Employing non-orthogonal multiple access scheme in UAV-based wireless networks

Chi-Bao Le¹, Dinh-Thuan Do²

¹Faculty of Electronics Technology, Industrial University of Ho Chi Minh City (IUH), Vietnam
²Wireless Communications Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Vietnam

ABSTRACT

This paper studies the two-hop transmission relying unmanned aerial vehicle (UAV) relays which is suitable to implement in the internet of things (IoT) systems. To enhance system performance in order to overcome the large scale fading between the base station (BS) and destination as well as achieve the higher spectrum efficiency, where non-orthogonal multiple access (NOMA) strategies were typically applied for UAV relays to implement massive connections transmission. In particular, outage probability is evaluated via signal to noise ratio (SNR) criterion so that the terminal node can obtain reasonable performance. The derivations and analysis results showed that the considered fixed power allocation scheme provides performance gap among two signals at destination. The numerical simulation confirmed the exactness of derived expressions in the UAV assisted system.

Corresponding Author:
Dinh-Thuan Do,
Wireless Communications Research Group,
Faculty of Electrical and Electronics Engineering,
Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Email: dodinhthuan@tdtu.edu.vn

1. INTRODUCTION

Wireless communication technology has pace to adapt demand with rapid development of new techniques. The decreasing cost of unmanned aerial vehicle (UAV) network together with the dramatic innovation of UAV-based manufacturing technology provides connections as some difficulties happen. Therefore, some applications such as weather monitoring systems, forest fire prevention technology, man-v-machine are provided by many new UAV applications appeared in the civilian market. In order to implement the UAV relay based IoT networks, wide range of applications of UAV-based network attracts more attentions from community of researchers [1]. Recently, to achieve throughput transmission above 10Gbps, ultra density device connection and millisecond transmission delay, implement of 5G/B5G networks needs UAV assisted communications as reported in [2, 3]. The network coverage expands to 3D interconnection as crucial demand for development of the future communications and it releases the large scale fading regarding very high speed transmission. Moreover, higher cost and difficulty in the construction of cellular stations happen and such situation leads to solutions of the IoT network by employing the UAV relays assisted Communication. UAV-based network benefits to infrastructure development by providing its convenient implement and lower cost, high-altitude assisted transmission [4, 5]. The main advantages of the UAV relay assisted communications are reducing the obstruction from buildings, mountains and achieving the higher line of sight (LoS) transmission effect [6, 7].
Due to ability of massive connections and higher spectrum efficiency, NOMA has attracted great research interest from both academia and industry [8–24]. Since users aware on imperfect channel state information (CSI), the author studied the impact of imperfect CSI on the performance of NOMA in [15]. In [16], the throughput aspects of the cognitive radio as applying NOMA techniques were discussed and compared.

2. SYSTEM MODEL

Figure 1 shows system model containing the two-hop transmission using UAV relay communication model. Two UAV relays operate in half duplex and DF mode to signal forwarding, while separated signal is detected at destination. The terminal IoT node receives signal from two links as shown in Figure 1. Typically, the obstacles or blockage of urban buildings and mountains limit quality of the communication between the base station BS and terminal node D, then the UAV relays are implemented to realize assisted communication. The destination user needs two phases to perform its the transmission process. In the first phase, the BS transmits mixture signal to the two UAV relay nodes R_1, R_2. The channels h_i between the BS and the UAV relays follow Nakagami-m distribution.

The received signal at UAV relays are given as

$$y_i = h_i \left(\sqrt{\varphi_1} P_S x_1 + \sqrt{\varphi_2} P_S x_2 \right), i \in \{1, 2\}. \tag{1}$$

The signal to noise ratio (SNR) is used to detect x_2 as

$$\Gamma_{R_1,x_2} = \frac{\varphi_2 \rho |h_1|}{\varphi_1 \rho |h_1| + 1}, \tag{2}$$

where $\rho = \frac{P_R}{N_0} = \frac{P_T}{N_0}$ is the transmit signal to noise radio (SNR). After SIC happens, SNR is given to detect signal x_1 as

$$\Gamma_{R_1,x_1} = \varphi_1 \rho |h_1|. \tag{3}$$

Similarly, SNR at R_2 to detect x_2 is given as

$$\Gamma_{R_2,x_2} = \frac{\varphi_2 \rho |h_2|}{\varphi_1 \rho |h_2| + 1}. \tag{4}$$

Next, we will introduce the channel model of $R_i \rightarrow D$ link. In general, the UAV coverage is a circular cell and the UAV is located at the vertical center. Thus, the channel vector of $R_i \rightarrow D$ link can be expressed as
Outage performance of x is defined as probability $P_{\text{out}} = \Pr (\Gamma < \underline{\text{SNR}})$. We first consider

$$P_{\text{out}} = \Pr (\Gamma < \underline{\text{SNR}}),$$

where Γ is the normalized SNR at user D to detect signal x. It can be computed as

$$\Gamma = \frac{\rho \varphi \sigma^2 |z|^2}{\rho \varphi \sigma^2 |z|^2 + 1},$$

where ρ is the normalized transmission powers at two relays' destination (uplink-NOMA) and the received signal at user is given as

$$y_D = \sqrt{P_R} (\sqrt{\varphi_1} \tilde{x}_1 \tilde{y}_1 + \sqrt{\varphi_2} \tilde{x}_2 L \tilde{y}_2),$$

where P_R is the normalized transmission powers at two relay's destination.

Then, SNR at user D is calculated to detect signal x as

$$\Gamma_{D,x} = \frac{\rho \varphi \sigma^2 |z|^2}{\rho \varphi \sigma^2 |z|^2 + 1}.$$

Then, in the second phase of communication, each UAV relay forwards detected symbols to the destination (uplink-NOMA) and the received signal at user is given as

$$y_D = \sqrt{P_R} (\sqrt{\varphi_1} \tilde{x}_1 \tilde{y}_1 + \sqrt{\varphi_2} \tilde{x}_2 L \tilde{y}_2).$$

Then, P_{out} is the normalized transmission powers at two relay's destination.

3. PERFORMANCE ANALYSIS

3.1. Outage probability of x_1

At destination, user D needs detect its signals. However, these signals are evaluated via outage probability. Such outage is defined as probability P_{out} less than the pre-defined threshold SNR. We first consider outage performance of x_1 as below:

$$P_{x_1} = \Pr (\Gamma_{R_1,x_2} < \underline{\text{SNR}}_2 \cup \Gamma_{R_1,x_1} < \underline{\text{SNR}}_1 \cup \Gamma_{D,x_2} < \underline{\text{SNR}}_2 \cup \Gamma_{D,x_1} < \underline{\text{SNR}}_1)$$

$$= \Pr (\Gamma_{R_1,x_2} \geq \underline{\text{SNR}}_2 \cup \Gamma_{R_1,x_1} > \underline{\text{SNR}}_1 \cup \Gamma_{D,x_2} \geq \underline{\text{SNR}}_2 \cup \Gamma_{D,x_1} \geq \underline{\text{SNR}}_1)$$

$$= \Pr ([|h_1| \geq \chi]) \Pr \left(\left[\frac{|g_2|^2}{\alpha_2} \geq \frac{\delta |\varphi_2|^2 + \varphi_2 |g_1|^2 + \varphi_2 \chi^2}{\alpha_1} \right] \right),$$

where $\chi = \max \left(\frac{\varphi_2 L_{\text{sn}}}{\varphi_2 L_{\text{sn}}}, \frac{\varphi_1 L_{\text{sn}}}{\varphi_1 L_{\text{sn}}} \right), \delta = \frac{\varphi_2 L_{\text{sn}}}{\varphi_2 L_{\text{sn}}}, \varphi_1 = \frac{\varphi_1}{\rho \varphi_1 L_{\text{sn}}},$ and $\varphi_2 = \frac{\varphi_2}{\rho \varphi_1 L_{\text{sn}}}$

Let $Z_i = \left\{ |h_1|^2, |g_1|^2 \right\}, i \in \{1, 2\}$ and we set, The CDFs and PDFs of Z_i

$$F_{Z_i} (x) = 1 - e^{-\mu_{x_1} x} \sum_{i=0}^{m_{x_1}-1} \frac{\mu_{x_1}^i x^i}{i!},$$

and

$$f_{Z_i} (x) = \frac{m_{x_1} x^{m_{x_1}-1} e^{-\mu_{x_1} x}}{\Gamma (m_{x_1})},$$
where \(\mu_{z_1} = \frac{m_{z_1}}{\lambda_{z_1}} \)

\[
A_1 = \text{Pr} \left(|h_{z_1}| \geq \chi \right) \\
= 1 - F_{|h_{z_1}|} (\chi) \\
= e^{-\rho_1 \chi} \sum_{a=0}^{m_{z_1} - 1} \frac{\rho_1^a \chi^a}{a!}.
\]

(13)

Then, \(A_2 \) is given by

\[
A_2 = \text{Pr} \left(|g_{z_2}|^2 \geq \delta |g_{z_2}|^2 + \omega_{x_2}, |g_{z_1}|^2 \geq \omega_1 \right) \\
= \int_0^\infty \int_{\omega_1}^{\infty} f_{|g_{z_1}|^2} (x) \left[1 - F_{|g_{z_2}|^2} (\delta x + \omega_{x_2}) \right] dx \\
= \sum_{d=0}^{m_{z_2} - 1} \frac{\rho_{z_2}^d m_{z_1} \rho_1 \chi^d \omega_{x_2}}{d! \Gamma (m_{z_1})} \int_{\omega_1}^{\infty} x^{m_{z_1} - 1} e^{-x} \left(\mu_1 + \mu_2 \delta \right)^k (\delta x + \omega_{x_2})^{d} dx.
\]

(14)

Applying [[23], (3.51.2)], \(A_2 \) is given by

\[
A_2 = \sum_{d=0}^{m_{z_2} - 1} \frac{m_{z_1} + 1 - t}{t} \left(\frac{d}{t} \right)^{m_{z_1} + 1 - t} \delta^t \Gamma (m_{z_1} + t) \omega_{x_2}^k e^{-\omega_{x_2}} \left(\mu_1 + \mu_2 \delta \right)^{m_{z_1} + t - k}
\]

(15)

where \(\Gamma (x) = (x-1)! \) is the gamma function. Next, substituting (15) and (13) into (10), \(\mathcal{P}_{x_1} \) is expressed by

\[
\mathcal{P}_{x_1} = 1 - e^{-\rho_1 \chi} \sum_{a=0}^{m_{z_1} - 1} \sum_{d=0}^{m_{z_1} - 1} \sum_{t=0}^{m_{z_1} + t - 1} \left(\frac{d}{t} \right)^{m_{z_1} + 1 - t} \delta^t \Gamma (m_{z_1} + t) \omega_{x_2}^k \chi^a \left(\mu_1 + \mu_2 \delta \right)^{m_{z_1} + t - k}
\]

(16)

When \(\rho \to \infty \), by using \(e^{-x} \approx 1 - x \) so the asymptotic of \(\mathcal{P}_{x_1}^{\infty} \) is formulated by

\[
\mathcal{P}_{x_1}^{\infty} = 1 - \left(1 - \mu_2 h_1 \right) \sum_{a=0}^{m_{z_1} - 1} \sum_{d=0}^{m_{z_1} - 1} \sum_{t=0}^{m_{z_1} + t - 1} \left(\frac{d}{t} \right)^{m_{z_1} + 1 - t} \delta^t \Gamma (m_{z_1} + t) \omega_{x_2}^k \chi^a \left(\mu_1 + \mu_2 \delta \right)^{m_{z_1} + t - k}
\]

(17)

According to (8), we have \(\lim_{\rho \to \infty} \Gamma_{D,x_2} = \frac{\omega_{x_2}^2 L_z^2 |g_{z_2}|^2}{\omega_{z_1}^2 L_z^2 |g_{z_1}|^2} \) the approximate of \(\mathcal{P}_{x_1}^{\text{app}} \) and \(\mathcal{P}_{x_2}^{\text{app}} \) are given by

\[
\mathcal{P}_{x_1}^{\text{app}} = \sum_{d=0}^{m_{z_2} - 1} \delta^d \Gamma (m_{z_1} + d) \]
3.2. Outage probability of x_2

Similarly, outage performance of x_2 can be formulated by

$$P_{x_2} = \Pr \left(\Gamma_{R_2,x_2} < \varepsilon_2 \cup \Gamma_{D,x_2} < \varepsilon_2 \right)$$

$$= 1 - \Pr \left(\Gamma_{R_2,x_2} \geq \varepsilon_2, \Gamma_{D,x_2} \geq \varepsilon_2 \right)$$

$$= 1 - \Pr \left(|h_2| \geq \nu \right) \Pr \left(|g_2|^2 \geq \delta |g_1|^2 + \varepsilon_2 \right),$$ \hspace{1cm} (19)

where $\nu = \frac{\varepsilon_2}{\sqrt{\varphi_2^2 - \varphi_1^2}}$.

We need to compute each outage component as

$$B_1 = \Pr \left(|h_2| \geq \nu \right)$$

$$= 1 - F_{|h_2|} (\nu)$$

$$= e^{-\mu_{h_2} \nu} \sum_{b=0}^{m_{h_2} - 1} \frac{\mu_{h_2}^b \nu^b}{b!}. \hspace{1cm} (20)$$

Then, we continue to compute the second term as

$$B_2 = \Pr \left(|g_2|^2 \geq \delta |g_1|^2 + \varepsilon_2 \right)$$

$$= \int_0^\infty f_{|g_1|^2} (x) \left[1 - F_{|g_2|^2} (\delta x + \varepsilon_2) \right] dx$$

$$= \sum_{d=0}^{m_{g_2} - 1} \sum_{t=0}^d \left(\frac{d}{t} \right) \mu_{g_1}^d \mu_{g_2}^{m_{g_1}} \delta^t \varepsilon_2^{d-t} e^{-\mu_{g_2} \varepsilon_2} \frac{1}{d!} \int_0^\infty x^{m_{g_1} + t - 1} e^{-x (\mu_{g_1} + \mu_{g_2} \delta)} dx. \hspace{1cm} (21)$$

Based on [[17], (3.351.3)], B_2 is given by

$$B_2 = \sum_{d=0}^{m_{g_2} - 1} \sum_{t=0}^d \left(\frac{d}{t} \right) \mu_{g_1}^d \mu_{g_2}^{m_{g_1}} \delta^t \varepsilon_2^{d-t} \Gamma \left(m_{g_1} + t \right) e^{-\mu_{g_2} \varepsilon_2}.$$ \hspace{1cm} (22)

Substituting (22) and (20) into (19), P_{x_2} is given by

$$P_{x_2} = 1 - e^{-\mu_{h_2} \nu} \sum_{b=0}^{m_{h_2} - 1} \sum_{d=0}^{m_{g_2} - 1} \sum_{t=0}^d \left(\frac{d}{t} \right) \mu_{h_2}^b \mu_{g_2}^d \mu_{g_1}^{m_{g_1}} \delta^t \varepsilon_2^{d-t} \Gamma \left(m_{g_1} + t \right) e^{-\mu_{g_2} \varepsilon_2}. \hspace{1cm} (23)$$

Corresponding to formula (17) the asymptotic of $P_{x_2}^\infty$ is given by

$$P_{x_2}^\infty = 1 - (1 - \mu_{h_2} \nu) \sum_{b=0}^{m_{h_2} - 1} \sum_{d=0}^{m_{g_2} - 1} \sum_{t=0}^d \left(\frac{d}{t} \right) \mu_{h_2}^b \mu_{g_2}^d \mu_{g_1}^{m_{g_1}} \delta^t \varepsilon_2^{d-t} \Gamma \left(m_{g_1} + t \right) \left(1 - \mu_{g_2} \varepsilon_2 \right). \hspace{1cm} (24)$$

4. NUMERICAL RESULTS

We set fading parameter $m = m_{h_1} = m_{h_2} = m_{g_1} = m_{g_2} = 2$ and channel gains as $\lambda = \lambda_{h_1} = \lambda_{h_2} = \lambda_{g_1} = \lambda_{g_2} = 1$. The power allocation coefficients of NOMA's users are $\varphi_1 = 0.1$ and $\varphi_1 = 0.9$. The target rates are R_1 and R_2 and they are set to be $R_1 = R_2 = 0.5$. The times of Monte Carlo simulation 10^7. The height of UAV $d_h = 300$ m. The distance between $R_1 \to D$ and $R_2 \to D$ are $d_{R_1,D} = 200$ m and $d_{R_1,D} = 100$ m, respectively.
Figure 2 shows outage performance versus transmit SNR. We consider four cases of \(m \). As can be seen from such outage performance, asymptotic curves are very matched with exact curves. Signal \(x_2 \) exhibits better outage probability compared with \(x_1 \) since different power allocated to each signal. The simulation results are also very tight with the analytical results. \(m = 4 \) is considered as the best case among these curves.

Figure 3 confirms that NOMA benefits to outage performance of signal \(x_2 \) as it is better than OMA method. Figure 4 indicates the optimal outage for signal \(x_1 \) and it happens at \(\varphi_1 = 0.25 \). Higher threshold SNR results in worse outage performance of two signals as observation from Figure 5.

5. CONCLUSION
The paper proposed IoT system relying UAV relay to enhance performance of destination. This technique effectively overcomes the large scale fading between the BS and far user. Moreover, the proposed NOMA strategy was typically applied for UAV relays and achieved acceptable outage performance. Meanwhile, the outage probability and throughput closed-form expressions were derived. The derivations and analysis results showed that the proposed multiple parameters joint consideration can effectively improve the system throughput and reduce the system outage probability.
APENDIX

By invoking (15) into (19), it can be expressed the outage probability as

\[OP_{U_1}^{DF} = \text{Pr} \left(|h_{SR}|^2 < \frac{\gamma_{th} (|h_{RU_1}|^2 + 1)}{(a_1 - \gamma_{th} a_2)|h_{RU_1}|^2} \right) \] \hspace{1cm} (25)

Based on probability density function (PDF) of \(|h_i|^2\) is given as \(f_{|h_i|^2}(x) = \lambda_{RU_1} e^{-\lambda_{RU_1} x} \), it can be rewritten as

\[OP_{U_1}^{DF} = \int_0^\infty f_{|h_{RU_1}|^2}(x) \int_0^\infty f_{|h_{RU_1}|^2}(y) dx dy \]
\[= \int_0^\infty \left(1 - e^{-\frac{\gamma_{th} (x+1)}{a_1 - \gamma_{th} a_2}|h_{RU_1}|^2} \right) \lambda_{RU_1} e^{-\lambda_{RU_1} x} dx \]
\[= 1 - 2e^{-\frac{\gamma_{th} (x+1)}{a_1 - \gamma_{th} a_2}|h_{RU_1}|^2} \sqrt{\frac{\lambda_{RU_1} \lambda_{SR} \lambda_{RU_1}}{(a_1 - \gamma_{th} a_2)|h_{RU_1}|^2}} K_1 \left(2 \sqrt{\frac{\lambda_{RU_1} \lambda_{SR} \lambda_{RU_1}}{(a_1 - \gamma_{th} a_2)|h_{RU_1}|^2}} \right) \] \hspace{1cm} (26)

Thus, based on [25, 3.324.1] \(OP_{U_1}^{DF} \) can be obtained as

\[OP_{U_1}^{DF} = \int_0^\infty \left(1 - e^{-\frac{\gamma_{th} (x+1)}{a_1 - \gamma_{th} a_2}|h_{RU_1}|^2} \right) \lambda_{RU_1} e^{-\lambda_{RU_1} x} dx \]
\[= 1 - 2e^{-\frac{\gamma_{th} (x+1)}{a_1 - \gamma_{th} a_2}|h_{RU_1}|^2} \sqrt{\frac{\lambda_{RU_1} \lambda_{SR} \lambda_{RU_1}}{(a_1 - \gamma_{th} a_2)|h_{RU_1}|^2}} K_1 \left(2 \sqrt{\frac{\lambda_{RU_1} \lambda_{SR} \lambda_{RU_1}}{(a_1 - \gamma_{th} a_2)|h_{RU_1}|^2}} \right) \] \hspace{1cm} (27)

It is end of the proof.

ACKNOWLEDGEMENT

The acknowledgment section is optional. The funding source of the research can be put here.

REFERENCES

