (b) © (d)

Figure 6. Heatmap and explicit trucks illustrated by; (a) CAP-UDF, (b) LevelSet-UDF, (c) ours, and (d) an
actual poly-mesh vehicle from left to right columns, respectively, sampling on ShapeNet dataset

To assess the scalability and robustness of our method in complex environments, we conducted
experiments on a wide-area lounge scene sampled from the Stanford 3D dataset. The evaluation was
performed with a dense point distribution of 1,000 points per square meter and trained over 100Kk iterations.
Table 3 reports quantitative comparisons with several state-of-the-art methods using Chamfer-L1,
Chamfer-L2 (x107°), and surface consistency metrics (| denotes better performance).

Table 3. Evaluation over the exemplary specific indoor scene of a lounge scene with 1,000 points per square
meter runs under 100K iterations (sampling of Stanford 3D dataset)

Studies Chamfer-L1 | Chamfer-L2 (10%) |  Consistency |
Ground truth 0.0019 0.1575 0.0005
Implicitly [44] 0.0078 0.8315 0.00031
Anchor-UDF [47] 0.0045 0.5411 0.0002
CAP-UDF [46] 0.0028 0.3254 0.00012
Doungtap et al. [55] 0.0028 0.324 0.00012
LevelSet-UDF [49] 0.0027 0.281 0.0001
Ours 0.0026 0.2587 0.00009

Our method achieves the best overall performance across all metrics. Specifically, it records the
lowest Chamfer-L1 distance of 0.00257 and Chamfer-L2 distance of 0.2587x107, indicating improved
geometric fidelity in capturing detailed spatial structures of the indoor environment. Our approach achieves
the highest consistency with a minimal error of 0.00009, outperforming the previous best (LevelSet-UDF
[49], 0.00010).

Based on a subjective visual assessment of Figures 7(a) to (d), our object reconstructions are better
than the reconstructions in the previous studies for both the overall indoor scene and a specific area, like the
potted plant and the sofa. Our adjustment produces smoother, more complete objects, especially the trunk,
leaves, and the furniture next to it, which are not fused. The reconstructions are less noisy and resemble the
proper reference more closely.

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4713-4731



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4725

Figure 7. Heatmap and explicit scenes illustrated by; (a) CAP-UDF, (b) LevelSet-UDF, (c) ours, and (d) a
true poly-mesh wide scene from left to right columns, respectively, sampling on the Stanford 3D dataset

These results underscore the effectiveness of our method in handling high-density, large-scale
reconstruction tasks with superior accuracy and structural stability. The performance gains, especially in
complex geometry and occlusions typical of indoor scenes, demonstrate the method’s practical applicability
to real-world 3D scanning and scene understanding tasks.

4.4. Analysis and discussion

Self-Consistency Capability: to evaluate the effectiveness of the proposed self-consistency
regularization, we delve into the object-shaped comparison, like mesh-to-mesh distance, utilized by the
L1-distance between predicted outputs and corresponding targets across two different categories: Vehicle
(van) and Garment (Dress). As clearly tabulated in Table 4, incorporating our self-regularization
significantly improves performance, for example, in 1,000 points per square meter, particularly in the
Garment (Dress) category. Without self-regularization, the L1-distance for Vehicle (Van) and Garment
(Dress) is 0.00595 and 0.00917, respectively. With the proposed self-regularization, the L1-distance for
Vehicle (Van) slightly decreases to 0.00586, and Garment (Dress) is substantially reduced to 0.00160. These
results demonstrate that our regularization approach enhances consistency and reduces prediction error,
especially for categories exhibiting higher variability or deformation.

Table 4. Ablation studies and computation complexity with and without further self-regularization

L1-distance (1,000 points/m?) L1-distance (10,000 points/m?)
Techniques Vehicle Garment ~ Computational ~ Vehicle Garment  Computational
(Van) (Dress) usage (GB) (Van) (Dress) usage (GB)
wi/o self-regularization 0.00595 0.00917 3.9~6.8 0.00798  0.01251 6.1~7.8
(ChamferL; + Lproj + Lortn)
w/ proposed self-regularization 0.00586 0.00160 2.1~3.2 0.00670 0.00255 3.6~4.5

(ChamferL1 + Lproi + Lo+ Lself)

Nevertheless, as expected, adding our self-regularization term, Lsr, increases the computational
overhead. For a point cloud density of 1,000 points per square meter, the baseline method (without
self-regularization) required 3.9-6.8 GB of GPU memory. In contrast, the method incorporating Lsei just
consumed 2.1-3.2 GB. This usage represents a moderate decrease in memory usage. Even though it is
primarily attributed to the storage of intermediate data and gradients necessary for calculating the additional
loss term, we still utilize the memory computation more efficiently. This trend is even more pronounced with
higher density point clouds. At 10,000 points per square meter, the memory usage for the baseline method
rose to 6.1-7.8 GB, while our full function required 3.6-4.5 GB. The consistent decrease in memory
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consumption across both density levels confirms that the self-regularization term diminishes a measurable
computational burden to the training process.

Resource Usage and Computational Complexity: Table 5 compares the proposed method with an
existing baseline regarding model size, memory bandwidth, computational complexity, and runtime
efficiency under the surface extraction setting. Our method demonstrates substantial improvements in both
resource efficiency and computational scalability. Specifically, the number of parameters is reduced from
approximately 463.1k to 147.2k, and the bandwidth usage decreases from 1.78 MB to 0.57 MB. Moreover,
our method improves computational complexity from quadratic time, O(n?), in the existing approach to linear
L time, O(L).

Table 5. Model complexity (surface extraction and function perspectives)

Surface extraction setting 40k-iter time batch run (min) |
Approach #Parameters ~ Network bandwidth Complexit Vehicle Garment (Dress)
(x 10%unit) | (MB) | PIeXIY  (van)
Level projection [49] ~463.1 1.78 0o(n? ~18.0 ~23.5
Ours ~147.2 0.57 o) ~13.5 ~12.3
(x1/3.2) (x1/3.1) (x1/1.3) (x1/1.9)

These improvements are reflected in the runtime performance as well. For the Vehicle (Van)
category, batch run time is reduced from approximately 18.0 minutes to 13.5 minutes. For the Garment
(Dress) category, the runtime decreases substantially—from 23.5 minutes to 12.3 minutes. These results
highlight the efficiency and scalability of our approach, making it suitable for real-time or
resource-constrained applications without compromising performance.

Resource Usage from a Practical Deployment Perspective: from conceptual dynamic loading to
further assess the practicality of our method, Table 6 presents a comparative analysis of resource
consumption and processing efficiency in a real-world use case, specifically for the Garment (Dress)
category aspect. A comparison is made between an existing high-performance server-based method and our
proposed approach, which is designed for edge deployment. While the baseline leverages a powerful
dedicated server equipped with typical hardware and achieves a reconstruction time of approximately 12.3
minutes, it incurs a high transmission cost of about 11.3 minutes. It relies on human intervention for
visualization by hand, making it less suitable for scalable or automated deployment.

Table 6. Completed the up-down processing run through the given dress example

Resource Thorough end-to-end pipeline processing time usage (min)
Approach  Topology  Accelerator Recons;rousitlon time Transrzcl)ssstl(l)n time Visualization time cost |  Total |
[55] Server RTX 4060Ti ~12.3 ~11.3 N/A (Depends on time taken by man)
Ours Edge RTX 2060S ~21.2 ~0.2 ~0.1 ~21.5
(x1.7) (x 1/56.5)

In contrast, our method operates effectively on a significantly less powerful edge device with
performance-limited hardware. Despite a longer reconstruction time (up to 21.2 minutes), our approach gives
substantial advantages in downstream efficiency. The transmission cost is drastically reduced to around
0.2 minutes, and the visualization cost is negligible, just 0.1 minutes following the automatic importing
function as designed, leading to a total end-to-end processing time of around 21.5 minutes. This demonstrates
that our method is well-suited for low-bandwidth, edge-level deployment scenarios, offering a favorable
trade-off between computational load and operational autonomy. The transmission cost is evaluated under
typical 100/1000 Gbps bandwidth settings, consistent across both approaches.

Rendering Latency in Practical Use: before assessing runtime performance, we analyzed the
geometric complexity of the generated mesh topologies, as it plays a crucial role in memory efficiency and
rendering speed. In 3D graphics, vertices represent points in space, edges are straight lines connecting pairs
of vertices, and faces (typically triangles) are planar surfaces defined by sets of edges. Together, these
elements define the structure and density of a 3D mesh, with denser topologies often leading to higher
computational and memory demands. As summarized in Table 7, our method produced the most compact
mesh representation, with the fewest vertices (822.03K), edges (1,024.45K), and faces (408.95K), while also
achieving the lowest memory consumption at 57.3 MB. These outputs indicate a more efficient
representation without sacrificing structural integrity.
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Table 7. Memory allocation in processing and visualizing the exemplary lounge scene
Approach  Mesh topology memory usage (MB) | Vertices (x10°) | Edges (x10°) | Faces (a.k.a. triangles) (x10°) |

[46] 57.5 827.62 1,031.52 411.80
[55] 57.9 835.10 1040.36 415.01
[49] 58.0 837.83 1,044.03 416.74
Ours 57.3 822.03 1,024.45 408.95

Following this, we conducted runtime performance testing using the Meta Quest 3 (which includes
Snapdragon XR2 Gen2 processor and 8 GB of memory, rendering budget for 90 FPS and 11 ms at the
default) to evaluate real-time rendering capabilities. As shown in Figure 8, our method attained the highest
estimated frame rate reduced by highly rendering cost, such as topology bandwidth, vertex cost, and triangle
cost for supporting rendering object-reconstructed task, reaching 58.5 FPS, outperforming other approaches
such as the consistent-aware field [46] (58.3 FPS), Doungtap et al. [55] (58.1 FPS), and level-set projection
[49] (58.0 FPS). These results highlight the effectiveness of our mesh optimization strategy in reducing
computational overhead, enabling smoother and more responsive performance in memory-constrained,
real-time environments.

Estimated FPS Based on Memory & Mesh Density
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Figure 8. Estimated FPS calculated between memory usage and topology density run through Meta Quest 3
equipment

Discussion and Interpretation of Key Findings: we found that self-consistent contrastive learning
correlates with the feasibility of better generalization and regeneration of higher-dimensional objects more
smoothly and robustly, for instance, the relevance of findings between fitting and 3D sampling on an
exemplary scene in Table 3 against Figure 7. The aggregated method in this study tended to have an
inordinately smaller proportion of several resource perspectives; however, it still required a few higher
computational complications to learn surfacing. Our findings indicate that higher algorithm complexity is not
associated with poor performance in resurfacing from implicit clouds. The proposed method may benefit
from debiasing the instances without negatively affecting the traditional query vectorization. In the
meantime, this study investigated a comprehensive point-to-mesh object reconstruction and practical
visualization on mobile-edge topology.

However, additional in-depth studies may be required to confirm its actual uses and long-term
robustness, particularly regarding the proposed self-consistent algorithm. Our findings show that adopting the
approach to any constructive environment is more resilient than traditional methods. Future challenges may
look into higher efficiency and seamless methods concurrently, such as for producing re-texturing and
naturally moving surfaces. Furthermore, in aspects of edge-networking mechanism, the cross-on-device bi-
direction transfer may benefit this proposed reconstructive network in real-world implementation concretely.

Deformation Scenario: in addition, we perform object reconstruction from the captured incomplete
point set, such as those obstructed by obstacles, causing deformation as shown in Figures 9(a) to (e). Our
approach demonstrates superior performance in reconstructing the fine-grained details of the non-rigid
object. While the level-set projection method captures the general form, its output shows noticeable surface
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artifacts and a lack of detail in the garment's folds. In contrast, our approach produces a cleaner, smoother
mesh that more faithfully preserves the cloth’s intricate geometry and subtle deformations. Although this
qualitative improvement highlights the robustness and precision of our method in handling the challenges of
complex point cloud data, some minor surface irregularities are still present when compared to the flawless
ground truth model. Technically, our reconstruction method does not have a human workload to correct some
surface modifications. Even though it is better than the existing methods, this limitation of some defective
surface areas may pose a challenge for the future to fulfill the surface with a self-awareness learning function
automatically.

Figure 9. Comparison of apparel reconstruction from; (a) a deformed point cloud apparel, (b) level-set
projection method, (c) ours, (d) absolute ground truth, and (e) reconstructive objects from an existing study
(left) and ours (right) projected onto a scene

5. CONCLUSION

From the current state, creating new higher-dimensional assets is still scattered, and importing
devices takes considerable time due to both downstream data transfer and visualization. With our continuous
end-to-end pipeline, we first propose a self-supervised new object creation by reducing discrimination
between the two regenerated instances to create a more flexible and unified topology surface, alongside
creating a further structure to wrap and load dynamically on-the-fly for easy import instead of manual
intervention. Recent observations indicate that the use of strong-weak consistent querying. Our key findings
offer definitive proof that this phenomenon is linked to better reconstruction alteration, rather than being
adopted by only the traditional querying method. The bench tests show that the implementation is resource-
dependent and performs efficiently from multiple perspectives. This processing includes using the new user-
facing edge network to create higher-resolution instances. Key findings are that it can be more human-centric
and seamless through the following: In terms of efficiency, the generalization achieves mostly the lowest
mesh reconstruction loss for the references given. Transporting 3D objects onto virtual projection devices, it
is 56.5 times faster. Mapping data into those without human intervention takes just 0.1 seconds, including
rendering speed, fewer generated mesh topologies, and higher FPS for visualization. All of this allows the
proposed approach to demonstrate the initial capabilities of effortless creation and conversion systems.

However, our following concerns still exist: the ability to persuade people to use the behavioral
engagement tool remains uncertain. Using gamified incentives may help facilitate access. The terms of object
re-creation functions included, but continuous improvement is still required to strengthen the mesh topology
network potential further after extraction.
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