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 The increasing deployment of artificial intelligence (AI) in real-time and 

edge applications intensified the demand for energy-efficient hardware 

capable of high-throughput processing. Conventional digital processors were 

constrained by sequential data processing, memory bandwidth limitations, 

and high-power consumption, making them suboptimal for edge-based AI. 

This review presented a comprehensive analysis of analog very-large-scale 

integration (VLSI) design approaches for neural network (NN) 

implementation focusing on circuit-level architectures including in-memory 

analog computing, current-mode circuits, switched-capacitor (SC) 

techniques, and operational transconductance amplifier (OTA)-based 

designs. Significant hardware design considerations such as process 

variation, crossbar scalability, precision–linearity trade-offs, and mixed-

signal interface challenges were critically examined. Furthermore, training 

methodologies—spanning offline learning, circuit calibration, and 

programmability were discussed in the context of analog AI hardware. The 

review incorporated case studies, recent developments in edge deployment, 

and a comparative analysis of advanced analog VLSI chips. Key 

performance evaluation metrics such as accuracy, calibration overhead, 

noise robustness, and energy per inference, were also addressed. Circuit-

level design aspects that impacted the performance, precision, and reliability 

of analog computing blocks were discussed. The paper concluded by 

identifying research gaps and future directions for the development of analog 

AI hardware suitable for real-world edge applications. 
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1. INTRODUCTION 

The rapid developments in artificial intelligence (AI) have enlarged the necessity for hardware 

accelerators capable of handling the computational demands of neural networks (NN). While digital 

processors, such as CPUs, GPUs, encounter constraints in scalability, processing speed, and energy 

consumption [1], [2]. Analog computing presents an alternative due to its potential for lower power 

consumption and reduced latency. Analog very-large-scale integration (VLSI) circuits utilize basic electrical 

properties of devices to perform operations like multiplication and accumulation, avoiding the energy 

overhead associated with digital switching [3]. By operating in the continuous domain with voltages and 

currents, these circuits enable more compact and energy-efficient computation. Recent progress in device 

https://creativecommons.org/licenses/by-sa/4.0/
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technologies, including memristors, resistive RAM (ReRAM), and floating-gate transistors, has extended the 

possibilities for analog in-memory computing directly at the storage for data processing [4], [5]. This 

facilitates the development of rapid, low-power inference engines well suited for edge AI applications. 

Despite the significant analog VLSI NN implementations, there is a need for consolidated 

assessments that highlight the present state of technology, identify challenges, and project future prospects. 

Even though analog AI hardware is developing rapidly, the field of AI does not have an adequate 

understanding of how various design choices compare in terms of effectiveness, scalability, and real-world 

deployment. The present state of research frequently varies among many device kinds, circuit designs, and 

assessment methodologies, which makes it challenging to draw insightful conclusions or direct future study. 

In order to overcome this difficulty, this review combines recent research into a cohesive viewpoint. 

Although analog systems have limitations such as reduced numerical precision, noise sensitivity, 

and device variability, advances in circuit design and calibration techniques have improved their viability. 

Increasing attention in edge intelligence and emerging device technologies spots analog VLSI as a 

captivating tool for next-generation AI hardware [6]. Essential components such as operational 

transconductance amplifiers (OTAs), capacitive multipliers, and current mirrors provide fundamental 

functions like multiply-and-accumulate (MAC) in hardware [7]. Circuit-level simulation of these blocks 

using tools such as LTspice can aid in analyzing gain nonlinearity, bandwidth limitations, and power-delay 

trade-offs prior to physical implementation [8]. 

 

 

2. BACKGROUND: CLASSIFICATION OF ANALOG VLSI ARCHITECTURE FOR NEURAL 

NETWORKS 

NN implementations on analog VLSI exhibit design methodologies depending on the physical 

realization of neural functions. These categories are summarized in Figure 1. 
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Figure 1. Classification of analog VLSI architectures for NN 

 

 

2.1.  Operational transconductance amplifier-based architecture 

OTA-based designs are preferred for their ability to convert voltage inputs into linear current 

outputs, enabling efficient matrix-vector multiplications (MVM). These architectures are advantageous in 

low-power applications and the effective implementation of dense layers in NNs [1], [7]. Recent advances 

integrate adaptive biasing and gain control to enhance the dynamic range and linearity of OTAs for 

improving computational accuracy [8]. Figure 2 depicts an OTA-based neuron implementation used in 

analog NNs illustrating differential pair configuration, biasing, and current-mode output. 

 

2.2.  Current-mode circuits 

Current-mode circuits enable compact and power-efficient analog multiplication and summation by 

processing signals. This approach reduces parasitic effects and supports high-speed operations [2]. These 

circuits leverage current mirrors, translinear loops, and current conveyors to perform neural operations such 

as weighted summation and activation. Stability and precision are improved through active feedback 

mechanisms and current reflectors integrated within these circuits [9]. Their inherent suitability for low-

voltage operation and high-bandwidth signal processing makes them attractive for edge AI applications. 

Figure 3 illustrates a current-mode neuron circuit commonly used in analog NNs. The design uses input and 

output currents to function those benefits in deep submicron technologies such as low voltage operation, high 

speed response, and improved scalability. The elements like biasing branches, translinear loops, and current 

mirrors are integrated into the circuit to carry out analog activation and summing. 
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Figure 2. An OTA-based artificial neuron 

 

Figure 3. Current mode neuron circuit 

 

 

2.3.  Switched-capacitor implementations 

Switched-capacitor (SC) networks perform time-domain signal processing to control over weights 

through charge transfer between capacitors. A typical SC circuit, as illustrated in Figure 4, uses 

complementary switching phases to alternately sample and transfer charge emulating resistance. SC circuits 

are compatible with mixed-signal systems and can interface with digital components [3]. Recent 

implementations integrate non-volatile memory elements for adaptive tuning and reconfiguration, enhancing 

system flexibility and programmability [10]. 

 

2.4.  In-memory analog computing 

In-memory analog computing (AIMC) architectures perform MAC operations by encoding weights 

of memory cells. Using memristive crossbar arrays and Kirchhoff’s current law, these systems achieve 

parallel current summation directly within the memory hardware [4], [5]. Recent research emphasizes on 

improving device endurance, retention, and reducing device-to-device variability to enhance reliability in 

analog memory arrays [6], [11]. Figure 5 illustrates a memristor-based crossbar array used for in-memory 

analog computing. Each cross-point in the array consists of a programmable memristive device that stores the 

weight value. Input voltages are applied to the word lines (rows), and the resulting output currents on the bit 

lines (columns) represent the analog dot-product operation, enabling efficient matrix–vector multiplication 

directly in memory. This architecture minimizes data movement and supports parallel computation, making it 

highly suitable for energy-efficient NN inference at the edge. 

 

 

  
 

Figure 4. SC neuron circuit 

 

Figure 5. Memristor based crossbar array 

 

 

3. METHODS: ANALOG HARDWARE PRIMITIVES FOR NEURAL NETWORKS 

NN implementations using analog hardware depend on basic circuit elements to perform 

accumulation, multiplication, and nonlinear activation. These hardware primitives design influences 

performance parameters such as silicon area, computational throughput and energy efficiency. Neural 

computation in analog VLSI depends on MVM is realized through capacitive charge-sharing techniques or 

current-mode multipliers. An example is the high-throughput multiply-accumulate unit based on low-voltage 

rapid single-flux quantum circuits, offers superior energy efficiency and is suitable for high-speed signal 

processing applications [12]. Current-mode approaches require careful layout and design of current summing 

nodes to avoid nonlinearity and signal loss over long interconnects. 

Memory devices such as ferroelectric field-effect transistors (FeFETs) and ReRAM are integrated 

into in-memory computing architectures for analog MVM. By improving the memory-compute bottleneck, 

these devices enable local processing of neuronal weights [13]. Recent analog AI chips combine dense 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 6, December 2025: 4399-4410 

4402 

memory arrays with digital post-processing to enhance computational accuracy [14]. Analog activation 

functions implemented using translinear elements or piecewise-linear circuits provide hardware-efficient and 

cost-effective nonlinear functions like sigmoid or ReLU without relying on digital lookup tables [15]. To 

maintain signal integrity across the neural processing pipeline, analog accumulators, integrators, and buffers 

are essential. Design techniques such as offset cancellation, gain adjustment, and adaptive biasing are used to 

offset thermal drift and device mismatch [16]. On-chip learning engines benefit from dynamic bias 

management and floating-gate storage for improved reliability [17]. Table 1 compares the primary analog 

hardware primitives used in NN implementations. 
 

 

Table 1. Comparison of analog hardware primitives for NN implementation 
Hardware primitive Key function Common implementation Strengths Limitation 

Matrix-vector 

multiplier 

Core MAC operation Capacitive DACs, current- 

mode, and crossbars 

High throughputs, 

energy efficient 

Limited precision, 

susceptible to noise 

Activation function Applies non-linearity to 

neuron outputs 

Translinear circuits, 

differential pairs 

Low power, fast 

response 

Limited flexibility for 

complex functions 

Analog mentor 

weights 

Store and process neural 

weights 

ReRAM, FeFETs, and 

floating-gate transistors 

Enables in-memory 

computing 

Endurance, drift over 

time 
Accumulator 

integrator 

Accumulates 

intermediate outputs 

Charge integration circuits Area efficient Leakage offset errors 

Signal conditioning Maintains signal 
integrity 

Bias tuning, gain 
amplifiers 

Improves analog 
reliability 

Additional circuit 
complexity 

 

 

3.1.  Design considerations for analog primitives 

Recent analog architectures highlight improved signal purity, inclusive training support and 

continuous integration with digital systems. Important design aspects and techniques utilized in analog VLSI 

neural hardware are discussed below: 

 

3.1.1. Mixed-signal interfaces 

Analog neural cores require analog-to-digital converter (ADC) and digital-to-analog converters 

(DAC) to interface with digital control units, memory blocks, or input/output modules. The resolution, 

sampling rate, and power efficiency of these converters affect overall system performance. For energy-

constrained edge devices, high-speed but low-resolution ADCs, such as successive-approximation register 

ADCs, are adopted [18]. 

 

3.1.2. Precision and linearity trade-offs 

Analog primitives have limitations due to device nonlinearity, thermal noise, and mismatch, which 

degrade inference accuracy and signal fidelity compared to digital counterparts. To alleviate these effects, 

digital correction, calibration circuits, and mixed-signal compensation techniques are mostly employed, 

balancing circuit complexity against performance gains [19]. 

 

3.1.3. Scalability issues in crossbar arrays 

Large-scale analog crossbar arrays used in in-memory MVM suffer from voltage drops, sneak-path 

currents, and size-dependent performance degradation. Addressing these requires peripheral circuit 

compensation, hierarchical array partitioning, and advanced materials engineering [20]. 

 

3.1.4. Process variation and reliability 

Analog circuits exhibit higher sensitivity to fabrication process variations and environmental 

changes. Reliability is enhanced trimming, feedback calibration, and on-chip learning mechanisms that adapt 

dynamically to changing conditions over time and temperature. Recent work demonstrated improved 

resilience of in-memory training hardware under asymmetry and variability through on-chip adaptation 

mechanisms [21]. 

 

3.1.5. Circuit-level design aspects 

At the transistor level, the implementation of analog primitives such as multipliers and integrators 

require proper biasing and matching. OTA-based MAC units, current mirrors and capacitive integrators used 

in analog computation must be optimized for linearity, offset, and temperature stability. A schematic of 

analog MAC unit is shown in Figure 6. These units form the core computational engines in analog NN 

hardware and influence accuracy, linearity, and power consumption. Layout techniques such as common-
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centroid placement and guard rings are employed to mitigate mismatch and noise coupling in  

analog cores [22]. 

 

 

 
 

Figure 6. Analog MAC block utilizing OTAs and current mirrors 

 

 

For ultra-low power edge devices, OTA-based circuits work best, while in-memory computation 

provides parallelism and scalability. Although current-mode circuits are excellent at high-speed operations, 

they are sensitive to noise. Circuits using SC provide greater accuracy at the expense of area efficiency. 

Table 2 provides a comparative summary of major analog VLSI architectures in terms of power efficiency, 

computational speed, silicon area, and scalability. 

 

 

Table 2. Comparative summary of analog VLSI architectures 
Architecture Power Speed Area Scalability Key strength 

OTA-based Very low Moderate Small Moderate Energy efficiency 
In-memory computing Low High High density High Parallelism, density 

Current-mode circuits Low Very high Moderate Limited by noise High-speed ops 

SC Moderate Moderate Area-heavy Limited Precision control 

 

 

4. METHODS: TRAINING CHALLENGES AND DEPLOYMENT STRATEGIES 

4.1.  Training techniques and circuit calibration 

Training NNs on analog hardware presents several challenges as non-idealities, unpredictability, and 

restricted programmability of the device. Analog circuits use voltage levels, currents, or the physical states of 

memory units to encode parameters, in contrast to digital systems that use floating-point arithmetic to update 

weights exactly. This complicates convergence during training by introducing drift, restricted update 

granularity, and stochastic behaviour. 

Offline training is a popular method in which the final weights are transmitted to the analog 

hardware after the network has been trained in a high-precision digital simulation. This reduces adaptability 

but avoids the complexity of in-situ training. This has been addressed by hybrid training loops that enable 

partial learning in hardware by fusing digital back propagation with analog forward passes [22], [23]. In 

addition, circuit-level calibration methods including bias tuning, redundancy, and closed-loop correction have 

been incorporated into analog designs to preserve accuracy when temperature and temporal drift are present 

[24]. These techniques are important in fluctuating edge situations for long-term deployment. Common 

deployment issues are compiled in the Table 3, along with mitigation techniques. 
 
 

Table 3. Deployment challenges and strategies in analog VLSI NN for edge AI 
Challenges Mitigation strategy 

Device non-linearity Use of linearizing circuits, compensation algorithms 
Process variation Statistical calibration, adaptive tuning 
Limited bit precision Quantization-aware training, redundancy 
Temperature drift On-chip thermal sensors and dynamic recalibration 
Weight retention in NVMs Periodic refresh, write-verification loops 

 

 

4.2.  Programmability in analog hardware 

One of the fundamental constraints for analog VLSI is programmability. Post-deployment 

modifications are challenging because the majority of analog accelerators are designed for fixed network 

topologies and weight distributions. Programmable non-volatile memories, such as resistive-RAM and 
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electrochemical-RAM, are used as weight stores in some designs; nevertheless, frequent programming causes 

endurance problems and the accumulation of analog noise [25]. Modular cores and reconfigurable 

interconnects have been investigated recently, allowing for some flexibility in data flow and model structure 

[26]. However, the degree of programmability is still significantly lower than that of digital accelerators, 

necessitating early development co-design with the model architecture. An explicit workflow spanning from 

training to inference is required for the implementation of analog VLSI devices for NN. Training in digital 

systems starts offline, and then the trained weights are converted into analog representation for storage in 

RRAM or memristive devices. Analog circuits carry out the required calculations during inference, while 

DACs are used to transform the outputs back to digital format. This procedure guarantees great accuracy and 

energy-efficient calculation. An analog AI inference workflow combines digital training with analog 

inference to enhance energy efficiency, throughput, and memory utilization, as outlined in the following key 

stages: 

− Offline training: model is trained using high-precision floating-point arithmetic in digital systems 

(GPUs). 

− Digital-to-analog weight conversion: trained weights are encoded into analog form for storage in non-

volatile memory (memristors or RRAM). 

− Analog inference: inference computations are performed using low-power analog circuits. 

− Digital output conversion: DACs convert analog results to digital outputs for post-processing. 

− Optional feedback loop: used for calibration and performance refinement. 

 

4.3.  Deployment considerations for edge artificial intelligence 

Analog NN implementation at the edge has system-level limitations. Because of its low energy 

consumption per operation, analog computing is appealing because power efficiency and silicon area are the 

top concerns. However, issues including resistance to environmental noise, real-time inference delay, and 

integrating with digital sensors need to be resolved. Additionally, as analog systems expand beyond small 

network sizes, scalability problems arise. In order to minimize latency and energy overhead, co-integration 

with ADC/DAC interfaces and hierarchical memory access patterns is necessary [27]. Several analog 

accelerators have proven to be capable of processing images and signals in real time while adhering to 

stringent edge-power budgets [28]. A comparison of the analog and digital techniques to edge AI deployment 

is presented in the Table 4. 

 

 

Table 4. Comparison of analog and digital approaches in edge AI 
Metrics Analog VLSI Digital processors 

Power consumption Ultra-low (nW–µW range) Higher (mW–W range) 
Inference latency Extremely low (~ns–µs) Moderate (~µs–ms) 
Precision Low to moderate (4–8 bits) High (8–32 bits) 
Area efficiency High due to in-memory computation Lower due to separate memory and logic 
Scalability Limited by crossbar size and noise Easier with standard process nodes 
Programmability Moderate (via NVM or floating gate) High (via software updates) 

 

 

4.4.  Comparison of recent analog very-large-scale integration chips 

Table 5 presents a comparison of selected recent analog VLSI chips targeting NN acceleration. 

These chips reflect diverse design approaches for advancing analog NN, with an emphasis on low power 

consumption and in-memory computing. 

 

 

Table 5. Comparison of recent analog VLSI chips for edge AI applications 
Chip/architecture Technology (mm) Architecture type Application Notable features 

IBM analog AI chip 14 Memristive crossbar DNN inference High accuracy, in-situ training ability 
Cerebras WSE 16 Mixed-signal array Large-scale DNNs High throughput, energy efficient 

Brain chip Akida 28 Event-driven analog Edge AI Low power spiking NN accelerator 

Mythic analog 
matrix processor 

65 Analog matrix processor Edge inference High-density analog matrix, low latency 

ISAAC accelerator 45 RRAM-based crossbar CNN inference In-memory computing, scalable arrays 

 

 

4.5.  Case studies 

Recent research explores deploying analog VLSI chips in image recognition, biomedical sensing, 

and real-time classification tasks. For instance, the Akida chip has been used in wearable EEG classification, 
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and the Mythic processor supports object detection at the edge. Emerging trends in deployment strategies 

include: 

− In-memory computing: advances in ReRAM and phase-change memory (PCM) enable direct computation 

within memory arrays, minimizing memory access latency and energy use [27]. 

− Hybrid analog-digital systems: combining analog inference units with digital control logic improves 

system adaptability and enables real-world applications [22], [25]. 

− Crossbar arrays for ai acceleration: analog crossbars are essential for fast, efficient MVM, as seen in 

accelerators like Mythic’s AMP [29] and ISAAC [30]. 

Targeting smart sensors and internet of things (IoT) nodes, co-packaging of analog AI modules with 

microcontrollers is becoming more popular. These hybrid systems preserve digital programmability while 

leveraging the ultra-efficient inference capabilities of analog circuits. Analog AI modules are increasingly 

being used in conjunction with microcontrollers to combine the efficiency of analog circuits with the 

flexibility of digital control for application in smart sensors and IoT devices. Similarly, companies like 

Qualcomm and HP Labs are evolving this trend by incorporating memristive technologies, which offer non-

volatile memory and low-latency AI processing, into edge AI platforms [31]. These developments emphasize 

the transition of analog VLSI from a research area to a mainstream solution for scalable and efficient edge 

intelligence. 

 

 

5. RESULTS: HARDWARE INNOVATIONS AND INTEGRATION 

5.1.  Device-level technologies and memory integration 

The performance of analog NN accelerators depends on the underlying device technologies used for 

computation and memory storage. Emerging non-volatile memory devices such as RRAM, PCM, FeFETs, 

and floating-gate transistors have gained significant attention due to their suitability for analog 

programmability and non-volatile weight storage. 

Among these, RRAM-based crossbar arrays are especially promising due to their low power 

consumption, high integration density, and compatibility with CMOS processes. However, challenges 

including non-ideal switching characteristics, resistance drift, device-to-device variability, and degradation 

with cycling remain significant barriers to widespread adoption [32], [33]. To address these, techniques such 

as differential pair configurations to cancel common mode variations, write-verify tuning schemes, and 

digital-assisted analog tuning have been employed and demonstrated to improve accuracy and  

reliability [34], [35]. 

Practical implementations like the Mythic Analog Matrix Processor and Syntiant’s NDP200 

illustrate how analog computing blocks can be integrated with on-chip flash or RRAM to enable inference at 

microwatt-level power [36], [37]. Furthermore, temperature-aware programming algorithms and selector 

integration are increasingly employed to enhance analog weight stability and endurance in edge-AI 

environments [38]. 

 

5.2.  Integration challenges in analog-centric systems 

Analog-centric systems face significant integration hurdles due to the inherent differences in signal 

domains, noise sensitivity, and design methodologies when interfacing with digital and mixed-signal blocks. 

Power supply fluctuations, substrate coupling, and capacitive crosstalk can impact analog signal fidelity, 

especially in dense edge devices. Designers employ shielded interconnect routing, layout symmetry, and deep 

n-well isolation to minimize analog signal degradation [39]. Moreover, calibration circuitry is often 

embedded on-chip to dynamically adjust offset and gain errors resulting from temperature or process 

variations. Unlike digital blocks that scale predictably with technology nodes, analog arrays require 

meticulous layout tuning to preserve linearity and matching. In recent designs, such as the IBM analog AI 

Core and SambaNova Reconfigurable Dataflow Unit, careful partitioning of analog tiles, along with 

hierarchical interconnects and programmable digital overlays, are employed to balance flexibility with 

performance [40], [41]. 

To ensure robust deployment, some analog architectures utilize hardware-in-the-loop calibration, 

where digital units assist analog computations during runtime. This hybrid analog–digital approach has 

shown success in commercial chips like Brain Chip Akida and Aspinity AML100, offering ultra-low-power 

operation with enhanced reliability in noisy or dynamic environments [42], [43]. Circuit-level techniques 

such as differential signaling, deep n-well isolation, and bias tuning circuits are integrated to reduce substrate 

coupling and supply noise. Low-voltage analog AI cores tend to be susceptible to distortion and drift, which 

are influenced by the design of the analog devices. To reduce mismatch and nonlinearity across 

computational arrays, precise transistor sizing, layout symmetry, and matching are crucial in highly scaled 

analog circuits [44]. 
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5.3.  Layout-aware design and mixed signal integration 

Analog neural accelerators are particularly susceptible to layout-level problems including parasitic, 

device mismatch, and noise coupling from digital logic. Techniques like common-centroid placement, guard 

rings, and shielded routing are crucial for maintaining signal integrity in OTAs and current mirrors. In order 

to minimize interference in mixed-signal system-on-chip (SoC) integration, an analog core should be placed 

near memory and separated from noisy digital blocks [45]. The development of automated, layout-aware 

analog design tools has considerably simplified this process. For instance, floor planning enabled by 

reinforcement learning greatly enhanced layout quality by cutting down on space and wire length and 

accelerating up layout times [46]. 

 

 

6. RESULTS AND DISCUSSION: BENCHMARKING AND PERFORMANCE EVALUATION 

With rapid growth in analog VLSI NN topologies, it is necessary to have robust benchmarking 

frameworks to evaluate their practicality [47]. Analog systems' distinct trade-offs are captured by 

conventional metrics because of basic differences in computation, memory, and noise behavior from digital 

equivalents [48]. Effective benchmarking must take into account both algorithmic accuracy and hardware-

specific figures of merit to provide balanced comparisons [49]. Commonly used evaluation metrics include: 

− Energy per inference: for edge jobs, analog accelerators usually aim for sub-micro joule levels per 

inference. 

− Area efficiency: measures computational density for chip integration in resource-constrained devices. 

− Throughput: determines processing rate, often influenced by analog signal settling times. 

− Latency: inference delay from input to output, crucial for real-time applications. 

− Robustness to noise: indicates model degradation under environmental or device noise. 

− Calibration overhead: captures the time and resources required to maintain system performance over time, 

such as compensation for drift and temperature variation. 

 

6.1.  Task-oriented benchmarks 

Typically, analog accelerators are designed for particular edge AI applications including sensor 

fusion, keyword identification, and image classification. Task-specific benchmarks are therefore more 

beneficial than general ones. Although caution must be taken when comparing results across different 

hardware settings, benchmarks like MNIST and Google Speech Commands are still often employed [50]. 

 

6.2.  Cross-platform comparisons 

Cross-platform evaluation remains challenging due to the hybrid nature of analog-digital systems 

and differences in device technologies and architectures. Compound metrics like the energy-accuracy product 

(EAP) or throughput per watt are commonly used to capture overall system efficiency by considering 

accuracy and hardware cost factors [51]. Additionally, essential metrics like dynamic range, noise margins, 

and gain linearity for analog building blocks are evaluated with the help of circuit-level simulations. 

Calibration routines rely on on-chip circuit techniques like DAC tuning and analog memory compensation to 

ensure linearity and accuracy in inference [52]. These evaluation frameworks are crucial to enabling the 

reliable deployment of analog AI systems across diverse hardware platforms and edge computing 

environments. 

 

6.3.  Benchmarking case study 

MNIST classification on an OTA-based accelerator is taken into consideration [53]. With 10 μs 

latency, the system derived ~0.5 μJ/inference at same accuracy (96%). In-memory crossbar systems for 

CIFAR-10 [54] showed greater throughput but needed to be calibrated. Furthermore, recent research has 

shown that analog neuromorphic circuitry may approach digital baselines with ~98% accuracy on MNIST 

while preserving energy gains [45]. On the CIFAR-10, hybrid analog synapse circuits [46] have also 

demonstrated competitive performance, underscoring the trade-off between density and calibration overhead. 

 

 

7. CONCLUSION 

Exploring analog VLSI designs for NN has created possibilities for low-latency, energy-efficient AI 

computation for edge deployment. This review has examined the trade-offs involved in analog AI 

implementations, focusing on architectural classifications, hardware primitives, training challenges, system-

level integration, and performance evaluation. Several key areas are likely to shape the future trajectory of 

analog VLSI systems for AI: i) device scalability and reliability: although emerging memory technologies 
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such as RRAM and PCM enable dense analog weight storage, they still face challenges like drift, limited 

endurance, and variability. Future work must address these issues through robust encoding schemes and more 

stable material innovations; ii) reconfigurability and on-chip learning: because of their restricted 

programmability, the majority of analog accelerators on the market today prefer inference-only modes. Their 

versatility could be enhanced through the development of efficient on-device learning techniques and 

customizable hardware; and iii) hybrid system design: it will continue to be crucial to integrate digital logic 

seamlessly, including with ADC/DAC interfaces and calibration devices. A practical solution is provided by 

hybrid analog-digital systems that can dynamically share computation across domains. 

Analog VLSI systems offer ultra-low power consumption, high computational density, and bio-

inspired architectures that suit edge-AI use cases. Although the field remains specialized, it is evolving 

rapidly. Transforming current prototypes into scalable, deployable AI systems will require continued 

collaboration across device physics, circuit design, AI algorithms, and system integration. Ensuring circuit-

level robustness through layout symmetry, noise isolation, and analog calibration will be essential for 

building reliable, low-power analog AI systems for real-world deployment. 
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