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 Advanced biomedical engineering technologies are continuously changing 

the medical practices to improve medical care for patients. Needle insertion 

navigation during intravenous catheterization process via Near infrared 

(NIR) and camera-projector is one solution. However, the central point of  

the problem is the image captured by camera misaligns with the image 
projected back on the object of interest. This causes the projected image not 

to be overlaid perfectly in the real-world. In this paper, a camera-projector 

calibration method is presented. Polynomial algorithm was used to remove 

the barrel distortion in captured images. Scaling and translation 

transformations are used to correct the geometric distortions introduced  
in the image acquisition process. Discrepancies in the captured and projected 

images are assessed. The accuracy of the image and the projected image  

is 90.643%. This indicates the feasibility of the captured approach to 

eliminate discrepancies in the projection and navigation images. 
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1. INTRODUCTION 

Intravenous injection is difficult and painful especially for newborns, children, and obese people 

because appropriate veins maybe deep and not visible. The application of near-infrared light (NIR) has been 

a good way to help locate vein, since the light can penetrate up to several centimeters into tissues and be 

absorbed by the vein, which enables discrimination between blood vessels and surrounding tissues [1–4]. 

Based on the theory, several devices have been developed recently to aid physicians, phlebotomists and 

surgeons in locating veins to avoid unnecessary sticks. 

Some researchers and companies have developed devices which can show an enhanced image on  

the screen to help locate vein [5–10]. However, it is not convenient for the phlebotomist to watch the screen 

and do the vein puncture simultaneously. Therefore, the concept of camera -projector system has been 

introduced to overcome the problem. However, the central point of the image being captured by camera  

is different than that being projected back. It causes the projected image not to overlay perfectly with the rea l 

object. Therefore, it is necessary to calibrate camera and projector. 

The first implementation of camera -projector system applied high precision micrometer screw 

adjusted via mechanical stages to set the optimum position of camera and projector. Then, a simple 

transformation functions (translation, scale and rotation) was used to align the images on the object [11-12].  

Later, was a different method proposed by [13] had improved method developed by [11]. The difference  

is the placement of the camera, projector and NIR LEDs source in the same axis to remove the hot mirror.  

https://creativecommons.org/licenses/by-sa/4.0/
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However, the placement of each component in different locations requires a large space. It also limits  

the projection area to the region surrounded by the black rectangular plate. In addition, similar back 

projection method was proposed by [14] using dual camera system. This method was able to obtain the vein 

depth, but the projection result was similar to single camera system and n eed huge computation time for  

the imaging process. 

The work by [15] observed that the previously developed projection methods only perform  

back-projection at a  certain distance without observing the results at difference distances.  

Therefore, [15] proposed a projection method using the intersection between camera view and projection 

view technique attached with the distance sensor as a parameter to adjust the projection.  

However, the implementation of the projection method is offline. To be different from others, [16] proposed 

a combination of NIR imaging technique and augmented reality (AR) technology in head mount device 

(HMD). This HMD system created a virtual image and overlay onto real-world object to form a composite 

view in the HMD see-through lenses. However, the adjustment camera mount (IR CCD camera) and epipolar 

geometry are complex and can lead to complex view. 

By now, AccuVein AV300 [17] is the most advanced vein display device. However, the structure 

and the program of the device is intricacy and the cost is very expensive. Therefore, this work proposes  

to solve the problem of the vein display focusing on optimal camera -projector setting. This paper  

is structured into five sections. The overview of the camera -projector calibration techniques and the problems 

encountered are discussed in this section. Section 2 and 3 presents the system structure and the proposed 

camera-projection calibration. Then the results obtained are presented and discussed in section 4.  

Lastly, section 5 concludes the findings of the research work. 

 

 

2. SYSTEM STRUCTURE  

This system consists of pico-projector, night vision camera, three sets of 850nm high power NIR 

LED array, diffuser, based as a target area, raspberry pi 3 B+ and aluminum rod as the main structure.  

Three high power 3W infrared LEDs are focused on the target area and mounted to the left, right and front o f   

the camera. The camera and LEDs are connected to Raspberry Pi with flex cable. The Raspberry Pi and NIR 

LEDs are derived by a 5V 2.5A power supply. The illumination is almost constant during the experiment 

with the help of a diffuser located in front of each NIR LEDs. The camera is connected to Raspberry pi by 

way of a short ribbon cable. At another end, the camera is connected to BCM2837 processor on the PI via  

the CSI bus. 

The pico-projector is placed at the top of the object, at a  distance of 45cm from the base. The light 

sources are placed around the camera. The reflected light by NIR LEDs is captured by the cameras  

on the same side. The distance between the target area and the camera is set to 32cm. These distances are 

chosen as the best positions based on a number of trial-and-error experiments to get better overlapping before 

proceeding on with the lens distortions, scaling and translation. A printed 7 x7 chessboard patterns as a test 

image is placed on the base. The night version camera is connected to Raspberry Pi board using a CSI cable 

and pico-projector is connected to the Raspberry Pi using HDMI. After capturing the raw image from  

the NIR camera module, the images have been processed by a portable Raspberry Pi 3 B+ microcomputer 

using Open-CV image processing library coded in Python programming language. 

 

 

3. CAMERA-PROJECTOR CALIBRATION 

The overall proposed camera -projector calibration procedures are illustrated in Figure 1. It involves 

three stages; lens distortion correction, scaling transformation and translation transformation. Lens disto rt ion  

correction has been employed to remove barrel distortion in captured image. Scaling and tra nslation 

transformations are used to correct geometric distortions introduced in the image acquisition process.  

 

3.1.  Lens distortion correction 

Captured image normally suffered from lens distortion. Based on the literature review by [18-19], 

the dominant lens distortion is usually barrel distortion. This is due to the imperfection of the lens  

and the misalignment of the optical elements. Many lens distortion corrections have been proposed from  

a simple to a complex algorithms. Polynomial algorithm has been used in this work due to its simplicity  

and accuracy [20–22]. The algorithm starts with (xd, yd) as the measureable coordinates of the distorted image 

point, (xu, yu) the coordinates of the undistorted image point. The polynomial algorithm commonly used to 

describe radial distortion can be written as [18]: 

 

𝑟𝑢 = 𝑟𝑑(1 + 𝑘1𝑟𝑑
2 + 𝑘2𝑟𝑑

4+ . . . )       (1) 
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where rd and ru are the distances of the distorted point (xd, yd) and the undistorted point (xu, yu) to the distorted 

center P respectively, and ki is the parameter of the radial distortion. 
 
 

 
 

Figure 1. Stages of the proposed camera -projector calibration work 
 
 

For practical purpose as being explained by [23], only the first term of the infinite series has been used, 

which is: 
 

𝑟𝑢 = 𝑟𝑑
(1 + 𝑘1𝑟𝑑

2)        (2) 
 

In this work, the contribution of k value towards the appearance of the corrected lens distortion image is 

investigated. The method of determining the optimum value for k is based on trial-and-error. 

 

3.2.  Scaling transformation 

The problem in this stage is the central point of the image by the camera being different from  

the one projected back by the projector. Hence, the size of both images normally becomes different. 

Therefore, image scaling has been applied. Scaling is a linear transformation that is able to enlarge or 

shrinks’ objects by a scale factor that is the same in all directions. An x -value defined the amount of scaling 

in the x direction, and a y-value defines the amount of scaling in the y direction. For each pixel (x,y)  

of the destination, the source value at the fractional subpixel position is constructed by means of an 

interpolation object and written to the destination [24]. The coordinates are given by: 
 

𝑥′ =
𝑥

𝑥𝑠
            (3) 

 

𝑦′ =
𝑦

𝑦𝑠
          (4) 

 

where 𝑥𝑠 is the x scale factor and 𝑦𝑠  is the y scale factor. When applying scale factors to a source image with 

width of 𝑤𝑠 and height of ℎ𝑠 , the resulting image is defined to have the following dimensions [24]: 
 

𝑞𝑤𝑑 = 𝑤𝑠 × 𝑥𝑠         (5) 
 

ℎ𝑑 = ℎ𝑠 × 𝑦𝑠         (6) 
 

Scale factor values greater than 1.0 magnify the image, while value less than 1.0 minify the image. 

In order to understand the relationship between scale factors and the resultant image, a simple experiment  

is carried out. The method of obtaining the optimum value for scale factors is based on trial-and-error. 

Segmented image into three cluster has been used to evaluate the performance of resulted image. The cluster 

image can be categorized into three regions; black, grey and white pixels. The black pix el represents the real 

chessboard patterns region, grey pixel represents the projected chessboard region and white pixels represent 

the background region of the image. From the clustered image, the proposed technique has been 

quantitatively evaluated by ca lculating the deviations between the total number of black and grey pixels.  

The deviations are then calculated as follows: 
 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
∑ 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠 −∑ 𝑔𝑟𝑒𝑦 𝑝𝑖𝑥𝑒𝑙𝑠

∑ 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠
      (7) 
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3.3.  Translation transformation 

The projected chessboard patterns are not only distorted in terms of size but also the position  

of the image. Therefore, image translation has been applied after scaling transformation. Image translation  

is the spatial shifting of an image up, down, left or right. The relationship between the source and destination 

image coordinates are given by the following equation [25]: 

 

𝑥𝑑 = 𝑥𝑠 + 𝑡𝑥         (8) 

 

𝑦𝑑 = 𝑦𝑠 + 𝑡𝑦         (9) 

 

where 𝑥𝑑 and 𝑦𝑑  are the integer pixel coordinates of the destination image, 𝑡𝑥 and 𝑡𝑦  are the translation 

values, 𝑥𝑠 and 𝑦𝑠  denote the source image point from which the pixel estimate is computed. The projected 

image also has been converted into three clustered for more precise qualitative and quantitative analysis.  

The values of 𝑥𝑑 and 𝑦𝑑  are determined based on trial-and-error depending upon image.  

While, for quantitative analysis, is based on overlapping percentages between total number of black and  

non-overlap grey pixels. The overlapping percentage is calculated using:  

 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑠 =
∑ 𝑏𝑙𝑎𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠 − ∑ 𝑛𝑜𝑛−𝑜𝑣𝑒𝑟𝑙𝑎𝑝  𝑔𝑟𝑒𝑦 𝑝𝑖𝑥𝑒𝑙𝑠

∑ 𝑏𝑙𝑎𝑐𝑘  𝑝𝑖𝑥𝑒𝑙𝑠
× 100    (10) 

 

In image acquisition process, the object region of interest is the middle of the chessboard pattern as 

shown in Figure 2. Therefore, in this work, the best resulted obtained from previous analysis (overlapping 

percentages) has been divided into three parts; inner, middle and outer parts. The red square represents  

the inner part, yellow square represents the middle parts and blue square represents the outer parts.  

The overlapping percentages for these three part are obtained using (10). 
 
 

 
 

Figure 2. Chessboard patterns with three regions; inner, middle and outer 

 

 

4. RESULTS AND DISCUSSION 

Figure 3(a) shows the checkerboard pattern captured using NIR camera and Figure 3(b)  

is the resultant image projected back onto the real printed chessboard using pico -projector. In Figure 3(b),  

it can be seen that the projected chessboard pattern is actually the  one which looks like a shadow and  

the black is the real chessboard pattern. This is due to the central point of the image being captured by  

the camera is different than that being projected back from the projector. As shown in Figure 3 it can be 

observed that the lines of the chessboard patterns are bulging and its image appears as more magnified at  

the center than that at the edges due to the barrel distortion . 

Figure 4 shows the results of chessboard patterns after lens distortion correction with diff erent 

values of distortion coefficient, k. From the results, it is observed that, before k=-0.12 the lines of  

the chessboard patterns appear straight at the very center of the frame and only start bending away from  

the center (refer to Figure 4 (b) and (c)). However, after I=-0.12, all corrected lines do not go through  

the center of the image are bowed inwards, towards the center of the image like pincushion  

(refer to Figure 4 (e) and (f)). Therefore, it can concluded that, the best lens distortion correction image  

is obviously at k=-0.12. 
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(a) (b) 
  

Figure 3. Image, (a) Of the chessboard pattern taken using NIR source and, (b) Projected back onto real 

printed chessboard using pico-projector 

 

 

 
 

  

(a) (b) 
  

 
 

  

(c) (d) 
  

 
 

  

(e) (f) 
  

Figure 4. Results of applying lens distortion correction on, (a) Distorted input image with distortion 

coefficient of, (b) k=-0.06, (c) k=-0.09, (d) k=-0.12, (e) k=-0.15 and (f) k=-0.18 
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Table 1 shows the result of scaling the projected chessboard pattern with different values of scaling 

ratio. The projected image is the one which is in shadow color and the black color is the real chessboard 

patterns. Cluster image is the images after segmentation process to reduce the difference between real and 

projected chessboard patterns. As can be seen, at scaling ratio of 1.00 and 1.15, the size of the grey patterns 

seems significantly small compared to the black patterns. This means that the scaling ratios of 1.00 and 1.15 

are not enough to scale-up the size of the projected patterns. Scaling ratio of 1.45 gives bigger size to the 

projected patterns. Only when scaling ratio is 1.30, the outputs of the projected and real patterns are almost 

similar in size. The above results is also supported by deviations between the number of pixels of real 

patterns and projected patterns as shown in Table 2. The smallest deviation of pixels for both regions is at 

scaling ratio value of 1.3. Table 3 shows the results of investigation towards determining the optimum values 

of x and y-axes. 

 

 

Table 1. Projected images of chessboard onto real image patterns with different values of scaling ratio  
Scaling 
Ratio 

Projected Image Cluster Image 

1.00 

  

1.15 

 
 

1.30 

  

1.45 
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Table 2. Deviation in pixels of scaling ratio between real and projected pixels 
Scaling 

Ratio 

Area calculated in pixels 
Deviation in pixels 

Real ROI (black pixels) Projected ROI (grey pixels) 

1.00 6724 5476 0.186 
1.15 6724 5625 0.163 
1.30 6241 6561 0.051 

1.45 6241 7741 0.241 

 

 

Table 3. Results for NIR image translation for different y-coordinate values when x-axis value is at 3 
Y-

axis 
NIR Image Cluster Image 

-40 

  

-50 

  

-60 

 

 

-70 
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In order to analyses the results easier, the NIR image has been segmented to cluster image.  

The cluster image can be categorized into three regions; black, grey and white pixel. The black pixel 

represents the real chessboard patterns region, grey pixel represents the projected back region and white 

pixels represented the background region of the image. As can be seen in overall results, when the values of 

y-axis are at -30 and -40, the projected regions (grey pixels) are located towards the bottom from the  real 

chessboard regions (black pixels). While y-axis is equal to -70, the projected regions are located towards to 

the upper of the real chessboard regions. Hence, from the observation, the projected region and real 

chessboard pattern region almost perfectly overlap to each other when x-axis equals to 3 and y-axis equals  

to -50 compared to other results. This results are also supported by the overlapping percentages as shown in 

Table 4. The x-axis=3 and y-axis=-50 produced the highest overlapping percentages of 90.643%. This shows 

that the values of x and y axes at that point is the most optimum for translation transformation.   

Next, the optimum translation values of x and y axes can be analyzed more details by dividing the cluster 

image into 3 regions; inner, middle and outer. This is due to the future process, where the ROI will be 

focused on the center of the cluster image, which is the inner and middle regions. 

 

 

Table 4. Overlapping percentages for each values of x and y-axes translation 

X-axis Y-axis 
Total number of real pixels 

(black) 
Total number of non-overlap 

projected pixels (grey) 
Overlapping percentages (%) 

-3 

-30 129346 54073 58.195 
-40 129407 41024 68.298 
-50 129586 25910 80.006 

-60 129810 26428 89.641 
-70 129510 35788 72.367 

0 

-30 129231 51676 60.013 
-40 129431 37973 70.662 

-50 129396 20670 84.026 
-60 129612 19376 85.051 
-70 129483 35618 72.492 

3 

-30 128986 53666 58.394 

-40 129193 37797 70.744 
-50 129090 12079 90.643 
-60 129498 17442 86.531 
-70 129383 35292 72.723 

6 

-30 128820 52437 59.294 
-40 128921 37818 70.666 
-50 129209 24505 81.035 

-60 129375 22138 82.889 
-70 129421 37487 71.035 

9 

-30 128701 55029 57.243 
-40 129071 41000 68.235 

-50 129171 27839 78.448 
-60 129140 16288 79.644 
-70 129294 38697 70.071 

 

 

Table 5 shows the overlapping percentages for inner, middle and outer regions of the chessboard 

patterns at optimum x and y-axes translation. As can be seen, the inner region produced the highest 

overlapping percentage, 92.915% followed by middle region with 90.92 5%. Although the outer region is not 

the focus of this work, its overlapping percentage also approaches to 90%. Figure 5 shows the results of test 

objects projected onto the chessboard patterns. As can be seen, the test objects have been successfully 

projected on and aligned. 

 

 

Table 5. Overlapping percentages for inner, middle and outer regions of chessboard patterns at translation 

x=3 and y=-50 

Region 
Areas calculated in pixels 

Overlapping percentage 
Black pixels Non-overlap grey Pixels 

Inner 24968 1769 92.915 
Middle 41994 3811 90.925 
Outer 59934 7138 88.090 
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(a) (b) 

  

  

  

(c) (d) 

  

Figure 5. A real test objects to verified the successful camera -projector calibration and alignment 

 

 

5. CONCLUSION 

This paper presented method to calibrate a camera -projector system to be used in a vein 

visualization system without any high precision mechanical parts. First, the camera -projector system was 

applied with lens distortion correction to remove the barrel distortion in captured  image by using the simplest 

technique of polynomial algorithm. Then, scaling and translation transformation were used to correct 

geometric distortions, so that the projected image is overlaid onto the exact location of object  

in the real-world. This method is formed feasible and able to solve the camera -projector calibration problem. 
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