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 Despite ongoing challenges with fragmented workflows, latency in device 

imports, and the main issue of limitations in object reconstruction 

functionality, relying on imperfect extraction networks remains an 

impractical solution for scalable object generation. To deal with these 

constraints, we proposed an end-to-end pipeline that leverages a re-designed 

self-consistency mechanism—aimed at reducing discrimination, along with 

the beneficial enhancement from level-set projection and gradient-surface 

orthogonality. In addition, our approach designs dynamic 3D object creation 

with minimal manual effort by unifying surface topology and optimizing 

data loading, enabling a streamlined reconstruction process and more 

flexible object projection. Our method supports rapid, resource-efficient 

mesh reconstruction and consistently demonstrates performance 

improvements across multiple instance benchmarks, covering virtual 

projection tasks. Improvements in mesh topology reconstruction, as 

measured by the L1 Chamfer distance (CD) metric, are consistently higher, 

while the system also achieves significant transmission speedups—up to 

56.5×—near-instant importing—along with lowering latency in practical 

rendering on virtual reality (VR) devices. This result highlights that refining 

mesh binding improves re-creation fidelity. Our approach to scalability leads 

to faster user engagement and allows automated deployment without 

requiring human intervention during importing. 
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1. INTRODUCTION 

Virtual-physical space and digital twins (DTs) have grown continuously and expeditiously with 

applications across intelligent spaces, smart appliances, and intelligent commerce [1]–[3]. Many DT concepts 

draw from the industrial internet of things (IoT), focusing on creating advanced simulation models that use 

real-time data streams to enhance performance [4]. 

During the past few years, 3D modeling of tangible things has been a challenging task with uses in 

computational graphics, gaming, virtual reality (VR), augmented reality (AR), and commercial employment 

[5]. Usually, 3D parametric representations were created manually using laborious and costly methods such 

as scanning for 3D models or computer-aided design (CAD) modeling [6]. Implicit sparse point 

https://creativecommons.org/licenses/by-sa/4.0/
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representations (point clouds) are typically used for building models, with programs creating apparel 

structures from this data [7]. Public online repositories also provide models of real-world apparel. However, 

the effortless and flawless 2D-to-3D conversion continues to be a race [8]. 

Computer-assisted learning, such as deep learning, has emerged as a computational tool for 

generating accurate 3D models from images or texts, offering the potential to revolutionize how 3D 

structures are created by taking matters in 2D detail. Convolutional neural networks (CNNs), which are 

frequently employed for thorough extraction, are specifically designed to adapt to target tasks. In particular, 

our emphasis on reconstruction tasks follows this study. For instance, the multi-view stereo (MVS) [9] 

enables the prediction of depth maps from a single image for CNNs, while refining the estimations to create 

complete 3D models. This approach has led to significant advancements in the precision and completeness of 

generated 3D models [10]. In contrast, they proposed viable proof-of-concept approach when applied to 

extraction via neural nets. 

With the advancement of CNNs, surface reconstruction from 3D point clouds is essential for fields 

like 3D vision, robotics, and graphics, bridging raw sensor data and editable surfaces [11]. While unsigned 

distance functions (UDFs) [12]–[14] are used for surface reconstruction, their effectiveness is limited by the 

discontinuous nature of point clouds, hindering smooth distance field generation, even with large-scale 

meshes or ground truth values. Consequently, UDF techniques often fail to extract surfaces directly. In the 

practice of current states and study problems, several internal and external factors influence the use of 

computation to reconstruct and map the virtual world. Key considerations include whether the granularity of 

generated data should be evaluated across multiple regenerative models. Next is the smoothness of data 

mapping, such as reducing reconstruction and projection time [15], seamless automatic projection [16], or 

even the appeal of the user experience, like gamification [17], to entice people to drive their lives through 

game-like playing. All of which are crucial for effective facilitation. 

However, the previous and existing studies proposed principally theoretical computational 

perspectives to build higher-dimensional or smoothly reconstructive entities. Some studies have actively 

applied practical computation to real-world use cases. Consequently, most studies are still stuck on utlizing 

robust computation, taking much time in running and inference, and relying on manual intervention in some 

processes. This study looks at reducing many multi-resource consumption usage in practice, such as shifting 

from top-down to applying on-edge and/or on-device computing and reliance on human-based management. 

Therefore, our study proposes extending 2D-to-3D generation for multiple scenarios to address 

these problems. Our approach aims to adapt simple low-dimensional instances, like 2D objects, sourced from 

everyday life, to reconstruct them into higher-dimensional shapes seamlessly, that is, 3D objects, and 

instantly map them into a cyber space, without human intervention. This further leads to adjusting the 

decisions, like playing games, through VR glasses. Empowering user-generated content (UGC) and 

generating items from any mobile device to create personalized scenes in virtual space adds both direct and 

indirect value to the cyber world, as well as inspires individuals to engage in these spaces as they would in 

the physical world, to overcome existing limitations. 

To clarity, this article is arranged as follows: section 2 reviews recent studies on virtual-physical 

spaces and deep generative models. Section 3 presents our method, while section 4 outlines the experimental 

results, including the reconstruction and visualization phases, and comparative benchmarking. Finally, 

section 5 discusses our conclusions, limitations, and leads to future research directions. 

 

 

2. RELATED WORK 

Beginning with the overview of digitalization, numerous studies have highlighted the importance of 

DTs in human existence [18], [19]. For instance, healthcare DTs use machine learning to aid doctors with 

medical recommendations and minimally invasive procedures. In smart home advancement, DT study 

enables collaboration with mobile assistive robots to develop smart applicant systems [20]. In smart 

agriculture, these technologies lead to cyber-physical systems (CPS), helping farmers optimize resource and 

equipment usage [21]. 

Metaverse and DTs research provides a framework for this cultural heritage metaverse, highlighting 

crucial elements and describing the mapping between actual and cyber cultural heritage worlds. The majority 

of academics concentrated on the emerging trend of Metaverse, which is a digital environment [22], [23]. 

Some studies [24], [25] provide a three-layer structure that connects the physical world to virtual space 

through user interaction. It also investigates the security and privacy concerns associated with employing 

DTs in the Metaverse. Some discussed digitization and the influence of DTs on the expansion of progressive 

physical-intelligent cities, alongside the key materials and fundamental technologies of DT-supported smart 

communities. Urban building was organized into four steps: vision first, IoT perception, application update, 

and simulation. An approach [26] for designing and implementing DTs for equipment combat damage testing 
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was also developed. This development was important for furthering DT combat emergence and  

validation [27]. 

A study explored key aspects of digital reality with 3D parametric modeling and graphic designing, 

where visual realism can impact real-time interaction [28]. It outlined the VR development process, modern 

3D modeling, and texture painting techniques, while also focusing on approaches to enhance interaction 

speed [29]. Also, AR was discussed and shown in applications using 3D and 4D modeling, with beneficial 

graphical applications [30]. Historical image textures were applied to add the fourth dimension, namely time 

duration, to contemporary 3D models. Subsequently, homogenizing the models in graphic software and 

exporting them into a graphic-displaying space to create the reference surface led to the formed diagram that 

outlines the required features and functionalities [31]. 

A recent study focused on 3D reconstruction from implicit sparse points [32]. Implicit-based 

generative networks (a.k.a. neural implicit function) were built to identify vector-field distance function, 

handling and calculating both sign values from the point of the nearest measurement points, or occupancies, 

before using the marching cubes algorithm to obtain a massive mesh topology of a continuous isometric 

surface from an independent scalar field. 

A previous technique used an encoder or an optimization to incorporate the shape in a global latent 

code, which was afterwards regenerated using a decoder [33]. Some techniques advocate employing more 

latent codes to record local shape priors, resulting in more exact geometry [34]. The sparse point cloud is first 

partitioned into uniform grids or native patches, leading to a neural-based model that extracts latent coding 

for each grid/patch. Further, [35]–[37] presented that the signed function made a more detailed map of the 

creatable floor plan. Millane et al. [38] utilized graphic processing to accelerate the localization map further. 

Some current studies [39], [40] have described agnostic learning to produce signed distance fields (SDF) 

while employing properly designed network initialization, gradient restrictions, or geometrical regularization 

[41]. Neural-pull [42] produced a SDF by creating adjacent rooms on their surface. While study [43] 

depended on a parameterized surface reconstruction technique, it was hard to form a higher-dimensional 

shape of stuff. Although one of the studies tried to produce SDFs, it was unable to reconstruct complex 

structures with open or multi-layer surfaces. All these utilized an implicit generative function [44] to prepare 

the implicit surface to generate explicit 3D instances easily afterwards.  

On the other hand, UDF can construct surfaces directly from gradients. In this period, unsigned 

distance fields (UDFs) also expanded regularization, such as neural vector fields (NVF) [45],  

consistency-aware distance [46] (CAP-UDF), learning to anchor (anchor-UDF) [47], and fast meshing to 

make 3D surfaces [48] (MeshUDF). Most recently, level-set UDF [49] has been proposed using the 

technique of level-set surface projection, such as illustrating in UDFs, mapping points to the nearest surface 

using gradient estimation and projection. The projection increases computational complexity. However, 

leveraging level-set projection gradients can enhance mesh quality, making them a promising approach. 

Including the perspective of human-computer interaction, many studies have advanced where they 

are being integrated with real-world applications for illustration and interaction, for example, computational 

sensing on 3D-MR systems [50], reconstruction specifically for projecting onto cyber worlds [51], and even 

hand-sculpting 3D objects for studying real cyber environments [52], [53]. Some studies have worked on 

applying many computational intelligence variations through various network topologies [54]. However, one 

missing thing is the motivation for accessibility and automatic creation without human intervention. 

In summary, most of the previous studies focus on the utilization of high computational usage for 

only a single constructive task, namely either point-cloud or full-mesh generation only, even though a study 

has established an end-to-end pipeline for full-form mesh construction, but they always face a  

high-computation burden. Likewise, the part of applying edge environment like projecting, most of them still 

meet limitations of several usage, and they also depend on requiring manual management. Our approach is 

proposed to tackle all the above current states. Our approach is a fully computational pipeline with lower 

resource usage to support an edge-computation mechanism. Our technique, following the challenge of UDF 

techniques, especially the adoption into edge world applications, extends the learning function of an UDF 

from an implicit 3D generative function, such as sparse point clouds, to create new 3D continuous surfaces. 

The import was made seamlessly by mapping 3D objects into virtual space. We also summarize the recent 

studies and our proposed framework in Table 1. Thereby, our proposed highlights have been presented as 

follows: 

− The proposed framework, which is self-controversial to learn different isosurfaces of self, to address our 

problem setting, becomes an entrirely transformable function from the captured low-dimensional 

physical- or virtual-space instances to the existing-captured shape-like explicit higher-dimensional 

instances. 

− Besides, a given exemplary scenario has been showcased to prove two manifolds: less-time consumption 

and reliable performance for end-to-end regeneration through our aggregated near-device computation 

and our instantly transformative framework. 
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− Several actual implementations have been conducted the garment, object, and scene tasks have been used 

to conduct comparisons from various perspectives. 

 

 

Table 1. The comparative summary of recent studies and ours 

Studies 
Learning 

strategies 

End-to-end 2D-to-3D transformation a 

visualization into virtual environments 

Compatibility with edge 

environments 

2D-to-3D surface 
extraction 

3D seamless texturing 
and visualization 

Edge role 
Reconstructive time 

consumption 

Implicit 3D 

generation [44] 

S Δ 

(2D images to 
implicit 3D points) 

- - High ↑ 

Explicit 3D 

generation: 
SDF [32]–[42], 

UDF [45]–[49] 

S 

(Except 
[49]: IS) 

Δ 

(Implicit-to-explicit 
3D surface) 

3D-VR/AR/MR 
[50]–[53] 

- Δ 
(Hand sculpting) 

Δ 
(Visualization only) 

Δ 
(Edge equipment 

used for projection 

only) 
Doungtap et al. 

[55] 

Implicit & 

explicit 3D: 

all S 

✓ Δ 

(Discrete 

transformation) 

 

Ours Implicit 

3D: S 

Explicit 
3D: SS 

✓ ✓ 

(Seamless 

transformation) 

✓ 

(Edge machines 

used for training & 
inference) 

Lower ↓ 

Note: The learning strategies of the reconstruction model function are denoted by supervised (S), implicit-supervised (IS), and  

self-supervised (SS). Including the symbols of -, Δ, ✓ represent none, part of, and include all, respectively. 

 

 

3. OUR APPROACH 

In this section, we are describing our approach in three parts. Firstly, the proposed framework, 

which includes the higher dimension point cloud implicit function, a less-time explicit 3D regenerative 

function, and a transformation task into virtual space, is concluded as an all-in-one approach. Next, we delve 

into our modified approach of implicit regenerative function based on UDFs that are further compatible with 

on-edge real-time instance generation instantly. Lastly, transformation and visualization techniques are used 

to handle seamless physical-to-cyber mapping continuously. 

 

3.1.  Fully transformative function into computing infrastructure 

Recent computation intelligence is truly based on deep learning that focuses on neural network 

development, particularly in virtual-physical space applications, like segmentation [56] and object detection 

[57]. With the rise of transitional learning, including transfer learning and deep generative modeling [58], 

research in this field continues to expand. Generative models like GANs and VAEs learn the training data 

distribution for image generation to generate new, similar samples. An exciting approach is the UDF, 

represented as voxel grids or 3D textures storing distance values. UDFs, widely used in graphics and 

geometric modeling, enable shape representation and object rendering. Thus, generative models should learn 

UDF distributions to generate novel samples. 

Earlier, we proposed the collaboration of machine-to-machine 2D-to-3D translation from the  

large-dedicated server with the storage and distributed computing, processing client data, as mentioned in  

Figure 1(a), to illustrate this infrastructure. With this current state, it was evident that a massive transmission 

cost occurred for inbound-outbound offloading. The most difficult challenge is developing new reconstructed 

samples, prioritizing computational efficiency over lightness. 

Thus, our proposed approach in Figure 1(b) is presented by an enhanced framework that completely 

separates storage in the cloud from computing at the edge. This relies on discrete data transfer for storage 

outside the sample computation time from on-edge to inter-mobile on-device. Our combined techniques 

become our fully transformative function. This method improves overall quality and reliability by ensuring 

the final output is based on a richer, more detailed dataset, which is critical for high-fidelity reconstructions. 

Shifting from a server-centric to an edge service-to-device transmission model provides several key 

advantages that are particularly impactful for applications requiring real-time performance. Including 

obviously reducing the transport time and the regenerative sampling time can be significantly reduced. 
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Figure 1. Comparison of framework architectures; (a) previous cloud computing framework and (b) proposed 

at-the-edge inter-mobile computing framework 

 

 

3.2.  Sparse data points-to-fully explicit instances: self-consistency-based unsigned distance fields 

Initially, we still relied on the beneficial implicit function of 2D cyber- or physical-space capture 

images from various circumstances, and all these are transformable into point cloud coordination-based 

samples through the pixel-rearranged implicit function [44]. Besides, the highlight this effectively fastens and 

rivets many points formed as a hint cloud, reconstructing it as a higher-dimensional point cloud object (in this 

study we pin at three-dimension shape at most) for afterward processing. 

Previously, many studies relied heavily on pinning, anchoring, or field aids, leading to prolonged 

training times and inefficient resource usage. UDF is a scalar field where each point in space stores the 

minimum distance to a surface, but without distinguishing between the inside and outside of the object. Our 

previous employment, through the application of CAP-UDF approach [46], enhances model learning and 

object reconstruction by directly leveraging the gradient field with UDFs-based sparse point rearrangement 

and consistency-realized gradient fields ∇f(∙). Additionally, continuing from earlier, the surface projection 

with level-set illustration [49] also works with UDFs, moving a point in space onto the closest surface 

defined by the zero-level set of the distance field. This is typically done by finding the closest surface, 

estimating the gradient, and projecting their computed gradient onto the surface, respectively; nevertheless, 

the two mentioned UDFs, these higher performances come at the cost of increased computational complexity 

and resource consumption. Fortunately, we still foresee that level-set projection gradient utilizes the 

advantage of both gradient computation and projection to create a finer and more comprehensive mesh 

surface, so we see that it can be utilized. 

Technically, the estimation of cost function is estimated by the E(p, q)~(P, Q)(∙) formulation. This 

estimation is implemented into the pulling enhancement for learning unsigned distances from raw point 

clouds without ground truth. Given a raw point cloud in real-number-based 3D space P={p ∈ ℝ3}N with all of 

N points, samples of a set of queries in real-number-based 3D space Q={q ∈ ℝ3}M surrounding the point 

clouds P. The f function realizes the unsigned distances between queries Q and the shape described by 

original point clouds P. The goal is to complete full-form mesh objects with indiscriminate typology. In 

processing, given a query input qi, resurfacing relocates it against the gradient direction ∇f(qi) at qi, 

Eventually, the objective loss proceeds the risk minimization between predicted moved queries Q̂ and the raw 

point cloud P, becoming the cost function through Chamfer distance (CD) function as formulated in (1): 

 

𝐿𝐶𝐷 = 𝛦(𝑝,𝑞)~(𝑃,𝑄) (∑ 𝑚𝑖𝑛
𝑗∈𝑁

‖𝑝𝑗 − 𝑞̂𝑖‖2𝑖∈𝑀 + ∑ 𝑚𝑖𝑛
𝑖∈𝑀

‖𝑝𝑗 − 𝑞̂𝑖‖2𝑗∈𝑁 ) (1) 

  

where  𝑞̂𝑖 = 𝑞𝑖 − 𝑓(𝑞𝑖) ⋅ (
𝛻𝑓(𝑞𝑖)

‖𝛻𝑓(𝑞𝑖)‖2
)  

 

Lastly, the Level-Set UDFs technique not only mitigates the issues of fragmentation and 

discontinuity but also improves the overall performance in various applications, such as point-based cloud 

upsampling and normal estimation. By projecting non-zero level sets onto the zero-level set with gradient 

constraints, they align gradients and correct errors, enhancing continuity. Through the perspective of multiple 

regularization:  

a. Projection loss aims to improve feature representation by enforcing orthogonality among class features, 

enhancing inter-class separation and intra-class clustering. This loss is particularly effective in scenarios 
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with adversarial attacks and label noise, demonstrating robustness across diverse tasks like image 

recognition and domain generalization, as indicated in (2). 

b. Gradient-surface orthogonal loss focuses on aligning gradients across different level sets in UDFs, which 

helps achieve smoother and more continuous representations of surfaces. Utilizing gradient constraints 

corrects errors in unsigned distances, improving surface reconstruction outcomes.  

c. Surface regularize loss penalizes irregularities in surface representations, promoting smoother transitions 

and continuity in learned models. This aligns with the goals of the other two losses, enhancing overall 

model performance in tasks involving complex geometries. Technically, all of them were adjusted using 

control weights to regulate the effect of resurface gradient activation. 

 

𝐿𝑝𝑟𝑜𝑗 = 𝛦(𝑝,𝑞)~(𝑃,𝑄) (∑ 𝑒𝑥𝑝( 𝜆|𝑓(𝑞𝑖)|) ⋅ (1 − |
𝛻𝑓(𝑞𝑖)⋅𝛻𝑓(𝑞̂𝑖)

‖𝛻𝑓(𝑞𝑖)‖2⋅‖𝛻𝑓(𝑞̂𝑖)‖2
| + ∑ |𝑓(𝑝𝑖)|𝑁

𝑖 ))𝑁
𝑖  (2) 

 

Where the function leads to the gradient at queries Q and the gradient at their projections Q̂, both moving 

towards the zero-level set. The exponential term determines the optimizing velocity queries Q and gradients 

∇f(Q) closer to the zero-level set via λ hyper-parameter. Nonetheless, the projection with the queries and 

gradients is finally degraded due to the unsigned distance limitation; thus, the behind-the-scenes term, 

namely, the consistency of correcting the zero-level set. Consistency constraint distances are added to assist 

in generalizing and shaping distance values. 

 

𝐿𝑜𝑟𝑡ℎ = 𝛦(𝑝,𝑞)~(𝑃,𝑄) ∑ (1 − |
𝛻𝑓(𝑞𝑖)⋅𝜏(𝑞𝑖,𝑝𝑖)

‖𝛻𝑓(𝑞𝑖)‖2⋅‖𝜏(𝑞𝑖,𝑝𝑖)‖2
|)𝑀

𝑗  (3) 

 

Where the orthogonal surface cost is shaped by a similar projection loss but changed to an orthogonal style. 

Instead of the gradient trajectories, the variable is replaced with the vectorized direction τ(∙, ∙). This 

vectorized optimization uses query qi and raw point pi to account for inconsistencies in the learning function 

between the closest point pi and the closest predicted point q̂i. 

 

𝐿𝑠𝑢𝑟𝑓 = 𝛦𝑞~𝑄 ∑ (𝑓(𝑞𝑗))𝑀
𝑗  (4) 

 

Where the surface regularization depends on the computation of exact point qj, extracted as several field 

surfaces and averaged on all samples to give a much easier and smoother shaping surface, on the other hand, 

utilizing exact points to assist is analogous to calculating the uncertainty on certainty. We can conclude that it 

is due to supervised certainty. Straightforwardly, the relationship of valuable ground truth of existing point 

clouds present in this regularization also relies on weekly partial supervision to facilitate the smoothing of 

this gradient-assisted surface enhancement. 

Likewise, for an overview, while these losses show promise, we still envision the challenge in the 

current state of them that the reliance on specific loss functions may limit flexibility in adapting to various 

datasets or tasks, suggesting a need for further exploration of hybrid approaches that combine multiple loss 

strategies for optimal performance. To address this, we proposed the modification of both the explicit 

function learning and implicit regularization to enhance to more robust and accurate reconstruction of the 

higher-dimension instances that are composed of two novel manifolds as follows: Firstly, the cost refinement 

using reliable unsigned distance surface leads to determining the cost distance between the strong and weak 

consistency; nonetheless, due to the direct distance minimization problem, which includes the problem of 

concentration, predicting an unsigned distance surface is quite uncertain. 

To tackle this issue, we consider that cost optimization of consistently learned unsigned distance 

textures is a potential approach to understand and improve itself following the protocol of self-supervision 

tasks. The weak- and strong-consistency learning approach minimizes the bias of the representations to make 

the unsigned distance measure closer to each other as formulated in (5) and (6): 

 
𝜔𝑡 = 𝛽 ⋅ 𝜔𝑡−1 + (1 − 𝛽) ⋅ 𝑓(𝑞𝑤) (5) 

 

𝐿𝑠𝑐 = 𝛦(𝑞𝑤,𝑞𝑠)~(𝑄𝑊,𝑄𝑆) ∑ (‖𝑓 (𝑞𝑗
𝑠, 𝑙𝑜𝑔 (

1

𝜔𝑡
)) − 𝑓 (𝑞𝑗

𝑤, 𝑙𝑜𝑔 (
1

𝜔𝑡
)) + 𝜉‖

2
)𝑀

𝑗  (6) 

 

Where the present momentum of ωt is used to reweight the trading-off between the previous predicted 

unsigned distance ωt-1 and the present unsigned distance qw to regulate the change of the distance field, which 

is gradually preserved from earlier. The self-pairwise squared distance loss ║.║2 is utilized to measure the 
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distance between two objects that are different from each other. Figuring out the logarithm of retaining 

weight log(1/ω) provides a rational approach to the required distances, facing mildly and strongly unsigned 

distance outputs extracted by an explicit generative function. 
Once, we observed that the typical neural network in use for translating from three  

multi-coordinated points to the moved samples was still questionable. In the existing method, 

misunderstandings and mistakes cause continuous ripples when generating polygon meshes. We therefore 

have a minor modified surface extraction on the way, that is, the use of a one-dimensional depth-wise 

separable convolution block is more realizable from three-axis coordinate clouds in UDFs becomes a 

confident moved query. All these enhanced functions are visualized in Figure 2. 
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Figure 2. Our enhanced resurfacing function with strong-weak uniformity added to the regularization of the 

level-set projection to enable self-supervision-based resurfacing functionality 

 

 

The aggregated function in topology mesh optimization is finalized as the base learning of  

inter-mesh distance, level-set projection, vector-to-surface orthogonality, and our proposed self-discriminable 

consistency, combined as formulated in (7), each of which regularization term includes the control weights to 

adjust the influence of dealing with gradient direction in gradient contour space from typical Chamfer-L1 

optimization. 

 

𝑚𝑖𝑛
𝑗∈𝑁

𝑚𝑖𝑛
𝑖∈𝑀

𝐿𝑎𝑔𝑔(𝑝𝑠 , 𝑞𝑠, 𝑞𝑤; 𝑖, 𝑗) 

= 𝐿𝐶𝐷(𝑝𝑠, 𝑞𝑠; 𝑖, 𝑗) + 𝜏𝑝𝐿𝑝𝑟𝑜𝑗(𝑞𝑠; 𝛻𝑓(𝑞𝑠)) (7) 

+𝜏𝑜𝐿𝑜𝑟𝑡ℎ(𝑞𝑠; 𝛻𝑓(𝑞𝑠)) + 𝜏𝑠𝐿𝑠𝑒𝑙𝑓(𝑞𝑠, 𝑞𝑤; ; 𝛻𝑓(𝑞𝑠), ; 𝛻𝑓(𝑞𝑤)) 

 

3.3.  Auto-transformation topology and objective function 

Dynamic loading of assets from clouds into VR systems enhances scalability and maintains 

flexibility in content delivery. The VR object application employs dynamic asset loading from cloud-based 

storage, allowing users to access and interact with a wide variety of garments without the need to  

pre-package assets within the application. This architecture enables on-demand streaming of models, 

textures, and related metadata, thereby reducing the initial application size, improving loading performance, 

and facilitating remote updates. 

The system is implemented using Unity’s Addressable Asset System, which supports asynchronous 

loading of assets via unique identifiers. An object asset prefabs are pre-configured, optimized, and exported 

as an addressable bundle. These bundles are then uploaded to a cloud content delivery network (CDN) like 

Firebase Storage or Amazon S3. The application dynamically fetches and instantiates the required assets 
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during runtime based on user interactions, avatar configurations, or stylistic preferences. This dynamic 

loading process consists of the following steps: 

Object models, materials, and animations are labeled and bundled in asset labeling and packaging 

using Unity’s Addressable. For cloud deployment, bundles are uploaded to a remote server or CDN with 

public or secure access endpoints. While a runtime request, when a user selects an item, such as a jacket or 

pair of shoes, the system invokes a cloud request using the asset’s unique addressable key. Including 

asynchronous loading, assets are streamed and instantiated in the scene with appropriate positioning, scaling, 

and reconstructed poly-mesh simulation behaviors. Furthermore, caching and reuse, loaded assets are stored 

locally in the device cache for future sessions to minimize redundant data transfer.  

This approach allows for real-time customization, seasonal content rotation, and personal wardrobe 

configuration, all without requiring a full application update. Furthermore, it supports extensibility for UGC 

and marketplace features in future iterations. By decoupling asset distribution from application builds, 

dynamic cloud loading significantly improves maintainability, performance, and user experience, critical 

factors in immersive VR environments where responsiveness and personalization are paramount. We have 

summarized all the 3D-mapping topology in Figure 3. 

 

 

3D Model 

Auto Unwrap UV Asset

Shader Mapping Texture 

Dynamic loading

Light BakingLighting Scene Setting Music 

Prefabs 

UI
Script Color 

Change

Post-Processing

XR SDK Device Testing

 
 

Figure 3. The mesh topology of wrapping and loading our designed automated instance transformation, 

moving into an interaction space 

 

 

Our system architecture is built around an end-to-end service that combines comprehensive  

2D-to-implicit 3D-to-explicit-3D reconstruction ∀Ф(·) with our aggregated and minor adjusted functions. 

Algorithm 1 describes our approach, which has been treated as two states for the edge server and client sides. 

For instance, User U with mobile device B is sent by the 3D captured objects I. It is shifted to edge-side 

computers Eg. At a computation event, the proposed transformative pipeline for inter-mobile reconstruction 

and interaction functions by first generating a purpose-built, interactive instance from captured data. This 

process is initiated by an event, which triggers the Fully_Reconstruction_n_Transformation_Phase. The 

algorithm regenerates an implicit 2D-to-3D function to obtain well-learned representations from randomized 

captured instances. An explicit 3D function is then used to reconstruct the mesh, with its topology and 

learnable representations being optimized from the aggregated data. Thus, in summary, a 3D point cloud is 

generated first using the implicit 3D generative function, and then our modified function is used to rebuild 

fully-formed 3D regenerative objects.  
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Finally, this reconstructed explicit topology is seamlessly projected onto the user's physical or 

virtual space using a transformative function, which leverages a dedicated edge server for object 

transformation. The entire procedure facilitates the creation of a fully reconstructed and interactive object 

that can be seamlessly experienced across various mobile and VR devices. That is, they are then pushed back 

to auto-map and auto-visualize into virtual fields and made interactable with virtual-projection devices B, all 

this resulting in a single mainstream pipeline known as the reconstructive and transformative phases. 

 

 

4. RESULTS 

To affirm the feasibility of the proposed approach, we have conducted comprehensive experimental 

settings and results as follows: datasets in use, system implementation details, experiments, analysis and 

discussion, and real-world scenarios for simulation. 

 

4.1.  Datasets 

Our verification has been proven using widespread datasets from real-world perspectives and 

evaluating mapping into VR hardware. A benchmark dataset was built utilizing automobile examples from 

ShapeNet data [12], [59], which contain many objects. Stanford 3D scene data [60] includes several scenarios 

scanned in real-world contexts. This includes the apparel data from the Deep Fashion3D [61] dataset, which 

consists of 2,078 object models generated from authentic outfits, grouped into 10 classes, and 563 garment 

samples. We have illustrated all datasets in Figure 4. 
 

 

 
 

Figure 4. Some captured samples and higher-dimension true-form polygon meshes of scenes from a Stanford 

3D scenes dataset (left) and apparel from a Deep Fashion3D dataset (right) 

 

 

4.2.  System implementation details 

We have conducted the verification of training and testing through our prepared machines that are 

composed of; i) typical-performance hardware: CPU i5-13400F with 32 GB installed physical memory and 

GPU Nvidia RTX 4060Ti with 16 GB physical memory and ii) miserable-performance hardware: CPU  

Algorithm 1. Proposed transformative pipeline for inter-mobile reconstruction and interaction 
Require        I: Randomize captured instances 

               ΦI: Regenerative implicit 2D-to-3D function with well-learned representations 

               ϕE: Reconstructive explicit 3D function with learnable representations θrepr 

               ФT: Seamless transformative function 

               B: Physical mobile devices (e.g., smartphone and virtual reality equipment) 

               UP||UV: Physical/virtual space through user interaction perspectives 

               Eg: Edge dedicated server(s) with fully learned transformative function 

Output         A purpose-built instance that is interactable in a virtual space 

// Mobile side transmits captured sample data to near edges 

Eg ← (UP ⸰ B)(I) 
 

// Edge server(s) for object transformation purposes 

Function Reconstruct(I) do 

 |  // Create from captured data → sparse points → explicit topology objects → importing  

 |  Perform sparse points IPC = ΦI(I) 

 |  Optimize reconstructive mesh ФE ← ϕE(IPC
; θrepr) from aggregated function in (7) 

 |  Perform explicit mesh topology I3D = ФE(IPC) 

End Function 

 

// Implement the defined function to transform into a virtual space 

OnEvent Fully_Reconstruction_n_Transformation_Phase do 

 |  Reconstruct I3D-V ← Eg(ΦT ○ ФE ○ ФI)(Icaptured) 

 |  Procedure projecting over B devices with U interacting UV ← (UP ⸰ B)(I3D-V) 
End OnEvent 
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i5-10400 with 16 GB physical memory and GPU Nvidia RTX 2060S with 8 GB dedicated memory, all 

served as our bare metal cloud dedicated servers. The software package is installed to our experimental 

machine as follows: computing accelerator (CUDA) version 12.1, deep learning accelerator (cuDNN) version 

8.9.7, a machine learning environment including PyTorch version 2.5.1, Torchvision 0.20.1, and Chamferdist 

1.0.0 for measuring reconstructed polygon mesh distances. 

For the preparation of data and the function of implicit and explicit extraction, a pixel-rearranged 

implicit function [44] is implemented to pre-process low-rank sampled data to become high-rank multi-anchor 

points of 100-1,000 points. This study is going to compare with the existing studies mentioned in our problem 

issues from current states as follows: Anchor-UDF [47], CAP-UDF [46], LevelSet-UDF [49], and  

Doungtap et al. [55] clarifying that all it is conducted under the protocol of tasks of supervision and semi-

supervision. In contrast, our function stands firmly for the self-supervision task with our proposed strong-weak 

consistency unsigned distance measures. In this run, we adopt the strong implicit objects for up to 1,000 points 

per square meter extracting, along with the weak implicit object, around 100/500 points per square meter.  

For hyper-parameter setting, we follow the same setting for fairness. The Adam has an initial learning 

rate of 10−3, a cosine learning rate schedule, and 1,000 warm-up steps. The complete batch running of object 

and scene reconstruction is conducted in up to 40,000 and 100,000 iterations. While for the surface extraction 

network, all existing studies use traditional neural networks with 8 layers with skip residual input at the 4-th 

layer, each of which is composed of 256 neurons. Conversely, our approach adopts the 1D-convolutional 

layer, formed as a 1D-depthwise separable convolution layer composed of 6 layers and 128 or 256 neurons 

with twice skipping residual input at the 2-nd and 5-th layers instead. During hyper-parameter optimization, 

we fine-tuned the regularization control weights—specifically, the projection, orthogonality, and  

self-consistency weights. For object-level testing, the optimal values are determined to be 10−3, 10−4, and 10−2, 

respectively, while for scene-level testing, the corresponding values are found to be 2×10−3, 10−2, and 10−1. 

Afterwards, to evaluate metrics, we use the CD metrics, which measures the metrics under the main 

optimization of the 3D-reconstructed protocol. The CD measures the closest point in one set to the other, 

summing squared distances. Both L1 and L2 normalization distances and projection loss are used for 

evaluation. Traditional metrics, such as the F-score with thresholds of 0.005 and 0.01, are also considered. 

Besides, we apply the F-score to measure the categorization performance of object classes. 

For the provided topology details, establishing a network for our 2D-to-3D reconstructive object 

pipeline requires a strategic, multi-stage procedure to ensure low latency and high data throughput. Initially, 

the user's mobile device acts as a client, capturing 2D images and transmitting this raw data to a nearby edge 

computer (RTX 2060S) over a low-latency wireless network, such as Wi-Fi 6, being the preferred standard 

due to its high throughput and low latency. This edge device then performs the initial data processing, 

converting the images into a pre-processed format like a sparse point cloud. This partially processed data is 

then securely sent to a powerful central server over a high-bandwidth connection, utilizing an efficient binary 

protocol like gRPC to minimize transmission overhead. With its powerful generative model, the server 

reconstructs the final, high-fidelity 3D model, which is stored locally. Finally, upon request, this 3D model is 

streamed or transmitted from the edge server to the user's VR/AR projection device, ensuring a seamless and 

immersive interactive experience. A dedicated wireless VR/AR streaming protocol may be used. The total 

bandwidth required for streaming a 3D model can vary widely, but a sustained transfer rate of at least  

150-200 Mbps is a reasonable target to ensure a smooth, lag-free experience. For our generative pipeline, we 

further adopt the exemplary materials from https://github.com/junshengzhou/LevelSetUDF. 

 

4.3.  Experiments 

Table 2 presents a comparative evaluation of our method against several state-of-the-art approaches 

on representative samples from the ShapeNet dataset, specifically a Garment (Dress) and a Vehicle (Truck), 

each trained over 40k iterations. We report four key metrics: Chamfer-L1 distance (↓), Consistency (↓), and 

F-score at thresholds 0.005 (↑) and 0.01 (↑), where lower Chamfer and consistency errors and higher F-scores 

indicate superior performance. 

For the Garment (Dress) sample, our method achieves a Chamfer-L1 distance of 0.001580, which is 

comparable to top-performing methods such as LevelSet-UDF (0.001516) and CAP-UDF (0.001536), while 

outperforming all baselines in terms of consistency, achieving a significantly lower error of 5.075×10⁻⁶—

close to the ground truth (3.001×10⁻⁶) and substantially better than others by an order of magnitude. Our 

approach also yields the highest F-score at the strict 0.005 threshold (0.970), surpassing all compared 

methods. As visualized in Figures 5(a) to (d), the shoulder section of a given dress deteriorates using existing 

methods, unless we can reduce the computation nodes, while achieving better reconstructed meshes through 

the global objects. 
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Table 2. Evaluation of metrics over exemplary dress and vehicle runs under 40k iterations (sampling of 

ShapeNet data) 

Studies 
Garment (dress sample) Vehicle (truck sample) 

Chamfer-

L1 ↓ 

Consistency 

↓ 

F-score-

0.005 ↑ 

F-score-

0.01 ↑ 

Chamfer-

L1 ↓ 

Consistency 

↓ 

F-score-

0.005 ↑ 

F-score-

0.01 ↑ 

Ground 
truth 

0.001212 3.001×10-6 0.9897 0.999 0.004502 7.221×10-5 0.9495 0.999 

Implicitly 

[44] 

0.005122 4.209×10-4 0.854 0.912 0.00601 13.101×10-5 0.654 0.899 

Anchor-

UDF [47] 

0.001734 1.211×10-4 0.922 0.954 0.005277 11.792×10-5 0.85 0.902 

CAP-UDF 
[46] 

0.001536 1.060×10-4 0.94 0.995 0.005014 9.811×10-5 0.8405 0.991 

Doungtap 

et al. [55] 

0.001534 1.034×10-4 0.949 0.996 0.005001 9.798×10-5 0.8516 0.993 

LevelSet-

UDF [49] 

0.001516 6.296×10-5 0.957 0.997 0.004986 8.637×10-5 0.9193 0.997 

Ours 0.00158 5.075×10-6 0.97 0.997 0.004919 8.496×10-5 0.9229 0.998 

Note: ↑ and ↓ stand for the highest one and the lowest one, those of which are the best capability that should be performed. 
 

 

    
(a) (b) (c) (d) 

 

Figure 5. Heatmap and explicit dresses illustrated by; (a) CAP-UDF, (b) LevelSet-UDF, (c) ours, and (d) an 

actual poly-mesh dress from left to right columns, respectively, sampling on the ShapeNet dataset 

 

 

On the Vehicle (Truck) sample, our method again delivers strong results, with the lowest  

Chamfer-L1 error (0.004919), a low consistency error (8.496×10⁻⁵), and the highest F-scores at both 
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thresholds (0.9229 at 0.005 and 0.9985 at 0.01). Compared to the same existing approaches, our method 

demonstrates a consistent advantage in reconstructive accuracy and surface completeness across both object 

categories. Including the illustration in Figures 6(a) to (d), which shows that the platform for stepping onto 

the truck is mostly away from the existing method, our method gets even more detailed in its reconstruction. 

These results validate the effectiveness of our approach in producing high-fidelity and topologically 

consistent 3D reconstructions, with notable improvements especially in strict evaluation regimes. 

 

 

 
(a) (b) (c) (d) 

 

Figure 6. Heatmap and explicit trucks illustrated by; (a) CAP-UDF, (b) LevelSet-UDF, (c) ours, and (d) an 

actual poly-mesh vehicle from left to right columns, respectively, sampling on ShapeNet dataset 

 

 

To assess the scalability and robustness of our method in complex environments, we conducted 

experiments on a wide-area lounge scene sampled from the Stanford 3D dataset. The evaluation was 

performed with a dense point distribution of 1,000 points per square meter and trained over 100k iterations. 

Table 3 reports quantitative comparisons with several state-of-the-art methods using Chamfer-L1,  

Chamfer-L2 (×10⁻⁶), and surface consistency metrics (↓ denotes better performance). 

 

 

Table 3. Evaluation over the exemplary specific indoor scene of a lounge scene with 1,000 points per square 

meter runs under 100k iterations (sampling of Stanford 3D dataset) 
Studies Chamfer-L1 ↓ Chamfer-L2 (10-6) ↓ Consistency ↓ 

Ground truth 0.0019 0.1575 0.0005 

Implicitly [44] 0.0078 0.8315 0.00031 
Anchor-UDF [47] 0.0045 0.5411 0.0002 

CAP-UDF [46] 0.0028 0.3254 0.00012 

Doungtap et al. [55] 0.0028 0.324 0.00012 
LevelSet-UDF [49] 0.0027 0.281 0.0001 

Ours 0.0026 0.2587 0.00009 

 

 

Our method achieves the best overall performance across all metrics. Specifically, it records the 

lowest Chamfer-L1 distance of 0.00257 and Chamfer-L2 distance of 0.2587×10⁻⁶, indicating improved 

geometric fidelity in capturing detailed spatial structures of the indoor environment. Our approach achieves 

the highest consistency with a minimal error of 0.00009, outperforming the previous best (LevelSet-UDF 

[49], 0.00010). 

Based on a subjective visual assessment of Figures 7(a) to (d), our object reconstructions are better 

than the reconstructions in the previous studies for both the overall indoor scene and a specific area, like the 

potted plant and the sofa. Our adjustment produces smoother, more complete objects, especially the trunk, 

leaves, and the furniture next to it, which are not fused. The reconstructions are less noisy and resemble the 

proper reference more closely. 
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(a) (b) (c) (d) 

 

Figure 7. Heatmap and explicit scenes illustrated by; (a) CAP-UDF, (b) LevelSet-UDF, (c) ours, and (d) a 

true poly-mesh wide scene from left to right columns, respectively, sampling on the Stanford 3D dataset 

 

 

These results underscore the effectiveness of our method in handling high-density, large-scale 

reconstruction tasks with superior accuracy and structural stability. The performance gains, especially in 

complex geometry and occlusions typical of indoor scenes, demonstrate the method’s practical applicability 

to real-world 3D scanning and scene understanding tasks. 

 

4.4.  Analysis and discussion 

Self-Consistency Capability: to evaluate the effectiveness of the proposed self-consistency 

regularization, we delve into the object-shaped comparison, like mesh-to-mesh distance, utilized by the  

L1-distance between predicted outputs and corresponding targets across two different categories: Vehicle 

(Van) and Garment (Dress). As clearly tabulated in Table 4, incorporating our self-regularization 

significantly improves performance, for example, in 1,000 points per square meter, particularly in the 

Garment (Dress) category. Without self-regularization, the L1-distance for Vehicle (Van) and Garment 

(Dress) is 0.00595 and 0.00917, respectively. With the proposed self-regularization, the L1-distance for 

Vehicle (Van) slightly decreases to 0.00586, and Garment (Dress) is substantially reduced to 0.00160. These 

results demonstrate that our regularization approach enhances consistency and reduces prediction error, 

especially for categories exhibiting higher variability or deformation.  

 

 

Table 4. Ablation studies and computation complexity with and without further self-regularization 

Techniques 

L1-distance (1,000 points/m2) L1-distance (10,000 points/m2) 

Vehicle  
(Van) 

Garment 
(Dress) 

Computational 
usage (GB) 

Vehicle  
(Van) 

Garment 
(Dress) 

Computational 
usage (GB) 

w/o self-regularization 

(ChamferL1 + Lproj + Lorth) 

0.00595 0.00917 3.9~6.8 0.00798 0.01251 6.1~7.8 

w/ proposed self-regularization 

(ChamferL1 + Lproj + Lorth + Lself) 

0.00586 0.00160 2.1~3.2 0.00670 0.00255 3.6~4.5 

 

 

Nevertheless, as expected, adding our self-regularization term, Lself, increases the computational 

overhead. For a point cloud density of 1,000 points per square meter, the baseline method (without  

self-regularization) required 3.9-6.8 GB of GPU memory. In contrast, the method incorporating Lself just 

consumed 2.1-3.2 GB. This usage represents a moderate decrease in memory usage. Even though it is 

primarily attributed to the storage of intermediate data and gradients necessary for calculating the additional 

loss term, we still utilize the memory computation more efficiently. This trend is even more pronounced with 

higher density point clouds. At 10,000 points per square meter, the memory usage for the baseline method 

rose to 6.1-7.8 GB, while our full function required 3.6-4.5 GB. The consistent decrease in memory 
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consumption across both density levels confirms that the self-regularization term diminishes a measurable 

computational burden to the training process. 

Resource Usage and Computational Complexity: Table 5 compares the proposed method with an 

existing baseline regarding model size, memory bandwidth, computational complexity, and runtime 

efficiency under the surface extraction setting. Our method demonstrates substantial improvements in both 

resource efficiency and computational scalability. Specifically, the number of parameters is reduced from 

approximately 463.1k to 147.2k, and the bandwidth usage decreases from 1.78 MB to 0.57 MB. Moreover, 

our method improves computational complexity from quadratic time, O(n²), in the existing approach to linear 

L time, O(L). 

 

 

Table 5. Model complexity (surface extraction and function perspectives) 

Approach 

Surface extraction setting 40k-iter time batch run (min) ↓ 

#Parameters Network bandwidth 
Complexity 

Vehicle  
Garment (Dress) 

(x 103 unit) ↓ (MB) ↓ (Van) 

Level projection [49] ~463.1 1.78 O(n2) ~18.0 ~23.5 

Ours ~147.2 0.57 
O(L) 

~13.5 ~12.3 

(x 1/3.2) (x 1/3.1) (x 1/1.3) (x 1/1.9) 

 

 

These improvements are reflected in the runtime performance as well. For the Vehicle (Van) 

category, batch run time is reduced from approximately 18.0 minutes to 13.5 minutes. For the Garment 

(Dress) category, the runtime decreases substantially—from 23.5 minutes to 12.3 minutes. These results 

highlight the efficiency and scalability of our approach, making it suitable for real-time or  

resource-constrained applications without compromising performance. 

Resource Usage from a Practical Deployment Perspective: from conceptual dynamic loading to 

further assess the practicality of our method, Table 6 presents a comparative analysis of resource 

consumption and processing efficiency in a real-world use case, specifically for the Garment (Dress) 

category aspect. A comparison is made between an existing high-performance server-based method and our 

proposed approach, which is designed for edge deployment. While the baseline leverages a powerful 

dedicated server equipped with typical hardware and achieves a reconstruction time of approximately 12.3 

minutes, it incurs a high transmission cost of about 11.3 minutes. It relies on human intervention for 

visualization by hand, making it less suitable for scalable or automated deployment. 

 

  

Table 6. Completed the up-down processing run through the given dress example 

 

 

In contrast, our method operates effectively on a significantly less powerful edge device with 

performance-limited hardware. Despite a longer reconstruction time (up to 21.2 minutes), our approach gives 

substantial advantages in downstream efficiency. The transmission cost is drastically reduced to around  

0.2 minutes, and the visualization cost is negligible, just 0.1 minutes following the automatic importing 

function as designed, leading to a total end-to-end processing time of around 21.5 minutes. This demonstrates 

that our method is well-suited for low-bandwidth, edge-level deployment scenarios, offering a favorable 

trade-off between computational load and operational autonomy. The transmission cost is evaluated under 

typical 100/1000 Gbps bandwidth settings, consistent across both approaches. 

Rendering Latency in Practical Use: before assessing runtime performance, we analyzed the 

geometric complexity of the generated mesh topologies, as it plays a crucial role in memory efficiency and 

rendering speed. In 3D graphics, vertices represent points in space, edges are straight lines connecting pairs 

of vertices, and faces (typically triangles) are planar surfaces defined by sets of edges. Together, these 

elements define the structure and density of a 3D mesh, with denser topologies often leading to higher 

computational and memory demands. As summarized in Table 7, our method produced the most compact 

mesh representation, with the fewest vertices (822.03K), edges (1,024.45K), and faces (408.95K), while also 

achieving the lowest memory consumption at 57.3 MB. These outputs indicate a more efficient 

representation without sacrificing structural integrity. 

Resource Thorough end-to-end pipeline processing time usage (min) 

Approach Topology Accelerator 
Reconstruction time 

cost ↓ 

Transmission time 

cost ↓ 
Visualization time cost ↓ Total ↓ 

[55] Server RTX 4060Ti ~12.3 ~11.3 N/A (Depends on time taken by man) 
Ours Edge RTX 2060S ~21.2 

(x 1.7) 

~0.2 

(x 1/56.5) 

~0.1 ~21.5 
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Table 7. Memory allocation in processing and visualizing the exemplary lounge scene 
Approach Mesh topology memory usage (MB) ↓ Vertices (x103) ↓ Edges (x103) ↓ Faces (a.k.a. triangles) (x103) ↓ 

[46] 57.5 827.62 1,031.52 411.80 
[55] 57.9 835.10 1040.36 415.01 

[49] 58.0 837.83 1,044.03 416.74 

Ours 57.3 822.03 1,024.45 408.95 

 

 

Following this, we conducted runtime performance testing using the Meta Quest 3 (which includes 

Snapdragon XR2 Gen2 processor and 8 GB of memory, rendering budget for 90 FPS and 11 ms at the 

default) to evaluate real-time rendering capabilities. As shown in Figure 8, our method attained the highest 

estimated frame rate reduced by highly rendering cost, such as topology bandwidth, vertex cost, and triangle 

cost for supporting rendering object-reconstructed task, reaching 58.5 FPS, outperforming other approaches 

such as the consistent-aware field [46] (58.3 FPS), Doungtap et al. [55] (58.1 FPS), and level-set projection 

[49] (58.0 FPS). These results highlight the effectiveness of our mesh optimization strategy in reducing 

computational overhead, enabling smoother and more responsive performance in memory-constrained,  

real-time environments. 

 

 

 
 

Figure 8. Estimated FPS calculated between memory usage and topology density run through Meta Quest 3 

equipment 

 

 

Discussion and Interpretation of Key Findings: we found that self-consistent contrastive learning 

correlates with the feasibility of better generalization and regeneration of higher-dimensional objects more 

smoothly and robustly, for instance, the relevance of findings between fitting and 3D sampling on an 

exemplary scene in Table 3 against Figure 7. The aggregated method in this study tended to have an 

inordinately smaller proportion of several resource perspectives; however, it still required a few higher 

computational complications to learn surfacing. Our findings indicate that higher algorithm complexity is not 

associated with poor performance in resurfacing from implicit clouds. The proposed method may benefit 

from debiasing the instances without negatively affecting the traditional query vectorization. In the 

meantime, this study investigated a comprehensive point-to-mesh object reconstruction and practical 

visualization on mobile-edge topology.  

However, additional in-depth studies may be required to confirm its actual uses and long-term 

robustness, particularly regarding the proposed self-consistent algorithm. Our findings show that adopting the 

approach to any constructive environment is more resilient than traditional methods. Future challenges may 

look into higher efficiency and seamless methods concurrently, such as for producing re-texturing and 

naturally moving surfaces. Furthermore, in aspects of edge-networking mechanism, the cross-on-device bi-

direction transfer may benefit this proposed reconstructive network in real-world implementation concretely. 

Deformation Scenario: in addition, we perform object reconstruction from the captured incomplete 

point set, such as those obstructed by obstacles, causing deformation as shown in Figures 9(a) to (e). Our 

approach demonstrates superior performance in reconstructing the fine-grained details of the non-rigid 

object. While the level-set projection method captures the general form, its output shows noticeable surface 
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artifacts and a lack of detail in the garment's folds. In contrast, our approach produces a cleaner, smoother 

mesh that more faithfully preserves the cloth’s intricate geometry and subtle deformations. Although this 

qualitative improvement highlights the robustness and precision of our method in handling the challenges of 

complex point cloud data, some minor surface irregularities are still present when compared to the flawless 

ground truth model. Technically, our reconstruction method does not have a human workload to correct some 

surface modifications. Even though it is better than the existing methods, this limitation of some defective 

surface areas may pose a challenge for the future to fulfill the surface with a self-awareness learning function 

automatically. 

 

 

  

 

(a) 

 

(b) 

  
(c) (d) (e) 

 

Figure 9. Comparison of apparel reconstruction from; (a) a deformed point cloud apparel, (b) level-set 

projection method, (c) ours, (d) absolute ground truth, and (e) reconstructive objects from an existing study 

(left) and ours (right) projected onto a scene 

 

 

5. CONCLUSION 

From the current state, creating new higher-dimensional assets is still scattered, and importing 

devices takes considerable time due to both downstream data transfer and visualization. With our continuous 

end-to-end pipeline, we first propose a self-supervised new object creation by reducing discrimination 

between the two regenerated instances to create a more flexible and unified topology surface, alongside 

creating a further structure to wrap and load dynamically on-the-fly for easy import instead of manual 

intervention. Recent observations indicate that the use of strong-weak consistent querying. Our key findings 

offer definitive proof that this phenomenon is linked to better reconstruction alteration, rather than being 

adopted by only the traditional querying method. The bench tests show that the implementation is resource-

dependent and performs efficiently from multiple perspectives. This processing includes using the new user-

facing edge network to create higher-resolution instances. Key findings are that it can be more human-centric 

and seamless through the following: In terms of efficiency, the generalization achieves mostly the lowest 

mesh reconstruction loss for the references given. Transporting 3D objects onto virtual projection devices, it 

is 56.5 times faster. Mapping data into those without human intervention takes just 0.1 seconds, including 

rendering speed, fewer generated mesh topologies, and higher FPS for visualization. All of this allows the 

proposed approach to demonstrate the initial capabilities of effortless creation and conversion systems. 

However, our following concerns still exist: the ability to persuade people to use the behavioral 

engagement tool remains uncertain. Using gamified incentives may help facilitate access. The terms of object 

re-creation functions included, but continuous improvement is still required to strengthen the mesh topology 

network potential further after extraction. 
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