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 Switched reluctance motor (SRM) is attracting the scientific community in 

recent days because of its special structural benefits. Good research work has 

been conducted on this machine since the ages. It has evolved as an 

alternative to the conventional electrical machines in variable speed drives 

due to rugged architecture, high-speed operation, four quadrants, lack of 

magnet, and adaptability to harsh surroundings. This paper reviews different 

topologies of SRM for electric vehicle (EV) application and a comparative 

study of suitable machines for electric vehicle propulsion. This paper 

elaborates on the design methodology and the analysis of various phases of 

operation of SRMs. During the design procedure, the finite element method 

(FEM) of optimization is used to enhance motor performance. In this study, 

the three different phase (3, 4 & 6) motors are analyzed in machine design 

software and finite element analysis outcomes and SRM simulation approach 

are discussed. 
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1. INTRODUCTION 

With the advantages of less carbon emission, high efficiency of fuel, and low noise, electric vehicles 

(EVs) are becoming increasingly popular in the transportation sector, as fossil fuel causes environmental 

pollution and also nowadays the world is on the edge of green technology [1], [2]. For different types of new 

energy vehicles, the motor drive system is the core and growing technology. Switched reluctance motor 

(SRM) is ideal for electric vehicle (EV) applications due to rugged architecture, high starting torque, wide 

range of speed, good overload performance, and inherent fault-tolerance performance [3]-[6]. In an EV, the 

electric motor plays a major role in terms of performance and output. This technology is commonly used in 

permanent magnet synchronous motors (PMSMs), induction motors, and brushless DC motors (BLDCs). The 

PMSM has a higher power density. However, the high cost of rare earth materials and limited supply has 

become a constraint for using BLDCs and PMSMs in EVs. Given the mass manufacturing of EVs in the 

future, it is important to look for a high-density and low-cost motor. This paper uses switched reluctance 

motor (SRM) which is emerging as a major contender for use in EV applications [7]-[10]. 

SRM works on the principle of reluctance torque. Both the rotor and stator have poles due to which 

it is also called a double salience machine. Windings are present only on the stator, as it doesn’t contain any 

https://creativecommons.org/licenses/by-sa/4.0/
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windings as well as a permanent magnet it makes it as a special electric machine when windings are excited 

by applying a source to the stator which makes the rotor align with the stator when the pole is exited [11]. 

Torque is developed by the continuous switching of stator windings which makes the machines more 

complex and required some focused studies. Compared to other electrical machines, SRMs have several 

advantages such as high temperatures loading capability, i.e., temperatures in the range of 160𝑜C [12], It also 

has some difficulties, due to salient structure of SRM torque ripple is produced as well acoustic noise, which 

is a result of torque ripple as our application is electric machine noise doesn’t cause any problem, torque 

ripples are to be minimized [13], [14].  

Chaple [15] proposes the mathematical modeling of nonlinear SRM based on stator phase winding 

inductance. Real-time verification of an artificial neural network and adaptive neuro-fuzzy inference system-

based rotor position estimation approaches for a 6/4 pole SRM drive system has been presented in 

Paramasivam [16]. Xudong [17] proposes the turn-off and turn-on angle on the torque ripple, effects of load 

torque, and electrical efficiency of switched reluctance drive are analyzed thoroughly based on the nonlinear 

dynamic model of SRM. An approach to reduce undesirable torque ripple in 6/4-pole 3-phase SRM by 

geometry modification and using control technique has been presented in [18]. A new speed-control 

approach for SRM drive based on a fast terminal sliding mode control technique is described in [19]. The 

dynamic model of 3 phase, high speed, SRM for EV applications is described in [20].  

The finite element method-based optimization is performed on four phase 8/6 SRM using static and 

dynamic parameters in [21]. The design methodology of 8/6 SRM is carried out using Ansys Maxwell 

Software and analyzed the performance of motor for the converter control system is given in [22]. Systematic 

performance comparison of different outer rotor SRM configurations with help of a generalized design 

optimization framework is discussed in [23]. The power efficiency calculation of SRM using an indirect 

method based on electromagnetic torque is measured in [24]. A powertrain of a three-wheeler auto taxi in a 

series hybrid model is simulated for a city driving cycle is implemented in [25]. The Kim [26] presented the 

design of a compact and energy scroll compressor for SRM and its performance is validated for efficiency, 

torque, and noises. The design and analysis of finite element method-based switched reluctance motor for 

electric vehicle application is investigated in detail in [27]-[31]. The controller design for SRM motor drive 

with high efficiency is presented in [32]-[34]. 

The procedure for accurate modeling and sensorless estimation under all operating conditions in a 

nonlinear system is quite demanding. The popular solution is to formulate an SRM model based on data on 

flux linkages. There are two methods to collect these data: either by field analysis of the machine or 

experimental measurements. In most cases, SRM is modeled with the data produced by single-phase current 

unipolar excitation at different rotor locations. It is very common for two adjacent phases to be carried out 

concurrently, especially in high-speed applications where the current tails are important. For such instances, 

the SRM model fails. As a result, there are major errors in both the rotor orientation and the torque 

calculation. In the present paper, SRM undergoes a thorough finite element analysis (FEA) for various rotor 

positions, in which only one step is stimulated by different current rates. This paper elaborates the design 

methodology, sizing, machine modeling, and analysis of three-phase, four phase, and six phase switched 

reluctance motors. The SRM simulation approach used FEA and the results are discussed based on the 

following parameters; torque density, torque ripple, output power, and current.  

 

 

2. ANALYTICAL APPROACH AND MODELING 

Flux linkage of a coil (λ) is directly proportional to the phase current (i) that runs through the coil 

and its phase inductance (L), then,  

 

𝑉 = 𝑖𝑅𝑠 +
𝑑λ

𝑑𝑡
(𝜃, 𝑖) (1) 

 

λ = 𝐿(𝜃, 𝑖)𝑖 (2) 

 

where Rs is the phase resistance and θ is the rotor position.  

Then it involves a partial derivative, where first, current (i) is considered as variable and inductance 

(L) as constant. As the inductance (L) is variable concerning rotor position and time, then replacing it in the 

above equation and solving, the voltage equation of one phase can be expressed [35], 

 

𝑉 = 𝑖𝑅𝑠 +
𝐿(𝜃,𝑖)𝑑𝑖

𝑑𝑡
+ 𝑖

𝑑𝐿

𝑑𝑡
(𝜃, 𝑖) (3) 
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𝑉 = 𝑖𝑅𝑠 + 𝐿(𝜃, 𝑖)
𝑑𝑖

𝑑𝑡
+ 𝑖

𝑑𝜃

𝑑𝑡

𝑑𝐿

𝑑𝜃
(𝜃, 𝑖) (4) 

 

The derivative of rotor angular position (𝜃) in relation to time is motor angular speed (𝜔𝑚), then; 

 

𝑉 = 𝑖𝑅𝑠 + 𝐿(𝜃, 𝑖)
𝑑𝑖

𝑑𝑡
+ 𝑖𝜔𝑚

𝑑𝐿

𝑑𝜃
(𝜃, 𝑖) (5) 

 

The equations and circuit diagram describes SRM electrically, but for the complete modeling it is 

necessary to notice the machine mechanics. The per phase equivalent circuit of SRM has been depicted in 

Figure 1. 

 

 

 
 

Figure 1. Per phase equivalent circuit of SRM 

 

 

Torque equation can be derived by applying Faraday’s law of electromagnetic induction, the 

electromotive force (emf) induced is given by [36], 

 

𝑒 = −𝑑𝜑(𝑖, 𝜃)/𝑑𝑡 (6) 

 

where 𝜑(𝑖, 𝜃) is the flux linkage which is a function of rotor angle and current, then 

 
𝑑𝜑(𝑖,𝜃)

𝑑𝑡
=

𝐿𝑑𝑖

𝑑𝑡
+

𝑖𝑑𝑙

𝑑𝜃

𝑑𝜃

𝑑𝑡

𝐿𝑑𝑖

𝑑𝑡
+ 𝜔𝑚𝑖

𝑑𝑙

𝑑𝜃
 (7) 

 

The amount of power (P) developed is given by (8), 

 

𝑃 =
𝐿𝑖𝑑𝑖

𝑑𝑡
+ 𝜔𝑚𝑖2 𝑑𝑙

𝑑𝑡
 (8) 

The amount of energy stored in a magnetic field (We) is given by (9), 

 

𝑊𝑒 =
1

2
𝐿𝑖2 (9) 

 

Power due to variation in magnetic field is given by (10), (11), 

 
𝑑𝑤𝑒

𝑑𝑡
=

1

2
𝐿 2𝑖

𝑑𝑖

𝑑𝑡
+

1

2

𝑖2𝑑𝐿

𝑑𝑡
 (10) 

 

𝑑𝑊𝑒

𝑑𝑡
= 𝐿𝑖

𝑑𝑖

𝑑𝑡
+

1

2
𝑖2𝑑𝐿

𝑑𝜃
𝜔𝑚  (11) 

 

where 𝑃𝑚 is difference between power received from supply and power due to change in the magnetic field, 

and it is given by (12) 

 

𝑃𝑚 =
1

2
𝜔𝑚𝑖2 𝑑𝐿

𝑑𝜃
 (12) 

 

whereas the torque (T) is given by (𝑃𝑚 𝜔𝑚⁄ ), therefore,   

 

𝑇 =
1

2
𝑖2 𝑑𝐿

𝑑𝜃
 (13) 
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3. DESIGN OF THREE PHASE, FOUR PHASE, AND SIX PHASE SRM TECHNOLOGIES 

The designing procedure of a machine follows a certain procedure like the selection of material, 

calculation of machine parameters are the prerequisites for machine modeling. After these mathematical 

calculations, the simulation process follows a certain algorithm and it is depicted in Figure 2. This figure 

shows the design procedure for designing the switched reluctance motor [37]. The designing steps for the 

construction of SRM are as follows: 

 Step 1: Select the required number of phases, rotor, and stator poles. 

 Step 2: Calculate machine parameters of SRM to find its average electromagnetic torque. 

 Step 3: Select the magnetic material for the ferromagnetic core of SRM with the known values of the  

B-H curve. 

 Step 4: Calculate static parameters by using FEM or by the theoretical method. The main static 

parameters are phase inductance, flux linkage, rotor position for the whole operation range, and 

electromagnetic torque versus phase current. 

 Step 5: Input the measured static parameters into the SRM mathematical model, and examine the 

‘voltage’, ‘current’, ‘flux linkage’, and ‘torque’ waveforms for varying loads and speeds within its 

operating range. 

 Step 6: From the obtained waveforms, calculate the input power, output power, all types of losses, and 

efficiency. 
 
 

 
 

Figure 2. Design methodology of SRM 

 

 

4. GEOMETRY DETAILS AND SIZING 

The design of SRM is a multidisciplinary aspect, which involves electromagnetic, mechanical, 

thermal, and acoustic design. Considering the industry's point of view, technological and cost aspects issues 

are also accounted for. The motor designing problem is to find out the material, geometry, and sets of 

topologies. The design aspect depends upon the specific application as weight, size, fault tolerance, low 

torque ripple content. The output equation relates to bore diameter, speed, length, electric and magnetic 

loadings for the output of the machine [38]. Generally, this machine design will be started from the output 

equation, therefore the power developed equation can be expressed as (14), 
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𝑃𝑑 = 𝐾𝑒𝐾𝑑𝐾1𝐾2𝐵𝐴𝑠𝐷2𝐿𝑁𝑟 (14) 
 

where 𝐾𝑑 is the duty cycle, 𝐾𝑒 is efficiency, 𝐾1 and 𝐾2 are the constants, D is bore diameter, B is stator flux 

density at the aligned position, 𝑁𝑟 is rotor speed in revolution per minute, L is axial length, and 𝐴𝑠 is stator 

electrical loading (25000-90000 At/m). Then the 𝐴𝑠 is expressed as (15), 
 

𝐴𝑠 =
2𝑇𝑝ℎ∗𝑖∗𝑚

𝛱𝐷
 (15) 

 

where 𝑇𝑝ℎ is the turns per phase, m is the number of phases. The duty cycle is expressed as (16), 
 

𝐾𝑑 =
ᶿ𝑖∗𝑞𝑃𝑟

360
 (16) 

 

Initially, the duty cycle is assumed to one. Generally, at the rated operating point, the range of 𝐾2  is 

expressed as (17), 
 

0.65 < 𝐾2 < 0.75 (17) 

 

The general range of specific electric loading in amp-conductors per meter is expressed as (18), 
 

25000 < 𝐴𝑠 < 90000 (18) 
 

The selection of pole arcs is an important factor for SRM design. Two important things to be 

considered are shaping of static torque vs rotor position and self-starting requirement. It is desirable that the 

stator and rotor pole width should be the same or almost equal. Optimum pole widths must be selected by 

considering the aligned phase inductance, increased slot area, mechanical stiffness, and high inductance ratio, i.e., 
 

𝛽𝑟 ≥ 𝛽𝑠 (18) 
 

where 𝛽𝑠 and 𝛽𝑟 are stator pole arc and rotor pole arc respectively. 

The selection of poles is preferred to have a ratio among rotor, and stator to be a non-integer even 

number based on the combinations of 6/4,8/6,12/8,12/10 are followed [17]. The air gap is determined by the 

manufactures based on constraints imposed on them; small machines have air gaps ranging (0.18-0.25) mm, 

and for servo applications, it is in the range of (1-3) mm. The outer diameter can be derived from, 
 

𝐷0 = 𝐷 + 2𝑏𝑠𝑦 + 2ℎ𝑠 (19) 

 

Here bsy and hs refers to stator back iron thickness and stator pole thickness. The resulting dimensions of the 

topologies analyzed are present in Table 1. 
 

 

Table 1. Designing parameters for 3-𝜑, 4-𝜑, and 6-𝜑 SRM. 
 3-𝝋 4-𝝋 6-𝝋 

Stator outer diameter (𝐷𝑠) 190 mm 190 mm 190 mm 

Rotor diameter (𝐷𝑟) 109.6 mm 109.6 mm 109.6 mm 

Stack length (𝐿) 80 mm 80 mm 80 mm 

Air gap (𝐺) 0.6 0.6 1 

Stator pole (𝑁𝑠) 6 mm 8 mm 12 mm 

Rotor pole (𝑁𝑟) 4 mm 6 mm 8 mm 

No. of phase (𝑀) 3 4 6 

Stator pole arc (𝛽𝑠) 21 mm 21 mm 21 mm 

Rotor pole arc (𝛽𝑟) 23 mm 23 mm 23 mm 

Stator yoke thickness (𝑌𝑠) 14 mm 14 mm 14 mm 

Rotor yoke thickness (𝑌𝑟) 15 15 15 

Shaft diameter (𝐷𝑠ℎ) 30 30 30 

 

 

5. FINITE ELEMENT METHOD ANALYSIS 

5.1.  Finite element method analysis of 3-𝛗 SRM 

Finite element analysis of SRM of 6/4 SRM has been carried out by energizing a single-phase SRM 

by applying current as input to the finite element method magnetics (FEMM), Altair Flux where the rotor is 

rotated at a certain angle for the analysis of the machine. The magnetic flux density of a machine can be 

observed and analyzed from the legend shown in Figure 3. 
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Figure 3. FEMM of 3-φ SRM 

 

 

5.2.  Finite element method analysis of 4-φ SRM 

In this case (i.e., Finite element analysis of 6/4 SRM), stator and rotor numbers are changed along 

with the phase of coil conducting, and the coil of current-conducting is initiated to solve and the analysis of 

the machine is obtained. The FEMM of 4-φ SRM has been depicted in Figure 4. 

 

 

 
 

Figure 4. FEMM of 4-φ SRM 

 

 

5.3.  Finite element method analysis of 6-φ SRM 

During the phase excitation condition, there will be the generation of mmf (magnetomotive force) 

which can be observed clearly in this analysis. Stator poles are excited by certain input that is the current 

through the coil conductors which resulting in the mmf at the edge of the poles. Figure 5 depicts the result of 

magnetic flux density of 6-φ SRM. The analysis executes the magneto-motive force (mmf) to get flux paths 

and builds the magnetic equivalent circuit and helps to have the analytical models of saturable airgap with the 

suitable stator and rotor poles and nonlinear iron yoke. 

 

 

 
 

Figure 5. FEMM of 6-φ SRM 
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6. SIMULATION RESULTS AND PERFORMANCE EVALUATION 

SRM design in the above section gives an idea to picturize the modeling of the machine, from the 

experiment conducted on SRM for various topologies. Torque output has been derived from all the designed 

modules as torque is the most important feature for an electric machine which is being used for mechanical 

works like traction. Torque per ampere of each machine is also observed in this work. 

 

6.1.  Three-phase (6/4) SRM 

Here, the torque is observed by using the finite element analysis of 3-φ SRM. Input is current and it 

varies from 0A to 20A. Each curve on the graph depicts the torque per ampere for varying angular rotation of 

the rotor in the range (0-30°). Figure 6 depicts the torque per ampere of 3-phase (6/4) SRM. From this graph, 

it can be concluded that at an angle of 15° it is increasing and entering the aligned position of the rotor to 

attain maximum torque and then it starts decreases at an angle of 22°. 
 

 

 
 

Figure 6. Torque per ampere of 3-phase (6/4) SRM 

 

 

6.2.  Four phase (8/6) SRM 

As mentioned earlier, here also the torque is observed by using finite element analysis of 4-φ SRM. 

Input is current and it varies from 0 A to 20 A. Each curve on the graph (i.e., Figure 7) depicts the torque per 

ampere for varying angular rotation of the rotor from 0° to 30°. From Figure 7, it can be concluded that at an 

angle of 6° it is increasing and entering the aligned position of the rotor to attain maximum torque and then it 

starts decreases at an angle of 27°. 
 
 

 
 

Figure 7. Torque per ampere of four phase (8/6) SRM 

 

 

6.3.  Six phase (12/8) SRM 

The torque per ampere of six phase (12/8) SRM has been depicted in figure 8. Here, the torque is 

observed by using the finite element analysis of 3-φ SRM. Input is current varying from 0 A to 10 A. Each 

curve on the graph depicts the torque per ampere for varying angular rotation of the rotor in the range of 

(15°-30°). From this figure, it can be concluded that the torque density is less even though it produces instant 

torque with less or minor variation in torque with the varying current. 

Table 2 presents the comparison of torque density, torque ripple, and output power of 3-𝜑, 4-𝜑, and 

6-𝜑 SRMs. Table 3 presents the comparison of SRM based on torque per unit ampere of 3-φ, 4-φ, and 6-φ 

SRMs. All the torque per unit ampere values are presented in Table 3 and all of them are at the maximum 

point, i.e., in the aligned position. 
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Figure 8. Torque per ampere of six phase (12/8) SRM 

 

 

Table 2. Performance comparison of 3-𝜑, 4-𝜑, and 6-𝜑 SRM 
Parameters 3-𝜑 4-𝜑 6-𝜑 

Torque density Medium High Low 

Torque Ripple High Medium Low 

Output power (T/A) Medium High Low 

 

 

Table 3. Comparison of SRM based on torque per unit ampere of 3-𝜑, 4-𝜑, and 6-𝜑 SRM 
Current 3- 𝜑 Torque 4- 𝜑 Torque 6- 𝜑 Torque 

2A 0.004 N-m 0.028 N-m 168.9E-7 N-m 

4A 0.0172 N-m 0.11 N-m 675.7E-6 N-m 

6A 0.0341 N-m 0.255 N-m 1.52E-6 N-m 
8A 0.055 N-m 0.464 N-m 2.70E-6 N-m 

10A 0.078 N-m 0.726 N-m 4.22E-6 N-m 

 

From the results of 6- 𝜑 and 4- 𝜑 SRM, 4- 𝜑 machine is considered to be good among them from 

the observation of torque per ampere values of the machines [21]-[31]. However, these improvements are 

made at the cost of adding extra complexity to both the electric machine as well as power electronics system. 

 

 

7. CONCLUSION 

In this paper, an optimized design of (6/4) 3-φ, (8/6) 4-φ and (12/8) 6-φ switched reluctance motor 

(SRM) has been worked out providing the geometrical dimensions, the design procedure for electric vehicle 

propulsion has been proposed. The effect of these designs can be very useful and critical in selecting a proper 

SRM structure for a particular application like an EV application. According to conventional studies, SRM 

8/6 and 12/8 are the suitable configuration of machines for EV application. Considering the results of 6-φ and 

4-φ SRM, 4-φ machine is considered to be good among them by the observation of torque per ampere values 

of the machines. However, these improvements are made at the cost of adding extra complexity to both the 

electric machine as well as power electronics system. Limitations are the controlling aspects as it consists of 

sensors it would be quite complicated to handle as designing was the main aspect of the proposed work it has 

given less importance controlling can be done through various readily available controllers PID controller 

would be a good option. Detailed controlled analysis and keeping the mechanical aspects like vibrations, 

acoustic and torque ripple reduction can be further worked and can be done in the optimization of the motor 

in hardware to test actual performance. 
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