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 LoRaWAN is one of the most commonly used technologies serving the 

internet of things (IoT) and machine-to-machine (M2M) devices. The traffic 

growth in the LoRaWAN network gives rise to many problems, which are 

solved using mathematical modelling. The actual task, in this case, is the 

development of a traffic simulation model in the LoRaWAN network. This 

article discusses the issues of traffic simulation in the LoRaWAN network and 

its research using the MATLAB system. The authors have developed a 

LoRaWAN network server model as a queuing system with incoming self-

similar traffic in the MATLAB system using a separate subsystem for the 

input traffic modelling allowing to change the number of sources in the 

LoRaWAN network. The simulation results made it possible to establish the 

dependences of the network server’s buffer memory, the probability of packet 

loss from the incoming self-similar traffic parameters, and reveal the 

possibilities of traffic modelling in the MATLAB system. 
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1. INTRODUCTION 

The scope of internet of things (IoT) technology is expanding to include such economic sectors as 

energy, transport, industry, housing and communal services, agriculture, and healthcare [1]. The overall 

infrastructure of ‘smart’ homes and ‘smart’ cities, emerging globally, is also managed using this technology 

[2]. The number of applications deploying IoT technology is rapidly growing, resulting in a significant increase 

in traffic from connected IoT/M2M devices [3]. 

LoRaWAN, presented in 2015 by Semtech and IBM Research [4], is one of the promising 

technologies designed to service IoT/M2M. LoRaWAN technology is part of a group of low-power wide-area 

network (LPWAN) technologies that connect IoT/M2M applications to a narrowband communication network 

with low radiation power and a range of up to several kilometres [5]. The LoRaWAN network allows for 

remote data collection from various connected metering devices, such as water meters, electricity meters [6]. 

‘Smart’ homes, ‘smart’ transportation, and ‘smart’ city projects are all made possible by this technology. Much 

attention is paid to projects related to the automation of technological processes.  

The diversity of applications generates a variety of traffic on the LoRaWAN network [7]. To carry 

out studies of traffic service processes at network nodes, which are necessary for solving network design 

problems and assessing service quality indicators, a mathematical model of traffic in a LoRa network is 

required. In this context, developing an adequate traffic model that reflects the traffic’s real-word features and 

analyses its characteristics is a critical task. 

https://creativecommons.org/licenses/by-sa/4.0/
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The purpose of this article was to identify the possibilities of the network traffic simulation in the 

LoRaWAN network and analyse its results using the MATLAB software package. The scientific novelty of the 

work lies in the development of a simulation model of self-similar traffic arriving at the LoRaWAN network 

server in the form of the queuing system’s subsystem, in determining the dependences of the digital storage 

buffer’s size and the probability of packet loss on the parameters of self-similar traffic and simulation time. 

In modelling, a network node (server, router, multiplexor) was viewed as a single-channel queuing 

system (QS). In this model, each IP packet was regarded as a request to be serviced, transmitted, received, and 

processed. The traffic generated by packets (packet traffic) had such parameters as the rate of packet arrival 

(packs/s), packet length (bits, bytes), the time interval between packets, and traffic intensity (bit/s). Before 

proceeding to the description of the development of the traffic simulation model in the LoRa network, let us 

consider its architecture, shown in Figure 1. 

 

 

 
 

Figure 1. The LoRa network architecture 

 

 

LoRa network architecture consists of four main parts; i) end nodes, ii) gateways, iii) network server, 

iv) application server [8]. The creation of a network traffic model has always been a critical part of fundamental 

network modelling [9]. Reliable models should adequately describe the actual characteristics of the network 

environment, that is why many works are devoted to the development of analytical and simulation models of 

traffic generated by IoT and M2M devices. 

One of the first works devoted to developing M2M traffic models is work created by Laner et al. [10], 

considering three modelling strategies. In the first strategy, each device is modelled as a stand-alone entity, 

which provides greater accuracy and flexibility. However, the model becomes much more complex with the 

growth of M2M devices. In the second case, an aggregated traffic model is developed, the complexity of which 

is independent of the number of devices. The third strategy considers a hybrid approach. This paper compares 

all three models and shows the trade-off between accuracy and complexity. 

It is widely known that today the traffic in modern networks is largely self-similar (fractal) [11], [12]. 

However, in some works, aggregated traffic from devices is modelled as Poisson traffic [13], [14]. In this paper, 

the superposition of traffic flows from n nodes was approximated by the Poisson process making it easy to 

calculate the characteristics of even such large-scale systems as the IoT. 

There are several methods for modelling self-similar network traffic. In studies [15], [16], self-similar 

traffic is modelled as an ‘ON/OFF’ process, and an improved ‘ON/OFF’ methodology for modelling a ‘smart’ 

city’s IoT traffic is presented. 

Research by Gupta et al. [17] consider modelling of traffic from IoT devices connected via LPWAN 

technologies. Although it is impossible to create a single traffic model for many IoT applications, traffic can 

be classified as either periodic or event-triggered, or a combination of the two. This paper evaluates the 

performance of LoRaWAN, one of the LPWAN technologies, in which a hybrid of both types of traffic is 

present. In the practical deployment of sensor-based IoT devices, these devices are usually densely deployed 

to provide sufficient and reliable measurements. Thus, when an event occurs, they exhibit spatial and temporal 

correlation in their traffic rate due to the natural phenomena of the measured metric. The coupled markov 

modulated poisson processes (CMMPP) model is used to represent such event-triggered signature traffic from 

https://ieeexplore.ieee.org/author/37086138265
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independent IoT devices. The CMMPP model, which combines the first two modelling strategies mentioned 

in [10], was previously proposed in the study of [18]. The accuracy and flexibility of such a model are 

substantiated in comparison with the aggregated traffic model. 

Two network traffic models are proposed in the study of [19], both of which can characterize the self-

similarity of traffic with the characteristic of packet loss. As a result of modelling, two self-similar traffic 

models were obtained, with the calculation of the Hurst parameter for each to estimate the degree of self-

similarity. In conclusion, the authors showed that both models adequately describe network traffic. We should 

note that the models of self-similar traffic in the work were developed in the MATLAB environment. In the 

works reviewed earlier, the network traffic simulation models were developed in OPNet, OMNet, NS3, and 

the like. He et al. [19] showed the advantages of modelling in MATLAB, allowing to obtain more adequate 

network traffic models with a given self-similarity index. In this article, we considered the possibilities of 

modelling and researching a self-similar traffic model using the MATLAB software package and its Simulink 

environment. 

 

 

2. RESEARCH METHOD 

In recent years, traditional modelling technologies have been increasingly replaced by new 

technologies for creating and using models called intelligent technologies [20]. Using artificial intelligence 

assumes that most of the actions previously done by the developer are now performed by the computer [21], 

significantly changing the requirements to the developer, the nature of his actions, and the designed model 

properties [22]. 

This article describes a methodology for creating a simulation model of a LoRaWAN network server 

as a P/M/1/K type queuing system. To simulate the network server’s operation, we suggested to use the 

MATLAB software package and its included Simulink environment. To model self-similar traffic, we 

considered the probability distribution of the size of the intervals between packet arrivals as the Pareto 

distribution (P). Simulink allows using the high-power SimEvents data set control block [23] to create models 

of queuing systems. Simulink also allows using any MATLAB library, as well as any custom blocks created 

by the user, for the estimation of traffic and control blocks. 

All this sets MATLAB apart from other modelling environments. The Simevents block set includes 

models for; i) traffic sources, ii) queues (including priority ones), iii) servers and other blocks. SimEvents 

allows forming requirements with user-defined parameters and then connecting blocks in such a way so that 

the movement and processing of requests correspond to a real-life environment. It is known that network traffic 

is self-similar (fractal) [24], [25]. 

The authors examined network traffic coming from gateways to the network server. To study the 

properties and characteristics of this traffic, we carried out a statistical analysis of the data. Statistical data 

processing allowed us to obtain the following traffic characteristics results and calculate the Hurst parameter 

H=0.9, which confirms the property of traffic self-similarity. In the Simulink MATLAB system, we have 

developed a simulation model shown in Figure 2. 
 

 

 
 

Figure 2. The Р/M/1/K type queuing system simulation model 

https://ieeexplore.ieee.org/author/37532431300
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Figure 2 presents a complete model of the Р/M/1/K system. The generator generates packet arrivals 

at time intervals specified by the Pareto distribution. To generate such traffic, the probability distribution 

function (PDF) of the inter-packet time must have a ‘long tail’. The most commonly used distributions with 

this property are Pareto distributions. Unfortunately, the SimEvents block set does not include any of these 

distributions for the source content generators. However, we can use any external random number generator to 

specify the time interval between two events. 

Figure 2 shows a basic model with 100 traffic sources. Figure 3 illustrates the subsystem itself: here, 

25 sources were combined into one subsystem. Self-similar traffic came from each of the subsystems with the 

specified Hurst parameter. All subsystems had the same Hurst parameters and load factor. The performance of 

the serving node was taken equal to 1, thus the intensity of each source equalled to its load factor: ρ=λ/μ, where 

μ=1. 

 

 

 
 

Figure 3. The self-similar traffic modelling subsystem 

 

 

3. RESULTS AND DISCUSSION 

The authors carried out experimental studies with a simulation model of the LoraWAN network server 

developed in a P/M/1/K type queuing system in the Simulink environment. The input data included such 

parameters of self-similar traffic as the H; hurst parameter, Lambda; the intensity of incoming packet traffic, 

BufSize; digital storage buffer size, and simTime; simulation time. As a result of modelling, the following 

arrays were filled in and saved: i) Qlen, the queue length at each moment of the experiment, ii) TotalUtil, the 

entire system load factor from 100 sources at each moment of the experiment; iii) Ploss, the value of the packet 

loss probability at each moment of the experiment. 

To achieve acceptable values of the loss probability, it was necessary to set the size of the buffer 

memory. Therefore, first the model was run with infinite memory BufSize=Inf. In this way, the average and 

maximum queue lengths were estimated, which, respectively, were the average and maximum buffer sizes. 

However, for self-similar traffic, the degree of self-similarity H can also vary (in the range from 0.6 to 0.95). 

It is this parameter that has a huge impact on the irregularity of filling the buffer memory. For example, the set 

parameters are: i) hurst parameter H=0.9, ii) traffic intensity from one IoT/M2M device Lambda=0.009. 

Thus, the intensity of aggregated traffic from 100 devices is expected to be about 0.9. For the service 

intensity µ=1, we have ρ=0.9, which is a fairly large value and in practice means that the server is overloaded. 
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In such a case, regardless of the degree of self-similarity, a long queue is expected. However, self-similarity 

causes uneven traffic distribution there are ‘bursts’ of requests, followed by ‘pauses’ of calm. With the help of 

modelling, we could build a graph of changes in the queue length value Qlen (see Figure 4). 

 

 

 
 

Figure 4. The queue length value change graph 

 

 

We can see that the queue, in general, was growing. The red line marked 95% of the points constituting 

the value of 171,000 requests. We obtained these results for a relative simulation time of 3·106 (Simulink time 

units). However, there was no guarantee that the growth of the queue length would continue with a more long-

time simulation. At the same time, we should note that the average queue length mean (QLen) was only 69,000 

requests, which was almost three times less than the 95% value we had set. Therefore, when selecting the buffer 

memory size based only on the average queue length, the forecast would be too optimistic, and the loss 

probability would be increasing. 

Then we used the specified 95% of the queue length as a buffer memory size limit, i.e. 

BufSize=171,000, and set a significantly longer simulation time simTime=1e8. After starting the simulation 

(which took a much more significant amount of time), we plotted the following values: i) instantaneous values 

of the buffer memory size, ii) instantaneous values of the loss probability. The graph clearly shows that further 

growth of the buffer memory size was impossible upon reaching the limit that we had set (see Figure 5). 

 

 

 
 

Figure 5. The graph of changes in the queue length instantaneous values 

 

 

Accordingly, requests that did not fall into the buffer were discarded by the server and lost. The loss 

probability graph clearly shows that the maximum was slightly higher than the established value of about 5.5% 

(see Figure 6). 
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Figure 6. The probability loss change graph 
 

 

Then we repeated the last experiment but did not limit the maximum size of buffer memory to see 

whether the growth would be constant and to what values it could continue with the given traffic and system 

parameters. To do this, we set BufSize=Inf (infinite memory size) and left the time unchanged (simTime=1e8). 

After modelling, we built an instantaneous queue length change graph (see Figure 7). 
 

 

 
 

Figure 7. The instantaneous queue length change graph 
 
 

The red line marks the same 95% level that was obtained for the previous simulation time 3e6. After 

that, we experimented without limiting the buffer memory size, while the Hurst parameter varied from 0.6 to 

0.9, the load from one device varied from 0.005 to 0.009, and the simulation time was 1e6. The simulation 

result is shown in Figure 8 in the form of a three-dimensional graph. As we can see from the Figure 8, the 

largest values of the Hurst parameter and the load from one device correspond to the largest size of the buffer 

memory (we took the average queue length). 
 

 

 
 

Figure 8. Dependence of the average queue length on the Hurst parameter and load 
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In the next experiment, we changed the load from one device within the limits of 0.005 to 0.009 and 

the buffer capacity of 100 to 50,000. The experiment results allowed us to determine the dependence of the 

loss probability on the load and buffer memory size presented in the form of a three-dimensional graph in 

Figure 9. 
 

 

 
 

Figure 9. Dependence of the probability of loss on the load and buffer memory size 
 
 

The Figure 9 shows that the packet loss probability grows with increasing load, starting with 

Utility=0.007, and decreasing buffer memory size (red). The maximum value of the packet loss probability 

Ploss=0.5 was achieved at the Utility load=0.009 and the smallest value of the buffer capacity (Buffer 

size=100). We should note that the Hurst parameter was taken constant, Н=0.9, and the simulation time was 

SimTime=1e6. 

 

 

4. CONCLUSION 

This article demonstrates the possibility of using the Simulink environment with the SimEvents 

blockset from the MATLAB software package to simulate network traffic in a LoRaWAN network. The 

authors considered the network traffic arriving at the network server and being self-similar as a modelling 

object. We developed subsystems in the Simulink environment that generated self-similar traffic with a given 

Hurst parameter. The network server model was represented in the Simulink as a P/M/1/K type QS. Simulation 

modelling of the LoRaWAN network server operation made it possible to obtain the following results. 

Modelling without limiting the buffer memory size, at which the Hurst parameter varied from 0.6 to 

0.9, the load from one device varied from 0.005 to 0.009, and the simulation time was 1е6, showed that the 

highest values of the Hurst parameter (0.9) and the load from one device (0.009) corresponded to the largest 

size of the buffer memory (for the average queue length) equal to 3·104. 

The results of modelling with a change in the load from one device in the range from 0.005 to 0.009 

and the buffer capacity from 100 to 50,000, made it possible to define the dependence of the loss probability 

on the load and the volume of buffer memory. The maximum value of the probability of packet loss (Ploss=0.5) 

was achieved at the load Utility=0.009 and the smallest value of the buffer capacity (Buffer size=100). In the 

process, the Hurst parameter was taken constant (H=0.9) and the simulation time SimTime equalled 1e6. 

In conclusion, we can note that it was critically important to conduct a sufficiently long simulation to 

estimate the size of the buffer memory. It can be seen from the presented graphs that the nature of filling the 

buffer memory is, in essence, a self-similar process since the buffer memory was empty at certain points in 

time the instantaneous value of the queue length dropped to 0. 
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