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The increasing deployment of artificial intelligence (Al) in real-time and
edge applications intensified the demand for energy-efficient hardware
capable of high-throughput processing. Conventional digital processors were
constrained by sequential data processing, memory bandwidth limitations,
and high-power consumption, making them suboptimal for edge-based Al.
This review presented a comprehensive analysis of analog very-large-scale
integration  (VLSI) design approaches for neural network (NN)
implementation focusing on circuit-level architectures including in-memory
analog computing, current-mode circuits, switched-capacitor (SC)
techniques, and operational transconductance amplifier (OTA)-based
designs. Significant hardware design considerations such as process
variation, crossbar scalability, precision—linearity trade-offs, and mixed-
signal interface challenges were critically examined. Furthermore, training
methodologies—spanning  offline learning, circuit calibration, and
programmability were discussed in the context of analog Al hardware. The
review incorporated case studies, recent developments in edge deployment,
and a comparative analysis of advanced analog VLSI chips. Key
performance evaluation metrics such as accuracy, calibration overhead,
noise robustness, and energy per inference, were also addressed. Circuit-
level design aspects that impacted the performance, precision, and reliability
of analog computing blocks were discussed. The paper concluded by
identifying research gaps and future directions for the development of analog
Al hardware suitable for real-world edge applications.
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1. INTRODUCTION

The rapid developments in artificial intelligence (Al) have enlarged the necessity for hardware
accelerators capable of handling the computational demands of neural networks (NN). While digital
processors, such as CPUs, GPUs, encounter constraints in scalability, processing speed, and energy
consumption [1], [2]. Analog computing presents an alternative due to its potential for lower power
consumption and reduced latency. Analog very-large-scale integration (\VLSI) circuits utilize basic electrical
properties of devices to perform operations like multiplication and accumulation, avoiding the energy
overhead associated with digital switching [3]. By operating in the continuous domain with voltages and
currents, these circuits enable more compact and energy-efficient computation. Recent progress in device
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technologies, including memristors, resistive RAM (ReRAM), and floating-gate transistors, has extended the
possibilities for analog in-memory computing directly at the storage for data processing [4], [5]. This
facilitates the development of rapid, low-power inference engines well suited for edge Al applications.

Despite the significant analog VLSI NN implementations, there is a need for consolidated
assessments that highlight the present state of technology, identify challenges, and project future prospects.
Even though analog Al hardware is developing rapidly, the field of Al does not have an adequate
understanding of how various design choices compare in terms of effectiveness, scalability, and real-world
deployment. The present state of research frequently varies among many device kinds, circuit designs, and
assessment methodologies, which makes it challenging to draw insightful conclusions or direct future study.
In order to overcome this difficulty, this review combines recent research into a cohesive viewpoint.

Although analog systems have limitations such as reduced numerical precision, noise sensitivity,
and device variability, advances in circuit design and calibration techniques have improved their viability.
Increasing attention in edge intelligence and emerging device technologies spots analog VLSI as a
captivating tool for next-generation Al hardware [6]. Essential components such as operational
transconductance amplifiers (OTAS), capacitive multipliers, and current mirrors provide fundamental
functions like multiply-and-accumulate (MAC) in hardware [7]. Circuit-level simulation of these blocks
using tools such as LTspice can aid in analyzing gain nonlinearity, bandwidth limitations, and power-delay
trade-offs prior to physical implementation [8].

2. BACKGROUND: CLASSIFICATION OF ANALOG VLSI ARCHITECTURE FOR NEURAL
NETWORKS
NN implementations on analog VLSI exhibit design methodologies depending on the physical
realization of neural functions. These categories are summarized in Figure 1.
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Figure 1. Classification of analog VLSI architectures for NN

2.1. Operational transconductance amplifier-based architecture

OTA-based designs are preferred for their ability to convert voltage inputs into linear current
outputs, enabling efficient matrix-vector multiplications (MVVM). These architectures are advantageous in
low-power applications and the effective implementation of dense layers in NNs [1], [7]. Recent advances
integrate adaptive biasing and gain control to enhance the dynamic range and linearity of OTAs for
improving computational accuracy [8]. Figure 2 depicts an OTA-based neuron implementation used in
analog NNs illustrating differential pair configuration, biasing, and current-mode output.

2.2. Current-mode circuits

Current-mode circuits enable compact and power-efficient analog multiplication and summation by
processing signals. This approach reduces parasitic effects and supports high-speed operations [2]. These
circuits leverage current mirrors, translinear loops, and current conveyors to perform neural operations such
as weighted summation and activation. Stability and precision are improved through active feedback
mechanisms and current reflectors integrated within these circuits [9]. Their inherent suitability for low-
voltage operation and high-bandwidth signal processing makes them attractive for edge Al applications.
Figure 3 illustrates a current-mode neuron circuit commonly used in analog NNs. The design uses input and
output currents to function those benefits in deep submicron technologies such as low voltage operation, high
speed response, and improved scalability. The elements like biasing branches, translinear loops, and current
mirrors are integrated into the circuit to carry out analog activation and summing.
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Figure 2. An OTA-based artificial neuron Figure 3. Current mode neuron circuit

2.3. Switched-capacitor implementations

Switched-capacitor (SC) networks perform time-domain signal processing to control over weights
through charge transfer between capacitors. A typical SC circuit, as illustrated in Figure 4, uses
complementary switching phases to alternately sample and transfer charge emulating resistance. SC circuits
are compatible with mixed-signal systems and can interface with digital components [3]. Recent
implementations integrate non-volatile memory elements for adaptive tuning and reconfiguration, enhancing
system flexibility and programmability [10].

2.4. In-memory analog computing

In-memory analog computing (AIMC) architectures perform MAC operations by encoding weights
of memory cells. Using memristive crossbar arrays and Kirchhoff’s current law, these systems achieve
parallel current summation directly within the memory hardware [4], [5]. Recent research emphasizes on
improving device endurance, retention, and reducing device-to-device variability to enhance reliability in
analog memory arrays [6], [11]. Figure 5 illustrates a memristor-based crossbar array used for in-memory
analog computing. Each cross-point in the array consists of a programmable memristive device that stores the
weight value. Input voltages are applied to the word lines (rows), and the resulting output currents on the bit
lines (columns) represent the analog dot-product operation, enabling efficient matrix—vector multiplication
directly in memory. This architecture minimizes data movement and supports parallel computation, making it
highly suitable for energy-efficient NN inference at the edge.
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Figure 4. SC neuron circuit Figure 5. Memristor based crossbar array

3. METHODS: ANALOG HARDWARE PRIMITIVES FOR NEURAL NETWORKS

NN implementations using analog hardware depend on basic circuit elements to perform
accumulation, multiplication, and nonlinear activation. These hardware primitives design influences
performance parameters such as silicon area, computational throughput and energy efficiency. Neural
computation in analog VLSI depends on MVM is realized through capacitive charge-sharing techniques or
current-mode multipliers. An example is the high-throughput multiply-accumulate unit based on low-voltage
rapid single-flux quantum circuits, offers superior energy efficiency and is suitable for high-speed signal
processing applications [12]. Current-mode approaches require careful layout and design of current summing
nodes to avoid nonlinearity and signal loss over long interconnects.

Memory devices such as ferroelectric field-effect transistors (FEFETS) and ReRAM are integrated
into in-memory computing architectures for analog MVM. By improving the memory-compute bottleneck,
these devices enable local processing of neuronal weights [13]. Recent analog Al chips combine dense
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memory arrays with digital post-processing to enhance computational accuracy [14]. Analog activation
functions implemented using translinear elements or piecewise-linear circuits provide hardware-efficient and
cost-effective nonlinear functions like sigmoid or ReLU without relying on digital lookup tables [15]. To
maintain signal integrity across the neural processing pipeline, analog accumulators, integrators, and buffers
are essential. Design techniques such as offset cancellation, gain adjustment, and adaptive biasing are used to
offset thermal drift and device mismatch [16]. On-chip learning engines benefit from dynamic bias
management and floating-gate storage for improved reliability [17]. Table 1 compares the primary analog

hardware primitives used in NN implementations.

Table 1. Comparison of analog hardware primitives for NN implementation

Hardware primitive Key function Common implementation Strengths Limitation
Matrix-vector Core MAC operation Capacitive DACs, current-  High throughputs, Limited precision,
multiplier mode, and crossbars energy efficient susceptible to noise
Activation function Applies non-linearity to Translinear circuits, Low power, fast Limited flexibility for

neuron outputs differential pairs response complex functions
Analog mentor Store and process neural ~ ReRAM, FeFETS, and Enables in-memory Endurance, drift over
weights weights floating-gate transistors computing time
Accumulator Accumulates Charge integration circuits ~ Area efficient Leakage offset errors
integrator intermediate outputs
Signal conditioning Maintains signal Bias tuning, gain Improves analog Additional circuit
integrity amplifiers reliability complexity

3.1. Design considerations for analog primitives

Recent analog architectures highlight improved signal purity, inclusive training support and
continuous integration with digital systems. Important design aspects and techniques utilized in analog VLSI
neural hardware are discussed below:

3.1.1. Mixed-signal interfaces

Analog neural cores require analog-to-digital converter (ADC) and digital-to-analog converters
(DAC) to interface with digital control units, memory blocks, or input/output modules. The resolution,
sampling rate, and power efficiency of these converters affect overall system performance. For energy-
constrained edge devices, high-speed but low-resolution ADCs, such as successive-approximation register
ADCs, are adopted [18].

3.1.2. Precision and linearity trade-offs

Analog primitives have limitations due to device nonlinearity, thermal noise, and mismatch, which
degrade inference accuracy and signal fidelity compared to digital counterparts. To alleviate these effects,
digital correction, calibration circuits, and mixed-signal compensation techniques are mostly employed,
balancing circuit complexity against performance gains [19].

3.1.3. Scalability issues in crossbar arrays

Large-scale analog crosshar arrays used in in-memory MVM suffer from voltage drops, sneak-path
currents, and size-dependent performance degradation. Addressing these requires peripheral circuit
compensation, hierarchical array partitioning, and advanced materials engineering [20].

3.1.4. Process variation and reliability

Analog circuits exhibit higher sensitivity to fabrication process variations and environmental
changes. Reliability is enhanced trimming, feedback calibration, and on-chip learning mechanisms that adapt
dynamically to changing conditions over time and temperature. Recent work demonstrated improved
resilience of in-memory training hardware under asymmetry and variability through on-chip adaptation
mechanisms [21].

3.1.5. Circuit-level design aspects

At the transistor level, the implementation of analog primitives such as multipliers and integrators
require proper biasing and matching. OTA-based MAC units, current mirrors and capacitive integrators used
in analog computation must be optimized for linearity, offset, and temperature stability. A schematic of
analog MAC unit is shown in Figure 6. These units form the core computational engines in analog NN
hardware and influence accuracy, linearity, and power consumption. Layout techniques such as common-
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centroid placement and guard rings are employed to mitigate mismatch and noise coupling in
analog cores [22].
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Figure 6. Analog MAC block utilizing OTAs and current mirrors

For ultra-low power edge devices, OTA-based circuits work best, while in-memory computation
provides parallelism and scalability. Although current-mode circuits are excellent at high-speed operations,
they are sensitive to noise. Circuits using SC provide greater accuracy at the expense of area efficiency.
Table 2 provides a comparative summary of major analog VLSI architectures in terms of power efficiency,
computational speed, silicon area, and scalability.

Table 2. Comparative summary of analog VLSI architectures

Architecture Power Speed Area Scalability Key strength
OTA-based Very low  Moderate  Small Moderate Energy efficiency
In-memory computing  Low High High density  High Parallelism, density
Current-mode circuits ~ Low Very high  Moderate Limited by noise  High-speed ops
SC Moderate  Moderate  Area-heavy  Limited Precision control

4. METHODS: TRAINING CHALLENGES AND DEPLOYMENT STRATEGIES
4.1. Training techniques and circuit calibration

Training NNs on analog hardware presents several challenges as non-idealities, unpredictability, and
restricted programmability of the device. Analog circuits use voltage levels, currents, or the physical states of
memory units to encode parameters, in contrast to digital systems that use floating-point arithmetic to update
weights exactly. This complicates convergence during training by introducing drift, restricted update
granularity, and stochastic behaviour.

Offline training is a popular method in which the final weights are transmitted to the analog
hardware after the network has been trained in a high-precision digital simulation. This reduces adaptability
but avoids the complexity of in-situ training. This has been addressed by hybrid training loops that enable
partial learning in hardware by fusing digital back propagation with analog forward passes [22], [23]. In
addition, circuit-level calibration methods including bias tuning, redundancy, and closed-loop correction have
been incorporated into analog designs to preserve accuracy when temperature and temporal drift are present
[24]. These techniques are important in fluctuating edge situations for long-term deployment. Common
deployment issues are compiled in the Table 3, along with mitigation techniques.

Table 3. Deployment challenges and strategies in analog VLSI NN for edge Al

Challenges Mitigation strategy
Device non-linearity Use of linearizing circuits, compensation algorithms
Process variation Statistical calibration, adaptive tuning
Limited bit precision Quantization-aware training, redundancy
Temperature drift On-chip thermal sensors and dynamic recalibration

Weight retention in NVMs  Periodic refresh, write-verification loops

4.2. Programmability in analog hardware

One of the fundamental constraints for analog VLSI is programmability. Post-deployment
modifications are challenging because the majority of analog accelerators are designed for fixed network
topologies and weight distributions. Programmable non-volatile memories, such as resistive-RAM and
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electrochemical-RAM, are used as weight stores in some designs; nevertheless, frequent programming causes

endurance problems and the accumulation of analog noise [25]. Modular cores and reconfigurable

interconnects have been investigated recently, allowing for some flexibility in data flow and model structure

[26]. However, the degree of programmability is still significantly lower than that of digital accelerators,

necessitating early development co-design with the model architecture. An explicit workflow spanning from

training to inference is required for the implementation of analog VLSI devices for NN. Training in digital

systems starts offline, and then the trained weights are converted into analog representation for storage in

RRAM or memristive devices. Analog circuits carry out the required calculations during inference, while

DAC:s are used to transform the outputs back to digital format. This procedure guarantees great accuracy and

energy-efficient calculation. An analog Al inference workflow combines digital training with analog

inference to enhance energy efficiency, throughput, and memory utilization, as outlined in the following key

stages:

— Offline training: model is trained using high-precision floating-point arithmetic in digital systems
(GPUs).

— Digital-to-analog weight conversion: trained weights are encoded into analog form for storage in non-
volatile memory (memristors or RRAM).

— Analog inference: inference computations are performed using low-power analog circuits.

— Digital output conversion: DACs convert analog results to digital outputs for post-processing.

— Optional feedback loop: used for calibration and performance refinement.

4.3. Deployment considerations for edge artificial intelligence

Analog NN implementation at the edge has system-level limitations. Because of its low energy
consumption per operation, analog computing is appealing because power efficiency and silicon area are the
top concerns. However, issues including resistance to environmental noise, real-time inference delay, and
integrating with digital sensors need to be resolved. Additionally, as analog systems expand beyond small
network sizes, scalability problems arise. In order to minimize latency and energy overhead, co-integration
with ADC/DAC interfaces and hierarchical memory access patterns is necessary [27]. Several analog
accelerators have proven to be capable of processing images and signals in real time while adhering to
stringent edge-power budgets [28]. A comparison of the analog and digital techniques to edge Al deployment
is presented in the Table 4.

Table 4. Comparison of analog and digital approaches in edge Al

Metrics Analog VLSI Digital processors
Power consumption  Ultra-low (nW—uW range) Higher (MW-W range)
Inference latency Extremely low (~ns—s) Moderate (~ps—ms)
Precision Low to moderate (4-8 bits) High (8-32 bits)
Avrea efficiency High due to in-memory computation ~ Lower due to separate memory and logic
Scalability Limited by crossbar size and noise Easier with standard process nodes

Programmability Moderate (via NVM or floating gate)  High (via software updates)

4.4. Comparison of recent analog very-large-scale integration chips

Table 5 presents a comparison of selected recent analog VLSI chips targeting NN acceleration.
These chips reflect diverse design approaches for advancing analog NN, with an emphasis on low power
consumption and in-memory computing.

Table 5. Comparison of recent analog VLSI chips for edge Al applications

Chip/architecture Technology (mm) Architecture type Application Notable features
IBM analog Al chip 14 Memristive crosshar DNN inference High accuracy, in-situ training ability
Cerebras WSE 16 Mixed-signal array Large-scale DNNs  High throughput, energy efficient
Brain chip Akida 28 Event-driven analog Edge Al Low power spiking NN accelerator
Mythic analog 65 Analog matrix processor  Edge inference High-density analog matrix, low latency
matrix processor
ISAAC accelerator 45 RRAM-based crosshar CNN inference In-memory computing, scalable arrays

4.5. Case studies
Recent research explores deploying analog VLSI chips in image recognition, biomedical sensing,
and real-time classification tasks. For instance, the Akida chip has been used in wearable EEG classification,
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and the Mythic processor supports object detection at the edge. Emerging trends in deployment strategies

include:

— In-memory computing: advances in ReRAM and phase-change memory (PCM) enable direct computation
within memory arrays, minimizing memory access latency and energy use [27].

— Hybrid analog-digital systems: combining analog inference units with digital control logic improves
system adaptability and enables real-world applications [22], [25].

— Crossbar arrays for ai acceleration: analog crossbars are essential for fast, efficient MVM, as seen in
accelerators like Mythic’s AMP [29] and ISAAC [30].

Targeting smart sensors and internet of things (10T) nodes, co-packaging of analog Al modules with
microcontrollers is becoming more popular. These hybrid systems preserve digital programmability while
leveraging the ultra-efficient inference capabilities of analog circuits. Analog Al modules are increasingly
being used in conjunction with microcontrollers to combine the efficiency of analog circuits with the
flexibility of digital control for application in smart sensors and 10T devices. Similarly, companies like
Qualcomm and HP Labs are evolving this trend by incorporating memristive technologies, which offer non-
volatile memory and low-latency Al processing, into edge Al platforms [31]. These developments emphasize
the transition of analog VLSI from a research area to a mainstream solution for scalable and efficient edge
intelligence.

5.  RESULTS: HARDWARE INNOVATIONS AND INTEGRATION
5.1. Device-level technologies and memory integration

The performance of analog NN accelerators depends on the underlying device technologies used for
computation and memory storage. Emerging non-volatile memory devices such as RRAM, PCM, FeFETSs,
and floating-gate transistors have gained significant attention due to their suitability for analog
programmability and non-volatile weight storage.

Among these, RRAM-based crossbar arrays are especially promising due to their low power
consumption, high integration density, and compatibility with CMOS processes. However, challenges
including non-ideal switching characteristics, resistance drift, device-to-device variability, and degradation
with cycling remain significant barriers to widespread adoption [32], [33]. To address these, techniques such
as differential pair configurations to cancel common mode variations, write-verify tuning schemes, and
digital-assisted analog tuning have been employed and demonstrated to improve accuracy and
reliability [34], [35].

Practical implementations like the Mythic Analog Matrix Processor and Syntiant’s NDP200
illustrate how analog computing blocks can be integrated with on-chip flash or RRAM to enable inference at
microwatt-level power [36], [37]. Furthermore, temperature-aware programming algorithms and selector
integration are increasingly employed to enhance analog weight stability and endurance in edge-Al
environments [38].

5.2. Integration challenges in analog-centric systems

Analog-centric systems face significant integration hurdles due to the inherent differences in signal
domains, noise sensitivity, and design methodologies when interfacing with digital and mixed-signal blocks.
Power supply fluctuations, substrate coupling, and capacitive crosstalk can impact analog signal fidelity,
especially in dense edge devices. Designers employ shielded interconnect routing, layout symmetry, and deep
n-well isolation to minimize analog signal degradation [39]. Moreover, calibration circuitry is often
embedded on-chip to dynamically adjust offset and gain errors resulting from temperature or process
variations. Unlike digital blocks that scale predictably with technology nodes, analog arrays require
meticulous layout tuning to preserve linearity and matching. In recent designs, such as the IBM analog Al
Core and SambaNova Reconfigurable Dataflow Unit, careful partitioning of analog tiles, along with
hierarchical interconnects and programmable digital overlays, are employed to balance flexibility with
performance [40], [41].

To ensure robust deployment, some analog architectures utilize hardware-in-the-loop calibration,
where digital units assist analog computations during runtime. This hybrid analog—digital approach has
shown success in commercial chips like Brain Chip Akida and Aspinity AML100, offering ultra-low-power
operation with enhanced reliability in noisy or dynamic environments [42], [43]. Circuit-level techniques
such as differential signaling, deep n-well isolation, and bias tuning circuits are integrated to reduce substrate
coupling and supply noise. Low-voltage analog Al cores tend to be susceptible to distortion and drift, which
are influenced by the design of the analog devices. To reduce mismatch and nonlinearity across
computational arrays, precise transistor sizing, layout symmetry, and matching are crucial in highly scaled
analog circuits [44].
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5.3. Layout-aware design and mixed signal integration

Analog neural accelerators are particularly susceptible to layout-level problems including parasitic,
device mismatch, and noise coupling from digital logic. Techniques like common-centroid placement, guard
rings, and shielded routing are crucial for maintaining signal integrity in OTAs and current mirrors. In order
to minimize interference in mixed-signal system-on-chip (SoC) integration, an analog core should be placed
near memory and separated from noisy digital blocks [45]. The development of automated, layout-aware
analog design tools has considerably simplified this process. For instance, floor planning enabled by
reinforcement learning greatly enhanced layout quality by cutting down on space and wire length and
accelerating up layout times [46].

6. RESULTS AND DISCUSSION: BENCHMARKING AND PERFORMANCE EVALUATION
With rapid growth in analog VLSI NN topologies, it is necessary to have robust benchmarking

frameworks to evaluate their practicality [47]. Analog systems' distinct trade-offs are captured by

conventional metrics because of basic differences in computation, memory, and noise behavior from digital

equivalents [48]. Effective benchmarking must take into account both algorithmic accuracy and hardware-

specific figures of merit to provide balanced comparisons [49]. Commonly used evaluation metrics include:

— Energy per inference: for edge jobs, analog accelerators usually aim for sub-micro joule levels per
inference.

— Area efficiency: measures computational density for chip integration in resource-constrained devices.

— Throughput: determines processing rate, often influenced by analog signal settling times.

— Latency: inference delay from input to output, crucial for real-time applications.

— Robustness to noise: indicates model degradation under environmental or device noise.

— Calibration overhead: captures the time and resources required to maintain system performance over time,
such as compensation for drift and temperature variation.

6.1. Task-oriented benchmarks

Typically, analog accelerators are designed for particular edge Al applications including sensor
fusion, keyword identification, and image classification. Task-specific benchmarks are therefore more
beneficial than general ones. Although caution must be taken when comparing results across different
hardware settings, benchmarks like MNIST and Google Speech Commands are still often employed [50].

6.2. Cross-platform comparisons

Cross-platform evaluation remains challenging due to the hybrid nature of analog-digital systems
and differences in device technologies and architectures. Compound metrics like the energy-accuracy product
(EAP) or throughput per watt are commonly used to capture overall system efficiency by considering
accuracy and hardware cost factors [51]. Additionally, essential metrics like dynamic range, noise margins,
and gain linearity for analog building blocks are evaluated with the help of circuit-level simulations.
Calibration routines rely on on-chip circuit techniques like DAC tuning and analog memory compensation to
ensure linearity and accuracy in inference [52]. These evaluation frameworks are crucial to enabling the
reliable deployment of analog Al systems across diverse hardware platforms and edge computing
environments.

6.3. Benchmarking case study

MNIST classification on an OTA-based accelerator is taken into consideration [53]. With 10 us
latency, the system derived ~0.5 pl/inference at same accuracy (96%). In-memory crossbar systems for
CIFAR-10 [54] showed greater throughput but needed to be calibrated. Furthermore, recent research has
shown that analog neuromorphic circuitry may approach digital baselines with ~98% accuracy on MNIST
while preserving energy gains [45]. On the CIFAR-10, hybrid analog synapse circuits [46] have also
demonstrated competitive performance, underscoring the trade-off between density and calibration overhead.

7. CONCLUSION

Exploring analog VLSI designs for NN has created possibilities for low-latency, energy-efficient Al
computation for edge deployment. This review has examined the trade-offs involved in analog Al
implementations, focusing on architectural classifications, hardware primitives, training challenges, system-
level integration, and performance evaluation. Several key areas are likely to shape the future trajectory of
analog VLSI systems for Al: i) device scalability and reliability: although emerging memory technologies
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such as RRAM and PCM enable dense analog weight storage, they still face challenges like drift, limited
endurance, and variability. Future work must address these issues through robust encoding schemes and more
stable material innovations; ii) reconfigurability and on-chip learning: because of their restricted
programmability, the majority of analog accelerators on the market today prefer inference-only modes. Their
versatility could be enhanced through the development of efficient on-device learning techniques and
customizable hardware; and iii) hybrid system design: it will continue to be crucial to integrate digital logic
seamlessly, including with ADC/DAC interfaces and calibration devices. A practical solution is provided by
hybrid analog-digital systems that can dynamically share computation across domains.

Analog VLSI systems offer ultra-low power consumption, high computational density, and bio-
inspired architectures that suit edge-Al use cases. Although the field remains specialized, it is evolving
rapidly. Transforming current prototypes into scalable, deployable Al systems will require continued
collaboration across device physics, circuit design, Al algorithms, and system integration. Ensuring circuit-
level robustness through layout symmetry, noise isolation, and analog calibration will be essential for
building reliable, low-power analog Al systems for real-world deployment.
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