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 The Bayesian networks are a graphical probability model that represents 

interactions between variables. This model has been widely applied in 

various fields, including in the case of disaster. In applying field data,  

we often find a mixture of variable types, which is a combination of 

continuous variables and discrete variables. For data processing using hybrid 

and continuous Bayesian networks, all continuous variables must be 

normally distributed. If normal conditions unsatisfied, we offer a solution,  

is to discretize continuous variables. Next, we can continue the process with  

the discrete Bayesian networks. The discretization of a variable can be done 

in various ways, including equal-width, equal-frequency, and K-means.  

The combination of BN and k-means is a new contribution in this study 

called the k-means Bayesian networks (KMBN) model. In this study,  

we compared the three methods of discretization used a confusion matrix. 

Based on the earthquake damage data, the K-means clustering method 

produced the highest level of accuracy. This result indicates that K-means  

is the best method for discretizing the data that we use in this study. 
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1. INTRODUCTION 

The Bayesian networks (BN) show a causal probabilistic relationship between a set of random 

variables, conditional dependency, and a depiction of the joint probability distribution. The two main parts of 

the Bayesian network are directed acyclic graph (DAG) and a set of conditional probability distributions 

(CPD). In directed acyclic graphs, nodes represent random variables and causal probabilistic dependency 

relationships between random variables in the graph are represented by directed arcs [1]. BN  

can accommodate various sources of knowledge and data types, such as prior experience and expert 

information [2]. These advantages make the Bayesian networks widely applied in various fields, both in the 

medical [3, 4], education [5], and economics [6]. BN has also been applied to several disaster cases, such as 

an earthquake [7-12], flood [13-15], hurricanes [16], and tsunamis [17, 18]. 

Based on the types of variables, there are three types of BN model; discrete Bayesian networks 

(DBN) [19], continuous Bayesian networks (CBN) [20], and hybrid Bayesian networks (HBN) [21, 22]. 

Discrete and continuous Bayesian networks are respectively applied to discrete and continuous variables, 

whereas hybrid Bayesian networks are applied in cases consisting of a mixture of the two variables. In its 

application, data is often found with a combination of two variables. If the process is continued with hybrid 

https://creativecommons.org/licenses/by-sa/4.0/
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Bayesian networks, we will be faced with a problem if the data from continuous variables are not normally 

distributed. 

To simplify the process of research, we offer a solution, which is to assume all discrete variables. 

Therefore, we carry out a method of discretization for all continuous variables and continue the process using 

discrete Bayesian networks. Discretization methods commonly used include equal-width [23] and equal 

frequency [24, 25]. Both of these discretization methods are often found in applied research related to 

Bayesian networks. However, both of these methods have weaknesses, where equal width is less suitable to 

be applied to data containing outliers, and equal frequency will be confused if used in experiments containing 

multiple data with the same values. Therefore, in this study, the authors discretizes using k-means method. 

Discretization with k-means results in a higher level of model accuracy than that of the two previous 

discretization methods where the level of accuracy for each of these methods are obtained from a confusion 

matrix. The combination of BN and k-means is a new contribution in this study called the k-means Bayesian 

networks (KMBN) model. In this study, we implement discrete Bayesian networks in the case of  

an earthquake disaster. In particular, we determine the risk of damage to buildings due to an earthquake by 

considering several factors including, construction, risk of landslides, peak ground acceleration (PGA), 

distance to faults, slope, earthquake center distance, etc.  

 

 

2. RESEARCH METHOD 

Discretization is a process of changing a continuous variable into a discrete variable. This process  

is often carried out in data analysis to group several continuous attribute values and to divide these values 

into intervals so that they do not overlap [26]. We can do variable discretization with two approaches, which 

are supervised learning and unsupervised learning. Supervised learning is an approach where data is trained,  

and variables are targeted so that the proposed approach is to group data based on existing data. Meanwhile, 

if we do not have trained data so that the available data can be grouped into two, three, and so on, then this 

approach is called unsupervised learning. In this study, we use the method of discretizing unattended 

learning. This method divides the object into several intervals, where intervals represent the results  

of variable discretization. The unsupervised discretization process consists of two steps, which decide how 

many categories to use and map the continuous attribute value to the category value. The following are given 

three unsupervised discretization methods that can be combined with Bayesian networks, namely  

equal-width, equal-frequency, and K-means. 

 

2.1.  Equal-width 

Equal-width is simple discretization methods that divide the range of values observed in each 

variable, with   being the value specified by the user. This process involves sorting the values of continuous 

variables that are observed by determining the minimum (    ) and maximum (    ) values. The interval 

can be calculated by dividing the observed value in the same   size range using the following equation, 
 

  
         

 
  (1) 

 

with a threshold on        ,          . The equal-width method can be applied to discretizing 

continuous variables [27]. However, this discretization method is sensitive to outliers. The limitation of this 

method occurs if the distribution of data is uneven, which results in some intervals having more data points 

than others. A description of the results of discretization with the equal-width method can be identified from 

Figure 1. 
 

 

 
 

Figure 1. Illustration equal-width method 

 

 

2.2.  Equal-frequency 

The equal-frequency method determines that the amount of data in each interval is the same. The first 

step is to sort the value to be discretized from minimum to maximum. Then, divide continuous values sorted 
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into interval  . Each interval contains     data with adjacent values, where   is the amount of data.  

Figure 2 shows an illustration of this method in detail. The disadvantage of the equal-frequency method is 

that it allows the equal value is placed at different intervals.  
 

 

 
 

Figure 2. Illustration equal-frequency method 

 

 

2.3. K-means discretization 

K-means algorithm can be used as a tool to discretize continuous variables. There are only two 

features in the discretization process. The first feature is a variable to be discretized, and the second feature is 

an assisted feature that is assumed to be constant. In multivariate statistics, features represent variables. 

Suppose there is a set of objects   *               + consisting of   objects, and the feature set is  
  *     +, where    *                   + and    are constant. Then, the object    *       + 
consists of two features, where     is the mth object and the 1st feature and     is the mth object and the 2nd 

feature. The K-means algorithm partitioned   objects into   clusters. Let   *                       + be 

the set of   clusters so that         for     and               . Next,   *                + 
is the set of cluster center (centroid). Cluster    has a center    where    *       +. 

A measure of the closeness of an object    to the centroid   , defined as the distance  (     ). If 
the smaller the value of  (     ), then more likely that    enters the cluster   . The distance between  

the object    and centroid    can be formulated as follows [28], 
 

 (     )  (∑ |       |
  

   )
 
 ⁄   (2) 

 

In this study, we use Euclidean distances as a formula to calculate the closest distance. In the k-means 

discretization, the process of minimizing the amount of distance between all objects and centroids is carried 

out using the following equation, 
 

        (   )  ∑ ∑      (     )
 
   

 
    (3) 

 

with constraints 
 

∑    
 
                     (4) 

 

where     *   + is an element that represents the membership of  th object and the  th
 cluster.  

If      , then    is placed in the cluster   . But if      , then    is not placed for the cluster 

  . The optimization problem in K-means consists of two sub-problems. There is the process of placing 

objects into a cluster based on the closest distance between the object and the centroid, and the process of 

updating all centroid in each cluster [29]. The process of placing objects can be stated in the following 

equation, 
 

    {
        (     )   (     )                        
        

 (5) 

 

Next, the update process of the centroid is expressed as (6). 
 

    
∑       
 
   

∑    
 
   

                      (6) 

 

K-means method repeats the placement and update process until all elements of the     are the same  

as the previous value. The following are the steps for the K-means algorithm [30]. 

a. Determine the number of clusters. 

b. Determine   centroid randomly. 

c. Determine the distance of each object to the centroid. The closest distance between an object and a certain 

centroid determines the placement of objects in the cluster. 
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d. Calculate the centroid of a new cluster by using the average value of all objects in the cluster. 

e. Recalculate the distance between each object and the centroid. 

f. If the members of the cluster do not change, then the clustering process is complete. Conversely, if it 

changes, then we back to step 4 until the members of the cluster do not change. 

After discretizing all the continuous variables, the next step is to create and analyze the structure 

using Bayesian networks. 

 

2.4.  Bayesian networks 

According to Scutari and Denis [20], based on the variable types, there are three types of Bayesian 

networks that are discrete Bayesian networks, continue Bayesian networks and hybrid Bayesian networks. 

Discrete Bayesian networks are a BN model in which all the variables involved are discrete and continue 

Bayesian networks are a BN model constructed by continuous variables. Whereas in Bayesian hybrid 

networks, there is a combination of discrete and continuous variables. Formal definitions of the Bayesian 

networks are given in Definition 1. It is consists of a graphical model (i.e., an acyclic directed graph) and a 

probability for each variable. 

Definition 1 [31] Bayesian networks are a pair (   ), where   (   ) is an acyclic graph directed with a 

set of vertices   *     + for several    , and   is the set of arcs, and   is the probability distribution, 

indexed by the set of parameters  , over n discrete random variables, *       +   
We can see more clearly about BN in Figure 3. The direction of the arc from node   to node   

shows that random variable   affects random variable  . While variables   and   affect variable  . In this 

case,   and   are called parents, whereas   is called a child. The directed arcs representing causal 

probabilistic dependencies, so cycles are not allowed in the graph. Then, each node in the graph represents 

the conditional probability distribution [32, 33]. 
 
 

 
 

Figure 3. Example of Bayesian networks 
 

 

For example, assume a simple case like in Figure 3, where we deal with four variables, each of 

which has three possible states. To represent a joint distribution for variables, we need a table with       

probability values. The size of the table will increase along with the increasing number of variables until it 

requires a probability value of         for five variables. Inference problems can be derived  

from the factorization of the distribution of each node obtained from the BN structure, which allows  

the algorithm to be more efficient for the case. For example, look at the networks in Figure 1, and we are 

interested in determining the probability of the variable D. Starting from joint distribution, we find that: 
 

 (       )   ( ) ( | ) ( |   ) 
 

Then,  ( ) it can be written as: 
 

 ( )  ∑  ( ) ( | ) ( |   )

     

 

 

The simple model of Bayesian networks is Naive Bayes, where Naive Bayes assumes  

the relationship between predictor variables is independent [34, 35]. 

 

2.5.  K-means Bayesian networks  

In this study, the K-means algorithm is used for discretizing continuous variables and the Bayesian 

networks model for classification. The combination of the two is called the KMBN, which is a novelty in this 

study. For more details, can be seen in Figure 4. 
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Figure 4. Flowchart of KMBN 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Discretization of continuous variables 

In this study, 20,702 data of houses were damaged as a result of the 2009 West Sumatra earthquake. 

The focus of the research was Padang City, which is the capital of West Sumatra Province. The eight 

variables involved in this study are construction type (  ), peak ground acceleration (  ), epicenter distance 

(  ), soil type (  ), risk of landslides (  ), slope (  ), distance to fault (  ), and damage rate (  ). From  

the eight variables, there are three continuous variables; peak ground acceleration (  ), epicenter distance 

(  ), and distance to fault (  ). Considering the assumption that all variables to be processed must be of a 

discrete type, all continuous variables will be discretized, where each variable is grouped into three groups. 
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Basically, different discretization methods will produce different data intervals. Next, we process to the next 

stage, Bayesian networks, using the output of three discretization methods in Figure 5. 

 

 

 

 

 
 

Figure 5. Discretization of epicenter distance (  ), peak ground acceleration (  ), and distance to fault (  ) 

 

 

3.2.  Determination of the risk of damage to buildings using BN 

The basis for the construction of the BN structure in this study as shown in Figure 6 is based on 

expert information, with reference to several scientific papers, including Bayraktarli et al. [7, 10],  

and Li et al. [9, 11]. In this research, we use five exogenous variables and three endogenous variables. 

Variables that are not affected by other variables are called exogenous variables, while variables that are 

affected by other variables are called endogenous variables. Construction type (  ), epicenter distance (  ), 

soil type (  ), slope (  ), and distance to fault (  ) are exogenous variables. Whereas, peak ground 

acceleration (  ), risk of landslides (  ), and damage level (  ) are endogenous variables. Base  

on the structure of BN in Figure 6, the global distribution can be factored as follows, 
  

 (                       ) 
             (  ) (  ) (  ) (  ) (  ) (  |  )  (  |        )  
                 (  |           ) 

 (7) 

 

Next, marginalization is done to get  (  ), then  (  ) is 
 

 (  )  ∑
 (  ) (  ) (  ) (  ) (  ) (  |  ) 

 (  |        )  (  |           )
                     (8) 

 

with  (    )    (    )    (    )    

To assess the achievement of the BN model is done using a confusion matrix. The confusion matrix 

of the damage level based on three different methods can be seen in Table 1. Each column element  

of a matrix represents the actual value, and the row element represents the predicted value, with the status  

of the level of damage are slight (1), moderate (2), and heavy (3). 
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Figure 6. Bayesian networks to determine the level of damage 
 
 

Table 1. The confusion matrix of damage level in BN discretized uses three different methods 

Damage Level Predicted Value 
Actual Value 

1 2 3 

Equal-Width (EW) 
1 6998 1528 1378 
2 563 6009 1774 

3 738 1 1713 

Equal-Frequency (EF) 

1 7741 1538 2194 

2 557 6000 1774 

3 1 0 897 

K-mean clustering 

1 8294 2 1126 

2 2 7535 2055 

3 3 1 1684 

 
 

Next, the level of accuracy is determined by a proportion between the number of data classified 

correctly and a total number of test data. The level of accuracy for each BN model is determined using three 

different discretization methods; equal-width (EW), equal-frequency (EF), and K-means discretization.  

The results can be seen in Table 2. 
 

 

Table 2. The level of accuracy is based on three different discretization methods 
Discretization methods Level of accuracy 

Equal-width (EW) 0.71 

Equal-frequency (EF) 0.71 

K-means discretization 0.85 

 
 

From Table 2, it can be seen that the highest accuracy of the BN model is obtained using  

the K-means discretization method with an accuracy rate of up to 85%. Then, it is followed  

by the equal-width and equal-frequency methods with an accuracy rate of 71%. The low level of accuracy of 

the model using equal-width because of the limitations of this method in data distribution terms. If the data 

distribution is not evenly distributed, where some intervals have more data points than others, then this 

causes the level of accuracy is not optimal if applied in the BN model. Meanwhile, the disadvantage  

of the equal-frequency method is that there are the same values placed at different intervals. 

 

 

4. CONCLUSION 

BN is an essential tool in measuring uncertainty, especially in terms of determining natural disaster 

risk. In applications, combinations of variables are often encountered, so the discretization process needs  

to be carried out for continuous variables. After that, the classification process can be continued with discrete 

BN. In the case of house damage due to this earthquake, the author uses three distinct discretization methods, 

that are equal-width, equal-frequency, and K-means. The highest level of accuracy is obtained by using  

K-means to discrete three continuous variables: peak ground acceleration (  ), epicenter distance (  ),  

and distance to fault (  ) that is 85%. This research can be developed by focusing on expanding BN software 

that can contain continuous variables in a flexible and effective form. In further research, the K-Medoids 

algorithm can be tried as an alternative method to discretizing continuous variables included in the Bayesian 

network model to reduce sensitivity to outliers. 
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