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 In prediction modeling, the choice of features chosen from the original 

feature set is crucial for accuracy and model interpretability. Feature ranking 

techniques rank the features by its importance but there is no consensus on 

the number of features to be cut-off. Thus, it becomes important to identify a 

threshold value or range, so as to remove the redundant features. In this 

work, an empirical study is conducted for identification of the threshold 

benchmark for feature ranking algorithms. Experiments are conducted on 

Apache Click dataset with six popularly used ranker techniques and six 

machine learning techniques, to deduce a relationship between the total 

number of input features (N) to the threshold range. The area under the curve 

analysis shows that ≃ 33-50% of the features are necessary and sufficient to 

yield a reasonable performance measure, with a variance of 2%, in defect 

prediction models. Further, we also find that the log2(N) as the ranker 

threshold value represents the lower limit of the range. 
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1. INTRODUCTION 

The success of the software defect prediction models lies in the choice of the optimal input features 

subset  as the redundant and irrelevant input features can over or under estimate the performance due to their 

correlation and/or noisy characteristics [1-4]. The feature selections techniques optimize the size of the input 

features by removing the redundant metrics which also helps in lessen the computational bulkiness [5, 6]. 

In practice, there are different approaches for feature selection, which are based on filters [7, 8], 

wrappers [9], embedded and hybrid [2, 4, 10-12] techniques. Both embedded and wrapper based methods for 

feature selection depends upon the classification algorithm, unlike filter based approaches which are classifier 

independent. Hence, the filter techniques are being widely adopted for feature selection as they are usually 

faster, have low computational complexity and more scalable. Filter methods are mainly classified into two; 

(i) space search methods and (ii) ranking based methods. They employ statistical correlation between a set of 

features and the target feature, which thereby determine the importance of target variable [13, 14]. In search 

space methods, a subset is chosen and assigned with specific weights for a set of possible features. On the 

other hand, in ranker methods every feature is independently ranked by the use of its descriptive score 

functions. The features are then sorted out in decreasing order on the basis of its significance score. Ranker 

techniques are computationally efficient but do not provide the list of the redundant features. Since, the 

features are only ranked and not eliminated as like in correlation-based filtering methods, what remains as a 

challenge is the threshold value of features ranked, the latter which determines the cut-off dimensionality 

[14-19]. 

https://creativecommons.org/licenses/by-sa/4.0/
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On empirical grounds, previous works [6, 7], have proposed log2(N) to be the number of selected 

features for defect prediction models, where N is the total number of features in the metric space. This 

method of metric space optimization, otherwise known as threshold based feature selection, has been 

validated by other authors [3, 5]. However, the inferences are not very consistent with respect to the 

prevalence of one feature set choice over others [4, 20] and few questions remain unchecked. For instance, 

the direct dependency of the threshold on N poses serious limitation [10]. Since ranker techniques do not 

check for correlated features, there can be a chance of such features set ranked highest, which in combination 

can result in low performance values, either due to high unwarranted bias or variance [1, 21-23]. As 

highlighted in reference [2], the threshold on the number of the ranked features depends on the nature of the 

dataset. Furthermore, for a given dataset, it also does not pose an upper or lower limit to the value of N to be 

used, a priori subjected to ranker algorithms. In fact several studies have demonstrated that feature selection 

can greatly improve the performance of subsequently applied classification methods [7, 11, 24, 25]. An 

interesting question which then follows is that given there exists different ranker techniques and machine 

learning algorithms which are based on different theoretical mainframes, whether a particular threshold 

value, say log2(N), can be universally be adopted to measure the prediction model performance, both 

precisely and accurately [2]. 

The goal of the present research work is to conduct an empirical study determine an universally 

acceptable threshold to the number of features derived from ranker algorithms by means of simple, fast and 

computationally tractable method. For the same, we employ combinations of various feature selection 

methods with different machine learning algorithms. This is anticipated to provide not only a set of excellent 

features that are distinct, but also to reduce computational burden. The selected classifiers are very different 

in their theoretical frameworks, which includes parametric, non-parametric and ensemble machine learning 

techniques. For the evaluation measure of the classifier performance we choose area under the curve (AUC). 

The empirical investigation suggests that the threshold benchmark for the feature ranking algorithms is more 

or less a range rather than a number. This is in contrast with the current practice that log2(N), N=total number 

of features would determine the threshold. In fact, we find that log2(N) is the lower limit of the range we 

predict from our experiments.  

The remainder of this paper is organized as follows. Section 2 highlights the method followed in this 

study and also introduces the preliminaries, i.e., the feature selection methods and machine learning 

algorithms studied in this work. In section 3 we elaborate and discuss the empirical results of the study, and 

also highlight the threats to validity of the results. In section 4, we conclude the result of our study. 

 

 

2. RESEARCH METHOD 

The experiment design followed in this empirical study is shown schematically in Figure 1. The 

change logs maintained by different software repositories corresponding to different software are analyzed to 

extract the OO metrics and fault data from the reports using defect collection and reporting system (DCRS) 

module [26]. The faults are associated with the corresponding classes of the software module. The source 

code for the Apache Click application, developed in Java language, was identified from the GitHub 

repository https://github.com/apache/click. Using the DCRS, the faults were collected from the defect logs 

from two consecutive releases of Apache Click, which were then mapped to the classes in the source code. 

To meet the objective of the study, the data was binary categorized into ’defective’ which for finite defects 

were considered as 1 and with no-defects were taken to be 0. 

 

2.1. Variables, data collection and application selection 

The software metric suites of C&K [27], Lorenz & Kidd and QMOOD [28, 29], Tang, Kao & Chen 

[30] and Martin's [31] are used to serve as input in this empirical study. The WMC, CBO, LCOM, RFC, DIT, 

LCOM3, NOC, IC, CBM, AMC metrics are chosen as the complex classes are more prone to defects. The 

value of the NPM, DAM, CAM, MOA, MFA metrics proportionate to the quality associated with structural, 

behavioral and class design of the software, while the higher metric value of Ca and Ce depict complex 

relationship between components, leading to defects. The LOC size metric is also considered as the 

maintenance and development of large software modules need to be optimized. These eighteen metrics, 

extracted from DCRS, serve as input to the seven ranker algorithms. Both, the reduced subset and also the 

whole feature set are served as input to defect prediction models by applying nine ML techniques. Thereafter, 

the models are subjected to 10-fold cross validation and performance is evaluated using AUC. Our choice of 

Apache dataset was based on its application size and programming language used. Also, we find these open 

source Java-based applications fit for the study as these had more than 300 classes and multiple release 

versions. The Apache Click provides a web framework which is relatively easy to learn and helps understand 

the client style programming model. 
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2.2. Feature ranking techniques 

Filter-based feature ranking methods evaluate each feature separately by assigning individual 

feature a score according to an indicator. In this work, we adopt to the seven feature ranking methods which 

are based on statistics and entropy paradigms. The non-parametric chi-square (CS) [32] statistical method 

compares a distribution of observed and theoretical frequencies, to identify which feature variables are better 

related to the outcome variable.  

The information gain (IG) is an entropy-based strategy, which estimates the information contained 

in each attribute to select the features with more distinctive qualities. However, IG has the bias for dealing 

with multi-valued features. The gain ratio (GR) [33] method utilizes the gain in the information by taking 

into account the number of scores yielded by the attribute test conditions and compensates for the bias of IG. 

Even though GR technique surpasses the limitation of the information gain technique; it shows a bias toward 

attributes with more distinct values. The symmetrical uncertainty (SU) overcomes this effect by normalizing 

values to the range 0-1. Also, SU compensates the inherent built bias in IG by considering the sum of the 

entropies of the two variables. 

ReliefF [34] is a feature selection algorithm inspired by the instance-based learning algorithm [35, 36] 

and a modification of the original works of Kira and Rendell [33]. It is found to be robust with ability to deal 

with incomplete and noisy data. One rule (OneR) is the classifier based feature selection technique that a 

single rule for each chosen features in the training data and, then selects the rule which has the least error. For 

all these feature selection methods, the larger indicator value signifies stronger relevance between the feature 

and class label.  

 

2.3. Classifiers 

The six machine learning (ML) techniques used in this study are (i) naive bayes (NB), (ii) logistic 

regression (LR), (iii) multi-layer perceptron (MLP), (iv) random forest (RF), (v) bagging (BAG), (vi) logit 

boost (LB). The LR and NB techniques are statistical in nature, and MLP represents a neural network 

solution. The RF, BAG and LB are ensemble-based methods. The Weka suite [37] with default parameters 

was used to build the predictive models. 

 

2.4. Evaluation measure 

The software defect prediction data are the class imbalanced datasets for which the receiver 

operating characteristic (ROC) is the most widely used performance indicator [38]. Hence, we have used 

AUC as the performance measure to determine the predictive capability of the model. We note that the AUC 

measure is insensitive to the noise and imbalance in the dataset. Furthermore, we apply the 10-fold cross-

validation of the models [39] to yield the best possible result. 

 

 

 
 

Figure 1. Research method adopted in the present work 
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3. RESULTS AND DISCUSSION 

For the Apache Click data sets considered, we first compute the performance measure of the six 

classifiers with all metrics as input by means of AUC. The classifier AUC values were determined as 

NB(0.74), LR(0.77), MLP(0.76), BAG(0.78), LB(0.76), RF(0.78). In terms of these values, which vary well 

within ±2%, the results show little significance on the choice of the classifiers. 

We now focus towards the problem, on how the performance measure varies with input features. As 

a systematic approach, we show in Table 1, the metrics obtained from six ranker algorithms according to 

their decreasing ranks. As per its relevance, the first one-third of the ranked features shows that WMC, 

LCOM, LCOM3, RFC, and CBO, are being consistently selected by almost all rankers. In these, WMC and 

RFC are common output, irrespective of the ranker. On the other hand, the rankers find MFA, MOA, IC, 

CBM, DAM, NOC, Ca, and Ce to be of lesser relevance, than the much debated LOC metrics. Thus, it 

follows that the C&K metrics are most relevant OO metrics, in addition to AMC the latter which is originally 

due to Tang, Kao & Chen [25]. In view of the above inferences, it is suggested that web developers may 

contemplate on metrics representing complexity, cohesion and coupling, to control the defects in the 

software. 

 

 

Table 1. The ordered list of the ranked metrics using CS, GR, OneR, ReliefF, SU and IG ranking algorithms 

No. CS GR OneR ReliefF SU IG 

1. LCOM3 AMC LCOM3 CAM AMC LCOM3 

2. AMC CBO LCOM LCOM3 CBO AMC 

3. CBO DIT WMC DAM LCOM CBO 

4. RFC LCOM RFC NPM RFC RFC 

5. LCOM RFC LOC WMC WMC LCOM 

6. WMC WMC CBO RFC LCOM3 WMC 

7. NPM NPM Ce LOC DIT NPM 

8. DIT LOC AMC CBO NPM DIT 

9. Ce Ce CBM Ce LOC LOC 

10. LOC LCOM3 IC Ca Ce Ce 

11. DAM DAM MFA NOC DAM DAM 

12.. CAM CAM Ca AMC CAM CAM 

13. NOC NOC NOC LCOM IC NOC 

14. Ca IC DAM DIT NOC Ca 

15. MOA Ca NPM MOA MOA MOA 

16. IC CBM MOA IC MFA IC 

17. CBM MFA DIT CBM CBM CBM 

18. MFA MOA CAM MFA Ca MFA 

 

 

Having ranked the features, we shown in Figure 2, the variation in the AUC values as a function of 

ranked features evaluated using various ML techniques. Common to all ranker algorithms, we find that the 

classifiers find an abrupt initial increase in the AUC value, which then gradually saturates to a finite value. 

Although, this variation is found to be different for different classifiers, the overall trend appears to be 

logarithmic in nature, except for NB classifier. It is also obvious from Figure 2, a non-analytical dependence 

of AUC showing two plateau-like regions pertaining to 6-10 features and 10-18 features. However, the 

magnitudes of these two plateau regions were found to be less than 4%, irrespective of the ranker and the 

classifier. 

A detailed analysis of the Figure 3 with respect to the AUC value calculated using all 18 metrics 

shows that the first ranked metric, irrespective of the ranker and classifier contributes more than 70% to the 

total performance. This is found to be highest for the BAG technique ( ≃ 88%) in combination with the 

CS/IG/OneR algorithms, followed by MLP technique ( ≃ 84%) using GR. This evidences to a strong 

interdependence between the ranker and classifier. With subsequent addition of metrics to determine the 

AUC, a slow and steady increment is calculated, which saturates around 5-6 metrics, for most of the ranker-

classifier combinations. 

Considering that the most relevant features set can be empirically obtained using the relation 

log2(N); where N=18, we obtain the threshold as 4.16. Accordingly, considering the first five metrics as 

important, we find the AUC predicted by most of the six classifiers to be on an average of 0.72, which is 

close to the value determined by the classifiers with all features as input. However, we also note that NB 

classifier with feature set ranked using OneR stands odd, with AUC being 0.58. This is an important result, in 

view that NB classifiers tend to yield low performance values when the input features are correlated. In 

situations where correlation exists, the metrics are voted for twice in the model, thereby over-inflating their 
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importance. Hence, we argue that the OneR ranker algorithm offers a biased set of features, which is then 

found little suitable for defect prediction in web applications. 

However, by virtue of the curve as shown in Figure 3, and neglecting the ±4% variation between the 

two plateau regions, one can deduce a critical point which can be considered as threshold. If one defines 

threshold as the value above which the change in the AUC value is minimal, then we find about 6-10 features 

render a reliable input for defect prediction modeling. This amounts to 33%-55% of the total number of 

features considered. The lower limit of our threshold range in fact nearly coincides (within ±2%) with the 

earlier prescription of using log2(N) as the threshold. We note that in a earlier work {reference}, the authors 

have proposed the number of relevant features, following ranking algorithms to be ≃ 80% of the total set of 

features. 

 

 

   

   

 

Figure 2. Plot of AUC values as a function of features ranked by CS, GR, One-R, ReliefF, SU, IG and 

evaluated using various machine learning techniques 

 

 

   

  
 

 

Figure 3. Plot of the AUC values as a function of ranked features using NB, LR, MLP, BAG, LB and RF 

machine learning technique for a given ranker algorithm 

 

 

In analogy to the result, we derive from Figure 2 it becomes equally interesting to study the extent to 

which a given classifier would determine the performance with the ranked metrics. For the same, we show in 
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Figure 3, the AUC values as a function of ranked features using various ML techniques. Note that the data is 

essentially a re-plot of Figure 2. We find that for a threshold value of six, the choice of the ranker appears 

less significant to the LR, LB and BAG classifiers, with variance being less than 2%. On the other hand, few 

ML techniques appear to be dependent on the ranker to yield better AUC values. For instance, the best AUC 

values for NB, MLP and RF classifiers are obtained when the features are ranked by ReliefF. It is also 

interesting to note that the variation of the AUC as a function of ranked features determined by BAG and LR 

does not distinguish much on the choice of the ranker algorithm. However, for NB, MLP, RF and LB, the 

AUC variation is highly non-analytical. 

On empirical grounds we find that about first half of the features ranked is a safe choice for 

precision, given a variation in the accuracy as ±2%. However, the earlier proposed threshold as log2(N) [5], 

does indeed provide a quality value within a higher uncertainty of ±4%. In fact, we find that except NB, all 

classifiers are found to be reasonably good in providing a good consistent prediction model. Overall, we find 

that MLP and BAG are the most reliable classifiers. While the AUC values determined with the help of BAG 

are lesser prone to the choice of the rankers, MLP appears to specific to certain choice of rankers. For the 

best possible prediction, we find ReliefF, CS and IG as the best ranker algorithms for both BAG and MLP 

classifiers. 

 

3.1. Threats to validity 

Threats to build legitimacy center around the bias of the measures used to assess the prediction 

performance. In the work, we utilize AUC as the assessment measure. In any case, other thorough measures, 

such as the F-measure and g-measure can likewise be considered. Threats to internal validity allude to the 

bias on the choice of defect prediction techniques and also include feature selection strategies. In this work, 

we have included six classifiers because of their popularity in software defect prediction models for skewed 

data. Besides, we also included six feature selection methods to make our experimental examinations more 

conclusive. Threats to external validity principally concern the speculation of the exploratory outcomes. In 

spite of the fact that the datasets utilized in this work have been broadly contemplated in defect prediction, 

despite everything one guarantees little that the conclusions can be summed up to other projects. 

Nevertheless, our work gives a nitty-gritty trial portrayal, including parameter settings, which along these 

lines different specialists can easily replicate this empirical study on new datasets. 

 

 

4. CONCLUSION 

A large feature set as input to machine learning pose several problems which are inherited to its 

correlated behavior.  Thus, while ranker algorithms are being used, a threshold to the input parameters 

becomes indispensable. In this view, towards determining a feature set threshold value, we performed an 

empirical investigation on Apache Click dataset using six feature ranking techniques (CS, GR, IG, ReliefF, 

OneR, and SU) and six ML techniques (NB, LR, MLP, RF, BAG, and LB). We find that ≃ 33%-50% of the 

features are necessary and sufficient, to yield a reasonable performance measure. Below the threshold, we 

find a strong variation in the AUC values reflecting a strong dependence of the ranker and ML techniques. 

The much accepted log2(N) value is, however found to represent the lower limit to the threshold range. 

Interestingly, the features representing complexity, cohesion and coupling ranks as the most important as 

these are consistently ranked by all techniques. 

In the future, we need to investigate the generality of our empirical results by considering more 

data-sets from various open-source community and commercial enterprises. Further, having noticed that there 

is link between the ranker algorithms and classifiers in determining the performance measure, it would be 

interesting to investigate whether there exists any particular threshold value for such given ranker-classifier 

combination over a range of varying data-sets. 
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