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1. INTRODUCTION

The spread of multi-view data has transformed data-driven applications by providing more detailed
and complete representations of entities. Multi-view data occurs when multiple sources report the same
objects. Examples are textual profiles, interaction graphs, and images in social networks, protein, metabolite,
and gene expression data in bioinformatics, video, represented by audio and frame, and web pages,
characterized by text and links, as shown in Figure 1. Conventional single-view clustering algorithms are
frequently ineffective in such situations since they do not take advantage of the complementary property of
multiple views or do so in a sub-optimal way. The multi-view clustering (MVC) addresses this issue by
successfully combining information and using redundancies and complementarities across views to generate
more robust, accurate, and insightful clustering results [1].

MVC is concerned with integrating heterogeneous data sources that single-view methods cannot
effectively incorporate, thus offering a more comprehensive representation. It can use complementary signals
across views to boost clustering accuracy and interpretability. MVVC has been used in different areas [2].
Computer vision combines color, texture, and shape features to enhance object recognition [3]. It combines
genomic, transcriptomic, and proteomic data in bioinformatics to identify disease subtypes. Likewise, social
network analysis combines textual and structural information to gain in-depth insight into social processes
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[4]. As the amount and the diversity of data grow, the contribution of MVC to the complete and accurate
analysis will only increase.
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Figure 1. lllustrative examples of multi-view data (e.g., video and HTML web page)

MVC has significant challenges, even though it is promising. There are also issues of handling
missing views, which are typical of real-world data, including in healthcare, where genetic or imaging data of
patients may be unavailable [5]-[7]. View-specific noise can impair performance clustering, e.g., irrelevant
text descriptors or poor-quality images, unless filtered [8]-[10]. It is also challenging to combine views
effectively, since inefficient fusion mechanisms may overemphasize certain views and reduce the quality of
clustering [11]-[13]. Moreover, scalability and heterogeneity are other issues, because MVC must be able to
manage large and heterogeneous data effectively and accommodate heterogeneous distributions of features
across views [12], [14], [15].

These limitations suggest that more powerful, accurate, and scalable MV C solutions are required. In
particular, the issues of missing data [5]-[7], noisy or irrelevant features [8]-[10], effective view-integration
strategies [11]-[13], and computationally efficient methods [14]-[16] are still crucial open research issues.
There have been many efforts to address these problems in this dynamic field.

To explore these aspects systematically and to make a contribution to the current developments in
MVC, the following research questions guide this review:

a. What are the key advancements in MVC algorithms over the past decade?

b. What are the primary challenges faced by MVC algorithms?

c. What are the applications of MVC in real-world scenarios, such as bioinformatics, social network
analysis, and multimedia?

This systematic review aims to add to the body of knowledge and development of MVC techniques, which

can manage the complexities of the real world, through a thorough analysis of existing methods, classifying

them, the significant contributions, and future research directions.

2. METHOD

The research was based on a methodical literature review of MVVC developments, challenges, and
applications. To guarantee a rigorous and transparent methodology, this systematic review followed the
preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines [17].

2.1. Search strategy

The search strategy outlines selecting the most suitable primary studies (PS) indexed in several
digital libraries. In this regard, the strategy narrowed down to papers published in peer-reviewed journals to
achieve scientific rigor. This was carried out in two stages.

a. Phase 1. The initial step entailed identifying the keywords for the search protocol. This move was guided
by several pre-searches that assisted in narrowing down and choosing the most suitable set of terms.
Identifying specific and representative keywords was necessary, which directly affected the quality and
relevance of the found studies. Table 1 shows the final keywords that were used in this SLR.

MVC in machine learning: a decade of algorithmic advances, challenges, and ... (Pankaj Kumar)



4688 O ISSN: 2302-9285

Table 1. Keywords used in the search strategy for MVC literature
A B

Multiview clustering  Algorithm

MVC Application
Bigdata processing
Bioinformatics
Challenge
Challenges
Cloud computing
Multimedia
MvC
Social network analysis
Systematic review

b. Phase 2. The identified keywords were then systematically used in the second stage in various digital
libraries. In (1) formalized "Boolean combinations of these keywords to provide consistency and
reproducibility. This methodological design allowed for extensive literature coverage, reinforcing the
strength and validity of the systematic review's findings.

Boolean expression of keywords = [(VA,4) A (VY,B;)] (1)

2.2. Data sources

Choosing the right digital libraries is a decisive move in systematic reviews. Although other authors
suggest a wide variety of databases, initial searches in this study showed that the results were highly
overlapping. To minimize redundancy and stay focused, we limited the search to three well-known sources,
so efficiency was not sacrificed at the expense of thorough coverage. ACM Digital Library, IEEE Xplore,
and Scopus of Elsevier. The Mendeley tool was used to facilitate reference management, and Microsoft
Excel was used to organize and track extracted data. An R package and Shiny app were used to generate a
PRISMA flow diagram [18].

After the digital libraries and keywords were completed, the search expressions were formalized
using (1) and implemented in each database. The main fields of inquiry were title, abstract, and keyword
metadata formalized in (2). The queries that were run on each database are given in Table 2.

Boolean expression for the metadata of a paper = Title(E;) A Abstract(E;) A
Keyword(E,) 2)

Table 2. Search queries executed across digital libraries

Database Search query

ACM [[[Al: "multi-view clustering"] OR [All: "multiview clustering"] OR [All: "multi-modal clustering"] OR [All: "co-

Digital clustering"]] AND [[All: "systematic review"] OR [All: algorithm]]] OR [[[All: "multi-view clustering"] OR [All:

Library "multiview clustering"] OR [All: "multi-modal clustering"] OR [All: “co-clustering"]] AND [[All: challenge?] OR [All:
application]]] OR [[[All: "multi-view clustering"] OR [All: "multiview clustering"] OR [All: "multi-modal clustering™]
OR [All: "co-clustering"]] AND [[All: bioinformatics] OR [All: "social network analysis"] OR [All: multimedia] OR
[All: "bigdata processing”] OR [All: “cloud computing™]]] AND [E-Publication Date: (01/01/2014 TO 31/12/2024)]

IEEE ((("*Multi-view Clustering" OR "Multiview Clustering") AND ("Systematic Review" OR Algorithm)) OR (("Multi-view

Xplore Clustering” OR "Multiview Clustering") AND (Challenge? OR Application)) OR (("Multi-view Clustering” OR
"Multiview Clustering”) AND (Bioinformatics OR "Social Network Analysis" OR Multimedia OR "Bigdata
Processing™ OR "Cloud Computing")))

Elsevier  TITLE-ABS-KEY/(((("Multi-view Clustering" OR "Multiview Clustering") AND ("'Systematic Review" OR algorithm))

Scopus OR (("Multi-view Clustering” OR "Multiview Clustering”) AND (challenge? OR application)) OR (("Multi-view
Clustering” OR "Multiview Clustering") AND (bioinformatics OR "Social Network Analysis" OR multimedia OR
"Bigdata Processing” OR "Cloud Computing")))) AND PUBYEAR > 2008 AND PUBYEAR < 2025 AND (LIMIT-
TO(SUBJAREA, "COMP") AND (EXCLUDE(DOCTYPE, "le") OR EXCLUDE(DOCTYPE, “cr') OR
EXCLUDE(DOCTYPE, "sh")) AND (EXCLUDE(LANGUAGE, "Chinese™))

Search filters were used on the digital libraries to refine the results further. For example, publication
year was limited to 2014-2024 in both ACM Digital Library and IEEE Xplore, but the search in Scopus was
set to a more recent start date to cover the entire review period, 2009-2024.

2.3. Selection process, exclusion and inclusion criteria, and quality assurance

To be rigorous and transparent, the selection process was based on PRISMA [17] guidelines as
shown in Figure 2. The initial search in the three databases chosen retrieved 1,793 records. After eliminating
340 duplicates, 1,453 unique records were retained for initial screening.

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4686-4700



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4689

[ Identification of new studies via databases and registers ]
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Figure 2. PRISMA flow diagram for literature identification, screening, eligibility, and inclusion

Titles and abstracts that included MVC, multiview clustering, or variations of these terms were
included at this stage, resulting in 628 records. Abstract screening reduced the list to 213 studies. Of these, 56
records were eliminated because of problems, such as inaccessibility or incomplete records. Out of the 157
records (which formed the basis for our descriptive analysis), we filtered out conference papers, which
aligned with our interests in peer-reviewed journal articles, resulting in a shortlist of 115 articles to review in
full-text. These papers were then reviewed in full-text to ensure they were relevant to the research objectives
and dealt with algorithmic developments, current challenges, or practical uses of MVC.

2.4. Quality assessment

A list of quality criteria (QC) was established to ensure reliability and reduce bias, as shown in
Table 3. A rubric was used to score each study with a maximum of 25 points, and only those who scored
above a threshold score of 22 were included in the core analysis.

Table 3. Quality assessment criteria for selected studies

Criteria Description Score range
Novelty Does the study introduce new concepts or methods? 1-5
Methodological rigor  Are the methods sound, reproducible, and well-documented? 1-5
Citation impact How influential is the paper in the field? 1-5
Relevance to topic How closely does the study align with the review’s focus? 1-5
Clarity and structure Is the paper well-written and logically organized? 1-5

3. RESULTS

This section presents the findings of the systematic literature review through a comprehensive
descriptive analysis, followed by an in-depth discussion addressing the research questions. The trends of the
publication in MVC research, as illustrated in Figure 3, can be described as having three different stages,
namely: an initial phase of low output, a growth phase where the number of publications increased steadily,
and an expansion phase where the number of publications increased at a high rate of 254%. This trend has
continued into 2024, highlighting the long-term and high interest in MVC as a practical methodology in the
data science field. This spurt of publications indicates the growing prevalence of multi-view data and
highlights the natural constraints of single-view methods to provide a comprehensive understanding [19].
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Figure 3. Publication trends in MVC research (2009-2024)

Figure 4 shows the distribution of publishers of the identified MVC research, where the most
notable source is the Institute of Electrical and Electronics Engineers Inc., with 52 articles out of 154.
Elsevier was next with 47 articles; IEEE Computer Society and AAAI Press were also significant
contributors, followed by Springer and ACM. Most other publishers were poorly represented and had one or
two publications each. Such a focus shows that MVC is primarily published in IEEE and Elsevier. This
demonstrates their high popularity as a source of Al and machine learning publications, especially in this
direction. The spread among the publishers indicates that MVC research aligns well with mainstream
electrical engineering and computer science conferences.
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Figure 4. Distribution of MVC publications across publishers

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4686-4700



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4691

China shows strong leadership in MVC research and has contributed to 91% (143 of 157) of the
total number of articles that concentrate on developing MVC methodology, as shown in Figure 5. Other
countries like India, the United States, and Malaysia also have fewer contributors to articles, with Germany,
Greece, Japan, Singapore, and Algeria each contributing one publication. The statistics show an intense
concentration of the research output of China, which implies a great academic and industrial interest in MVC.
However, the input of other nations is relatively low. This spatial concentration brings out specific regional
research priorities and the allocation of resources to this area of specialization.
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Figure 5. Geographical distribution of MV C research contributions

Figure 6 shows that MVC research is mainly published in journals, indicating the preference for
extensive studies that undergo thorough peer review. Conversely, conference papers emphasize the latest
trends and discoveries at academic and industry conferences. This distribution indicates that although
conference talks can help develop MVC research, journals are the primary source of thorough theoretical
research and massive studies. This trend highlights the focus of the academic community on fully validated
and mature research to be distributed in the MVC field.
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Figure 6. Distribution of MVC publications by type

The analysis of the MVC research citation patterns shows a significant difference in the influence,
as shown in Figure 7. Although most publications are moderately academically treated, a substantial
proportion are not referenced. A few studies have been highly cited, such as one that has received 839
citations, which are foundational contributions and have a significant impact in the field. This dispersion
indicates that the MVC research domain is immature, and a few seminal works are widely cited that
determine the future direction of the research area, even though the contribution of most other studies is
limited. The trend suggests that more visibility and access to emerging research are required to enhance
wider involvement and speed up the development of MV C.
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Figure 7. Citation distribution patterns of MV C articles

Figure 8 outlines the datasets commonly used to benchmark MVC algorithms. These are such
prominent ones as Handwritten [20], [21], 3Sources [5], [20], BBCSport [20]-[22], and ORL [5], [23], [24],
and MSRC-v1 [20], [21], Reuters [5], [22], BBC [5], [20], and Coil20 [25], which are widely used in
different MVC applications. Moreover, a smaller group of datasets is presented in only six studies, meaning
they are used less but are still present. The fact that Text, Image, and Multimodal datasets are the most
common implies that they can be used in a wide range of real-world uses of MVC. These multi-view datasets
allow for a thorough assessment of algorithms that aim to utilize specific feature spaces to achieve better

clustering results [25].
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Figure 8. Frequently used datasets for MV C research

The detailed findings are provided in the subsections below, and each research question that

informed this systematic review is addressed.
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Research question 1: what are the key advancements in multi-view clustering algorithms over the
past decade?

In the past decade, there has been a surge in MVC, especially graph-based [26], spectral clustering-
based [4], and subspace clustering-based algorithms [27], as well as non-negative matrix factorization-based
methods [14], [28]-[30]. The goal of these methodologies is to combine effectively the heterogeneous
information of multiple perspectives to generate more robust and accurate data partitions [31].

To give a holistic picture of these developments, Table 4 (in Appendix) [2]-[4], [10], [11], [21],
[30], [32]-[47] summarizes the primary MVC methods, their strengths, weaknesses, and where they are
typically applied. This comparative study helps to comprehend the changing nature of MVC algorithms and
their applicability to various real-life issues.

In particular, more recent developments in spectral clustering have aimed at creating more coherent
graph constructions that reflect the relationship within the individual data views and across different data
views in a more effective manner [2], [48], [49]. Likewise, subspace approaches are also placing more focus
on learning a shared, low-dimensional representation that maintains the underlying data structure across
views [7], [39], [50]. There has also been significant development of the co-training-based models that seek
to maximize mutual agreement between multiple views [1], [38], [51]-[53]. These methods utilize the
complementary information of multi-view data and produce stronger and more precise clustering results than
single-view methods [54].

Deep learning has led to the creation of neural network-based MVC [6], [21], [34], [38], [44], [45],
[47], [55], [56]. These methods use the multi-view data to learn more discriminative representations with the
help of complex architectures [21], [38]. In many cases, deep learning methods use contrastive learning
paradigms, in which models are trained to distinguish between similar and dissimilar data points, improving
feature extraction and fusion across disparate views, resulting in higher clustering performance than
traditional methods [46], [57]. Deep MVC algorithms (where learned representations are less distinct or
informative), specifically have demonstrated potential in non-linear, high-dimensional data by leveraging
deep neural networks to extract holistic, complementary and multi-level features, addressing the weaknesses
of the traditional algorithms that may miss cross-view differences in data or rely on single-lane neural
networks [21], [38], [45]. These approaches tend to build a composite similarity matrix or a consensus
representation for spectral clustering or k-means, respectively, by combining both consistent and
complementary information across views [2], [8], [10], [58]-[60].

Nevertheless, there is a trade-off in the selection of the method. Although the methods based on
matrix factorization are highly computationally efficient, they might fail to represent non-linear data
structures sufficiently [36]. Conversely, though strong in modeling complex nonlinear relationships, deep
learning-based approaches can be associated with higher computational complexity and lower
interpretability. Nevertheless, deep MVC methods are still being improved, with techniques that combine
kernel learning and subspace methods potentially demonstrating improved applicability to various complex
data. As an example, graph-based MVC algorithms tend to integrate information on intrinsic features of
multiple views into a spectral embedding space, resulting in better performance [10], [54].

Research question 2: what are the primary challenges faced by multi-view clustering algorithms?

MVC algorithms leverage the complementary nature of multiple data representations to uncover
latent structures more effectively than single-view approaches. However, this potential is constrained by
persistent challenges affecting data quality, algorithmic design, scalability, and theoretical rigor.

a. Data quality and view incompleteness

The problem of incomplete multi-view data, in which cases complete views are not available, causes
a significant loss of information and prevents the overall perception of underlying patterns [58], [61], [62].
This is especially acute in practical datasets. In this case, the failure of data acquisition or privacy issues may
cause the absence of individual samples in some views altogether, which makes the traditional imputation
techniques less efficient [23], [63]. This issue is called incomplete MVC and requires strong algorithms that
efficiently deal with partial information. These algorithms should not only be able to preserve clustering
performance, but also not introduce spurious correlations [64]. Other approaches, such as imputing missing
samples in the clustering process itself, help to reduce the harmful impact of missing data, which is essential
since applying traditional methods to such data directly usually produces suboptimal results by ignoring
natural structural information [65]. Alternatively, methods such as those based on matrix factorization or
kernel learning can adapt to incomplete views by either reconstructing the missing data or by learning a
consensus representation across available views [58]. Despite these adaptive mechanisms, conventional
matrix completion algorithms tend to be ineffective at filling these missing values, notably when complete
rows or columns are missing, thus restricting the usefulness of most existing MVC algorithms that assume
complete datasets [5], [37], [66]-[69]. This highlights the need for strong algorithms to deal with incomplete
information effectively. Moreover, the different quality and reliability of various views is another serious
problem, which can worsen the performance of overall clustering when not properly weighted or filtered
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[35], [46], [70]. In particular, missing data, either because of inaccessibility or because of accidental
incompleteness, often leads to incomplete multi-view datasets, as is the case with various medical tests, with
some patients not having specific test results [5]. In these cases, conventional MVC algorithms, which often
assume full views, are mostly ineffective [58], [66].

The quality of data, especially the noise and incompleteness of views, directly affects the success of
fusion strategies, since these mechanisms have difficulties in balancing conflicting signals and, therefore,
assigning clusters unsteadily. As a result, the solution of these data quality problems may also impact
scalability since more complex imputation or alignment methods are required, raising the computation cost.
These issues may necessitate sophisticated methods, including powerful subspace learning or adaptive graph
building, which necessarily involve more computational resources and algorithm complexity [5].

b. Algorithmic limitations and fusion strategies

The main challenge is successfully combining information across multiple perspectives because
simple concatenation can fail to reflect the underlying relationships, and may also add harmful noise [71].
This difficulty is magnified when trying to optimally weigh the contribution of each view, especially in cases
where views have different degrees of reliability or relevance, which requires adaptive weighting schemes
[10], [12], [43], [72]. A second common problem is the correct correspondence of features between views,
particularly when heterogeneous data types are involved, or when feature spaces differ, which may distort
object similarities and undermine clustering integrity [25]. Therefore, formulating effective fusion strategies
that consider view heterogeneity and different data quality is still a research-intensive issue, especially in
cases where some views might include redundant or irrelevant data, which can bias the clustering process
[69], [73]. Numerous methods aim to resolve this by inferring missing data, but this may add bias or noise,
particularly when the gaps between data are significant [69], [73]. This requires advanced imputation models
using inter-view correlations to fill in missing entries, not deterministic replacements predictively.
c¢. Scalability and computational burden

The computational complexity of many multi-view algorithms is frequently non-linear with the
number of views, dimensions, and samples, making many more complex multi-view algorithms infeasible on
large datasets [20], [21], [74]. This is limited by the requirement to build large similarity matrices or tensors
and to optimize complexly, which requires a lot of memory and processing power, especially in graph-based
or kernel-based methods [20], [21], [75], [76]. Moreover, the iterative optimization steps used by most deep
MVC algorithms add further computational complexity [20], [21], [77], and thus implementing them on
resource-limited systems is difficult. This problem is often compounded by the deep learning architecture
integrations, which, although they offer the benefits of extracting complex multi-view representations, come
at the cost of long training times and large memory footprints of neural networks [77]. This requires more
effective algorithms and distributed computing paradigms to support the growing volumes of data
experienced in modern applications [20], [21].

Research question 3: what are the applications of multi-view clustering in real-world scenarios, such
as bioinformatics, social network analysis, and multimedia?

MVC has been widely used in many fields, with the advantage of combining the complementary
information of multiple data perspectives to increase the accuracy and strength of the analysis [25]. This
encompasses its use in bioinformatics to analyze multi-omics data [20], [21], [78], in social network analysis
to understand complex user interactions [20], [21], and in multimedia to organize and retrieve content by
combining visual, audio, and textual information [20], [21], [79]. An example is in medical diagnostics,
where MVC is used to determine disease subtypes, combining clinical history, genomic profiles, and
radiographic information, which can help more accurately stratify patients and develop more personalized
treatment plans [20], [21], [80], [81]. Likewise, MVC can be used in cybersecurity to detect abnormal
network behavior by synthesizing packet metadata, system logs, and user activity records. This goes a long
way in helping to detect advanced cyber threats that single-view detection techniques would otherwise miss
because of the holistic nature of disparate data streams. In addition to cybersecurity, MVC can be used to
integrate satellite images, spectral data (e.g., data at various light wavelengths), and geographical data to
enhance land cover classification and environmental monitoring in other areas, such as remote sensing [20],
[21]. In recommender systems, such as MV C, user preferences, item attributes, and social ties are analyzed to
produce more precise and varied recommendations, overcoming the constraints of content-based or
collaborative filtering. Likewise, MVC integration is also invaluable in materials science to classify complex
material structures by integrating atomic-level simulations, experimental measurements, and crystallographic
data, and thus discover new materials with desired properties [82]. These applications emphasize the
importance of MVC in gaining richer information about heterogeneous data, and that it can offer a more
complete picture than single-view analyses [20], [21], [83].
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4. CONCLUSION

MVC has experienced much development in the past decade, with many methodological advances.
Although deep learning models have enhanced the extraction of high-level, non-linear representations, and
graph-based models have performed well in modelling the inter-view structural relationships. Their
interpretability and strength of latent representations remain in matrix and tensor factorization, and subspace
learning is appropriate to align noisy or heterogeneous views. Ensemble strategies provide clustering stability
in various ways, whereas probabilistic and Bayesian methods give flexibility and modelling of the
uncertainties in realistic situations. With these developments, however, essential concerns still require more
focus on MVVC methods to be practical and reliable. It is worth noting that algorithms that can directly model
and learn incomplete multi-view data are needed, because existing methods usually bias the results or miss
important information. Moreover, the heterogeneity of multi-view data, where different distributions,
dimensionalities, noise levels, and data types may occur, is a significant integration challenge.
Correspondingly, existing integration techniques do not necessarily capture complex intra-view semantics
and inter-view correlations, and more sophisticated mechanisms are needed. Scalability and computational
efficiency are still significant challenges of large-scale, real-time environments, especially graph-based or
deep learning MVC models, which highlights the importance of more efficient algorithms. Decoupling
representation learning and clustering in most frameworks may result in sub-optimal performance; thus,
additional investigation of joint learning frameworks is warranted. Most MVVC models, particularly black-box
deep learning models, should be made more interpretable and transparent, because interpretable models are
essential in high-stakes domains. In addition, the absence of uniform evaluation procedures makes it difficult
to compare and evaluate generalizability, and standardized benchmarking procedures are required. Finally,
distributed MVC is immature, and the existing literature is insufficient to cover the real-world limitations,
meaning that there is a high demand for sound distributed MVC systems. These long-standing issues are the
most critical to address to realize the full potential of multi-view learning and apply it transformatively in an
ever more complex and data-rich world.

5. FUTURE WORK

In the last ten years, this survey has carefully explored the significant algorithmic developments,
ongoing problems, and various practical uses of MVC. It has emphasized the importance of using multiple
perspectives to obtain stronger and more informative solutions to clustering, especially in complicated
datasets that single-view methods cannot address. This general summary highlights the urgent need for
further research to solve the existing limitations and realize the potential of MVC in new areas of data-
intensive data. Based on these insights, the following specific research questions are suggested for further
work: i) adaptive frameworks and incomplete data handling ((i) how can adaptive MVC frameworks be
designed to dynamically weigh view contributions based on their quality, relevance, and presence, thereby
optimizing clustering performance across diverse data conditions? and (ii) what novel algorithmic approaches
can effectively handle incomplete multi-view data by minimizing reliance on imputation and preserving
inherent data structures?); ii) streaming multi-view data: ((i) what online or incremental learning techniques
are most effective for robustly clustering streaming multi-view data in real-time scenarios?); iii) transfer and
meta-learning integration ((i) how can transfer learning and meta-learning, including few-shot learning
adaptations, be effectively integrated into MVC paradigms to enable more efficient adaptation to new
datasets and tasks?); iv) model interpretability ((i) what methodologies can enhance the interpretability of
MVC models, particularly for complex deep learning approaches, to provide transparent insights into view
contributions and clustering decisions?); v) robust evaluation metrics ((i) what robust evaluation metrics can
be developed or adapted to accurately assess and compare MVC algorithms, considering the unique
challenges of multi-source data?); and vi) theoretical foundations ((i) what are the fundamental theoretical
principles governing effective multi-view data fusion that can inform the design of more principled and
robust MVC algorithms?). Addressing these research gaps will undoubtedly boost MVC into new frontiers,
enabling its application in increasingly complex and dynamic real-world problems.
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APPENDIX
Table 4. Comparative analysis of key MV C approaches
Approach Pros Cons Typical use cases

Graph-based
MVC

Spectral
clustering-
based MVC

Subspace
clustering-
based MVC

Non-
negative
matrix
factorization-
based MVC

Deep
learning-
based MVC

- Remarkable proficiency in
capturing local nonlinear structures
of data points and consistently
achieving high clustering
performance [32].

- Can learn an affinity graph for
objects based on topological
structure analysis [3].

- Promising clustering performance
and well-defined mathematical
framework [11].

- Can be robust to data sparsity [4].
- Effective in integrating multiple
information by co-regularizing
clustering hypotheses [35].

- ldentify compatible features
across views, improving clustering
accuracy [3].

- Generally, there are fewer time
and space complexities [37].

- Suitable for handling high-
dimensional data [38].

- Can learn a unified, low-
dimensional representation while
preserving distribution information
[38].

- Effective in revealing actual
hidden structures from high-
dimensional data [39].

- High interpretability and simple
implementation [40].

- Useful in many research areas
such as information retrieval and
pattern recognition [41].

- Achieves competitive
performance in text and biological
data clustering [41].

- Widely utilized for web document
summarization, clustering, and
recommendation in data mining
[30].

- Competence to handle
heterogeneous data [30].

- Powerful in capturing complex
non-linear relationships.

- Effectively and efficiently learn
hierarchical information embedded
in data [21].

- Can extract more discriminative
representations [21].

- Promising for high-dimensional
and non-linear data [45].

- Capable of learning explicit non-
linear mappings of data [34].

- Rely heavily on fixed input graphs for
clustering decisions [33].

- May not fully consider the importance
of different views [10].

- Can fail to capture potential correlations
between objects [3].

- Challenges with weight hyperparameters
for individual views [33].

- Heavy computation limits applicability
to large-scale data [34].

- Optimization is an NP-hard problem
(meaning it's computationally challenging
to solve exactly for significant inputs) due
to discrete constraints on clustering labels
[11].

- Often require post-processing, which
can introduce uncertainty [36].

- Computationally expensive for large-
scale data (O(N”3)) complexity for
eigenvalue decomposition) [36].

- Not good at clustering high-dimensional
multi-view data without proper similarity
graph construction.

- May not fully consider the importance
of different views [10].

- Can perform poorly on incomplete
views if assumptions are violated [4].

- May only exploit features of objects,
ignoring relations between objects [3].

- Can involve high computational
complexity and low accuracy for very
high-dimensional multi-perspective data
[40].

- Solutions may not be unique [42].

- Standard orthogonal basis matrices may
not be obtained for each view [42].

- Can be sensitive to data sparsity [4].

- May only capture view-level
importance, ignoring feature-level
relationships [43].

- Increased computational complexity and
reduced interpretability.

- Challenges in dealing with conflicts
between the learning standard and private
view information [46].

- Potential for representation degeneration
[46].

- Extensive training times and substantial
memory footprints.

- Data where geometric
structural information is
essential, e.g., image
categorization, motion
segmentation, group detection
in computer vision [2].

- Document categorization in
natural language processing,
where text documents have
multiple language
representations [2].

- Gene detection for complex
diseases [2].

- Learning a common intrinsic
subspace for various views in
image processing [35].

- General multi-view data
clustering using spectral graph
theory [10].

- High-dimensional data with
diverse features in areas like
computer vision [39].

- When data consists of
samples from a union of
various lower-dimensional
subspaces [39].

- Learning an explicit non-
linear data mapping for
subspace clustering [34].

- Text clustering, web
document summarization [30],
biological data clustering [41].
- Image processing [44].

- Recommendations [30].

- Complex, high-dimensional,
non-linear multi-view datasets.
- Extracting hierarchical
information from multi-view
data [21].

- Image processing [47],
computer vision tasks [2].
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Table 4. Comparative analysis of key MV C approaches (continued)

Approach Pros Cons Typical use cases
Multi-kernel - Can solve linearly inseparable - High computational complexity [38]. - When dealing with high-
learning problems [38]. - Poor interpretability [38]. dimensional data where

- Enhance data representation - Requires careful choice of kernel different views require distinct
ability and improve clustering functions [38]. kernel functions [38].
performance [38]. - Significant time and space overhead - Situations where multiple
- Better handling of high- [38]. kernel functions are combined
dimensional data by spatially to capture data distribution
partitioning kernel functions [38]. [38] better.
- Robust in capturing data
distribution information [38].
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