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 Self regulating particle swarm optimization (SRPSO) is a variant of particle 

swarm optimization (PSO) which has proved to be a very efficient algorithm 

for unconstrained optimization compared with other evolutionary algorithms 

(EAs) and utilized recently by the researchers for solving real-world 

problems. However, SRPSO has not been evaluated and analyzed for 

constrained optimization. In this work, SRPSO has been evaluated 

exhaustively for constrained optimization using the 24 constrained 

benchmark problems by coupling it with four efficient constraint handling 

techniques (CHTs). The results of constrained SRPSO algorithm have been 

compared with two other algorithms i.e. Differential evolution (DE) and 

PSO. DE and PSO have also been coupled with same four CHTs and 

evaluated on the 24 constrained benchmark problems. Statistical analysis on 

performance evaluation of three algorithms on the benchmark problems 

shows that constrained SRPSO algorithm performance is better than 

constrained PSO but it is found to be deficient when compared with 

constrained DE with 95% confidence level. Therefore, the objective of this 

work is to evaluate the SRPSO algorithm comprehensively for constrained 

optimization with different views to come up with suitability of constrained 

SRPSO algorithm when coupled with particular CHT for solving specific 

type of problems. 
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1. INTRODUCTION  

Complex real-world engineering problems are difficult to be solved by conventional techniques like 

linear programming, quadratic programming, non-linear programming and dynamic programming because 

they involve non-linearity, discontinuous function, and discrete search space. Therefore, evolutionary 

algorithms (EAs) have been developed for these purposes, which are derived from some natural processes. 

Constrained optimization is inevitable in various real-world engineering problems. This includes, but not 

limited to, energy optimization [1], network traffic optimization [2], antenna design optimization [3], image 

and signal processing optimization [4]. EAs are basically used to solve unconstrained problems, but in case 

of real-world problems, constraints are encountered. Therefore, to solve constrained problems, constraint 

handling techniques (CHTs) are required to be coupled with EAs. A constrained optimization problem (COP) 

can be formulated generally in the form of a nonlinear programming problem [5] as: 
 

Minimize:  
 

𝑓(𝑋), 𝑋 = (𝑥1, 𝑥1, … , 𝑥𝑛) 𝑎𝑛𝑑 𝑋 ∈ 𝑆 

https://creativecommons.org/licenses/by-sa/4.0/
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Subject to: 
 

𝑔𝑖(𝑋) ≤ 0, 𝑖 = 1, … , 𝑝 (1) 
 

ℎ𝑗(𝑋) = 0, 𝑗 = 𝑝 + 1, … , 𝑚 
 

where f(X) in problem description (1) must not be a continuous function, but bounded. S is the complete search 

space. p is the number of inequality constraint and (m-p) is the number of equality constraints. At the global 

optimum solution, if inequality constraints satisfy the condition 𝑔𝑖(𝑋) = 0, then the constraints are called active 

constraints. Hence, all the equality constraints are active constraints. The equality constraints are changed into 

inequality constraints and bundled as described in (2). 
 

𝐺𝑖(𝑋) = {
max{𝑔𝑖(𝑋), 0} , 𝑖 = 1, … , 𝑝

max{|ℎ𝑗(𝑋)| − 𝛿, 0} , 𝑖 = 𝑝 + 1, … , 𝑚
 (2) 

 

here δ in (2) is subtracted as a tolerance value to convert equality constraints into inequality constraints. A 

careful setting of the tolerance value has been proposed and used in various researches [6]–[8]. The objective of 

constrained optimization is to find the best feasible solution i.e. all inequality constraints should be satisfied. If 

the solution is infeasible, its overall constraint violation is computed, which is given by (3).  
 

𝑣(𝑋) =
∑ 𝑤𝑖(𝐺𝑖(𝑋))𝑚

𝑖=1

∑ 𝑤𝑖
𝑚
𝑖=1

 (3) 

 

where 𝐺𝑖(𝑋) in (3) are bundled inequality constraints as given by (2). 𝑤𝑖 = 1/𝐺𝑚𝑎𝑥𝑖
 is weight parameter and 

𝐺𝑚𝑎𝑥𝑖
 is the maximum violation of the constraint obtained so far. 

There are several variants of particle swarm optimization (PSO) [9] algorithms based on different 

strategies such as fully informed particle swarm (FIPS) [10], dynamic multi-swarm particle swarm optimizer 

(DMSPSO) [11], bare bones particle swarm optimization (BBPSO) [12], unified particle swarm optimization 

(UPSO) [13], comprehensive learning particle swarm optimization (CLPSO) [14] and self regulating particle 

swarm optimization (SRPSO) [15]. All these PSO based algorithms are improved version of standard PSO 

algorithm, however SRPSO has been proved to be the most efficient among them [15]. Differential evolution 

(DE) [16] algorithm has been reported to be one of the most efficient algorithm for constrained optimization 

[17] and applied in constrained optimization such as in [18], therefore it has been included in the comparison. 

SRPSO incorporates human cognition into PSO i.e. human learning principles have been incorporated into 

the PSO algorithm so that it becomes self-regulating. SRPSO has been proved to be a very efficient algorithm 

for unconstrained optimization [15] compared to other selected algorithms available in the literature. 

Therefore it has been utilized by the research community recently [19]–[22] for solving real-world problems, 

but it has not been extensively evaluated for constrained optimization problems. This work is about 

evaluating the SRPSO algorithm exhaustively for constrained optimization on 24 benchmark functions [23] 

using not only a single CHT, but four versatile and efficiently proven CHTs. The analysis of results has been 

performed to identify the best suited CHT for SRPSO algorithm. Furthermore, shortcomings associated with 

SRPSO algorithm when solving constrained optimization problems have also been identified together with 

suitability of SRPSO algorithm when solving particular type of problems. 

The rest of the paper is organized is organized as; section 2 presents the research method which 

contains review of CHTs, EAs, and implementation of CHTs incorporation into EAs. The comparsison 

among three algorithms i.e. DE, PSO, and SRPSO is presented and analysis has been performed in section 3. 

Section 4 contains the concluding remarks. 

 

 

2. RESEARCH METHOD 

The research method adopted in this work is based on multiple comparson tests. The four efficient 

and versatile CHTs from the literature i.e. superiority of feasibility (SF) [24], self adaptive penalty (SP) [25], 

stochastic ranking (SR) [26] and ε-constraint (EC) [27] have been selected and coupled with three EAs i.e. 

DE [16], PSO [9] and SRPSO [15] for evaluation of constrained performance evaluation of the three EAs. 

The reason for the selection of these four CHTs from the literature is their efficiency and diverse nature when 

compared with each other. SRPSO has been evaluated for constrained optimization since it has not been 

tested in the literature for constrained optimization. DE is selected for comparison because it is found to be 

very efficient algorithm for constrained optimization in the literature [17], whereas PSO has been selected 

being the basic architect of SRPSO algorithm. The ranking of the results of algorithms mean value run is 

performed among the three EAs for each of the CHT. Statistical validation is peformed for each of the four 

ranking tables to signify the difference in performance of the three algorithms. Multiple comparison tests 
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have also been performed to identify the corresponding similar performing combinations. A detailed probe 

into the results of SRPSO for the particular CHT is perfomed to identify the best suited problems for SRPSO 

algorithm under a particular CHT. In the following subsections, a basic understading of CHTs and EAs used 

in this work is presented along with the method for incorporating a CHT under particular EA. All the 

equations of CHTs and EAs can be referred in the corresponding reference mentioned in that subsection. 

 

2.1.  Constraint handling techniques 

There is variety of CHTs presented in the literature. However, four efficient CHTs have been 

selected which are versatile in nature when compared with each other in order to evaluate SRPSO algorithm 

exhaustively with diversified CHTs. The selected CHTs are described in the following subsections. 

 

2.1.1. Superiority of feasibility solutions 

SF [24] is based on three simple rules is being as: i) a feasible solution is preferred over an 

infeasible solution; ii) among two feasible solutions, particle with better fitness is preferred; iii) among two 

infeasible solutions, particle with a smaller overall constraint violation υ(X) as computed by (3) is preferred. 

 

2.1.2. Self adaptive penalty 

Tessema and Yen in SP [25], if there are less feasible individuals, a greater penalty value is added 

with infeasible particles which have greater amount of constraint violation. However, if there are more 

feasible individuals, then lesser penalty value is added to infeasible individuals having greater fitness values. 

The final fitness value for choosing optimum solution is given as F(X)=d(X)+p(X). Here, p(X) is penalty 

value and d(X) is distance value which is calculated as: 
 

𝑑(𝑋) = {
𝑣(𝑋),                    𝑟𝑓 = 0

√𝑓′′(𝑋)2 + 𝑣(𝑋)2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

where rf =(number of feasible individuals)/(population size), υ(X) is the overall constrain violation as defined 

in (3), 𝑓′′(𝑋) = (𝑓 (𝑋)  − 𝑓𝑚𝑖𝑛) / (𝑓𝑚𝑎𝑥  − 𝑓𝑚𝑖𝑛). fmax and fmin are maximum and minimum values of 

objective function f(X) in current combined population. The penalty value is given by p(X)=(1−rf)M(X)+rf 

N(X), where: 
 

𝑀(𝑋) = {
0,              𝑟𝑓 = 0

𝑣(𝑋), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑁(𝑋) = {
0,              if X is feasible individual

𝑓′′(𝑋), 𝑖𝑓 𝑋 𝑖𝑠 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
 (5) 

 

2.1.3. Stochastic ranking 

In SR method [26], a trade-off between objective and the overall constraint violation is exploited 

stochastically through a probability factor pf to evaluate the rank of individuals based on objective function 

value or overall constraint violation value. The SR technique eliminated the problem with SP technique in 

which over and under penalization problem occurs due to inappropriate penalty factors. The ranking is based 

on the following criteria. 
 

if (υ(X) = = 0 or rand (0,1) < pf) 
sort based on f(X) 

else 

sort based on υ(X) 
 

where f(X) and υ(X) are as given in (1) and (3) respectively. 

 

2.1.4. ε-constraint 

In EC technique, constraints are relaxed through ε parameter [27]. EC technique transforms a 

constrained numerical optimization problem into unconstrained numerical optimization problem. The value of 

ε is updated for a particular number of generations Tc. If the number of generations exceed Tc, the value of ε 

is set to zero in order to steer the solution towards zero constraint violation. 
 

휀(0) = 𝑣(𝑋𝜃) 

휀(𝑘) = {
휀(0) (1 −

𝑘

𝑇𝑐
)

𝑐𝑝

,  0 < 𝑘 < 𝑇𝑐

0,   𝑘 > 𝑇𝑐

 (6) 
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here Xθ in (6) is top θth individual and θ=(0.05*N). N is the population size. Parameter ranges for Tc and cp 

are given in [27]. k is the generation counter. 

 

2.2.  Evolutionary algorithms 

There are variety of EAs in the literature, however DE [16] has been reported to be one the most 

efficient EA for constrained optimization and used by researchers in most of the cases [17]. Since, DE is 

strong candidate for constrained optimization, therefore, it has been selected for comparison with SRPSO, 

whereas, PSO [9] has been added in comparison being the architect of SRPSO [15]. Furthermore, the 

comparison results in section 3 clearly highlight the superiority of constrained SRPSO over constrained PSO. 

 

2.2.1. Differential evolution  

DE is a very efficient heuristic algorithm based on three simple operations [16]. The idea behind 

development of DE is to produce offspring with as much randomness as possible by using mutation and 

crossover operations. The best solutions are then retained through selection operation. In mutation, a step 

towards generation of new individuals is taken by adding weighted difference between two randomly 

selected individuals to a third random individual as given by (7).  
 

𝑉𝑖(𝑡) = 𝑋𝑟1(𝑡) + 𝐹(𝑋𝑟2(𝑡) − 𝑋𝑟3(𝑡)) (7) 
 

The mutant’s individuals are then mixed with predetermined target individuals, to produce the trial vector. 

This mixing is called “crossover” as given by (8). This results in an increase in diversity of the perturbed individuals. 
 

𝑈𝑗𝑖(𝑡 + 1) = {
𝑉𝑗𝑖(𝑡 + 1)  𝑖𝑓(𝑟𝑎𝑛𝑑𝑏(𝑗) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑟𝑛𝑏𝑟(𝑗)

𝑋𝑗𝑖(𝑡 + 1)  𝑖𝑓(𝑟𝑎𝑛𝑑𝑏(𝑗) > 𝐶𝑅 𝑎𝑛𝑑 𝑗 ≠ 𝑟𝑛𝑏𝑟(𝑗)
 (8) 

 

The trial individuals are compared to the target individuals using greedy criterion to determine whether 

trial individuals would be selected and replaced by target vector or not. This operation is called selection. 

 

2.2.2. Particle swarm optimization 

PSO is a swarm based procedure to obtain the optimum solution. It was introduced in 1995 by Eberhart 

and Kennedy [9]. It is inspired from the behaviour of bird flock and fish schooling. The birds together search for 

one piece of food and follow bird nearest to food. In PSO, swarms are randomly initialized in the search space. The 

particles fly within the search space. Flight of a swarm is influenced by own experience (exploration) and other 

swarms (exploitation). The velocity and position update equations for PSO are given by (9) and (10) respectively. 

 

𝑉(𝑡 + 1) = 𝜔 ∗ 𝑉(𝑡) + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝑋(𝑡)) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑋(𝑡)) (9) 

 

𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝑉(𝑡 + 1) (10) 

 

where V and X are velocity and position of particles, ω is fixed inertia weight, r1 and r2 are random numbers 

in the range [0, 1], c1 and c2 are acceleration coefficients, Pbest is the best position of each particle and Gbest is 

the best position among all the particles. 

 

2.2.3. Self regulating particle swarm optimization 

SRPSO algorithm has been developed by incorporating human learning principles into standard 

PSO algorithm [15]. Research in human learning psychology ascertains that humans are better planners as 

they continuously regulate their strategies. Self regulation results in better planning. Best planner self 

regulates according to his own state and global knowledge. The velocity and position update equations for 

SRPSO are given by (11) and (12) respectively.  

 

𝑉(𝑡 + 1) = 𝜔 ∗ 𝑉(𝑡) + 𝑐1𝑟1𝑃𝑠𝑒(𝑃𝑏𝑒𝑠𝑡 − 𝑋(𝑡)) + 𝑐2𝑟2𝑃𝑠𝑜(𝐺𝑏𝑒𝑠𝑡 − 𝑋(𝑡)) (11) 

 

𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝑉(𝑡 + 1)  (12) 

 

where ω is linearly increasing for best particle and decreasing for other particles, Pse is self cognition which is 

0 for best particle and 1 for other particles, Pso is social cognition and is randomly chosen with 50% 

confidence level to 0 or 1, rest of the parameters in SRPSO are same as in PSO.  
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2.3.  Implementation of constraint handling techniques incorporation into evolutionary algorithms 

The constrained PSO and SRPSO algorithm is concerned with selection of Pbest and Gbest. Pbest is 

selected by comparing the current Pbest with generated off-spring according to the rules of particular CHT. If 

the offspring is better, then Pbest is updated. Gbest is the best particle among Pbest which is also selected 

according to rules of the particular CHT. Gbest also becomes the global optimum solution at the final 

generation. Regarding the DE algorithm, the implementation of CHT comes into play during the selection 

operation of the DE algorithm. The generated offspring using mutation and crossover operations is kept for the 

next generation and becomes the parent if it is better than current parent population according to the rules of 

particular CHT, otherwise the previously generated parent remain in the current population for generating the 

offspring in next iteration. The best particle in the current population becomes the optimum solution at the 

final generation. The implementation is simple and it has been verified on constrained benchmark problems. 

 

 

3. RESULTS AND DISCUSSION 

The experiments have been setup based on specifications given in the benchmark functions [23]. A 

summary of benchmark functions is presented in Table 1. The algorithms have been exhausted 25 times for 

the 24 benchmark functions on Matlab software. The results of constrained DE algorithm are in-line with the 

results given in [18]. The population sizes for all algorithms have been set to 50 where as maximum number 

of generations have been set to 4800. Each of the CHT i.e. SF, SP, SR, EC have been coupled with DE, PSO, 

and SRPSO algorithms. The parameters for three competing algorithms are F=0.7, CR=0.5, c1=0.5, c2=2, 

where as =0.8 for PSO and variable for SRPSO i.e. Initial value for ω= 1.05, final value for ω= 0.5. 

Ranking of the results is based on the following criteria as given in the benchmark specifications [23].  

1) feasible solutions are ranked better than infeasible solutions, 2) feasible solutions are ranked based on 

minimum fitness difference as compared to best known value, 3) infeasible solutions are ranked based on 

minimum mean overall constraint violation. The overall constraint violation (CV) value has been used to 

consider constraints in problem formulation as given by (3). In Table 1, the columns show function No. (Fn), 

optimal values (f(x*), number of variables (N), function type, LI is number of linear inequality constraints, 

NLI is number of nonlinear inequality constraints, LE is number of linear equality constraints, and NLE is 

number of nonlinear equality constraints [28]. 

 

 

Table 1. Summary of the benchmark problems used in this work 
Fn f(x*) N Type LI NLI LE NLE 

F1 -15.000 13 Quadratic 9 0 0 0 

F2 -0.80361910412559 20 Nonlinear 0 2 0 0 

F3 -1.00050010001000 10 Polynomial 0 0 0 1 
F4 -30665.5386717834 5 Quadratic 0 6 0 0 

F5 5126.4967140071 4 Cubic 2 0 0 3 

F6 -6961.81387558015 2 Cubic 0 2 0 0 
F7 24.30620906818 10 Quadratic 3 5 0 0 

F8 -0.0958250414180359 2 Nonlinear 0 2 0 0 

F9 680.630057374402 7 Polynomial 0 4 0 0 
F10 7049.24802052867 8 Linear 3 3 0 0 

F11 0.7499 2 Quadratic 0 0 0 1 

F12 -1.000 3 Quadratic 0 1 0 0 
F13 0.053941514041898 5 Nonlinear 0 0 0 3 

F14 -47.7648884594915 10 Nonlinear 0 0 3 0 

F15 961.715022289961 3 Quadratic 0 0 1 1 
F16 -1.90515525853479 5 Nonlinear 4 34 0 0 

F17 8853.53967480648 6 Nonlinear 0 0 0 4 

F18 -0.866025403784439 9 Quadratic 0 12 0 0 
F19 32.6555929502463 15 Nonlinear 0 5 0 0 

F20 - 24 Linear 0 6 2 12 

F21 193.724510070035 7 Linear 0 1 0 5 
F22 236.430975504001 22 Linear 0 1 8 11 

F23 -400.055099999999584 9 Linear 0 2 3 1 

F24 -5.50801327159536 2 Linear 0 2 0 0 

 

 

3.1.  Comparison of DE, PSO, and SRPSO when coupled with SF, SP, SR, and EC for identifying the 

best EA 

The mean fitness value (mean), standard deviation (SD), and mean constraint violation (CV) for SF, SP, 

SR, and EC have been listed in Tables 2 to 5 whereas their ranking have been performed in Tables 6 to 9 

respectively (seen in Appendix). It is evident from the ranking tables that DE performs better than PSO and 

SRPSO algorithms for all CHTs i.e. DE with SF, SP, SR, and EC achieves best ranks as compared with PSO and 
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SRPSO except for SF in which DE and SRPSO performs similar. To statistically validate significance of 

constrained performance of DE algorithm, non-parametric Friedman test followed by pair-wise post-hoc 

Bonferroni test [29] has also been performed for each CHT as shown in Tables 10 to 13 respectively. For both 

tests, 95% confidence interval is used. The computed F statistic value (Fstat) is greater than critical value (Fcrit) for 

all CHTs except SF, so null hypothesis is rejected for SP, SR, and EC. Furthermore, the difference in mean ranks 

for all CHTs of constrained DE with constrained PSO and constrained SRPSO algorithms are greater than the 

critical difference (CD). The exceptions for which mean difference rank is less than CD are when SRPSO 

algorithm is coupled with SF and SP i.e. 0.04 < 0.50 and 0.50 < 0.52 respectively. Therefore, it is concluded that 

in these cases, constrained SRPSO performance is similar to constrained DE. Moreover, there is very small 

margin (0.04) in case of SF as compared to SP (0.50). Therefore, it can be concluded that SF with SRPSO is a 

strong candidate for constrained problems because the four versatile CHTs are enough for evaluating the 

constrained SRPSO algorithm. 
 

 

Table 2. Mean fitness, SD, and CV of DE, PSO, and SRPSO with SF for the 24 benchmark functions 

 

 

Table 3. Mean fitness, SD, and CV of DE, PSO, and SRPSO with SP for the 24 benchmark functions 
Function (best  

known) 
DE PSO SRPSO 

Mean SD CV Mean SD CV Mean SD CV 

F1(-15) -14.3525 1.069752 0 -4.48 0.87178 0 -6.66747 1.4649 0 

F2(-0.80362) -0.79437 0.01077 0 -0.69726 0.062699 0 -0.72699 0.080172 0 
F3(-1) -0.01294 0.031723 0.114725 -0.07786 0.101368 0.090108 -0.93726 2.105189 0.294649 

F4(-30665.5) -33547.8 617.7004 0 -29408.3 878.2032 0 -30452.3 905.1767 0 

F5(5126.498) 3948.585 1153.36 0.009847 3279.686 764.054 0.016016 3718.906 1256 0.012615 

F6(-6961.81) -6956.9 2.539893 0 -7315.51 1379.523 0.00033 -4377.75 2963.329 0.025056 

F7(24.30621) 24.30712 0.00086 0 35.45715 5.008133 0 26.09779 0.807172 0 

F8(-0.09583) -0.03183 0.038856 0.055451 2.369696 12.30772 0.045029 0.235898 1.481122 0.039053 
F9(680.6301) 680.6301 3.16E-13 0 680.6648 0.020196 0 680.6715 0.036586 0 

F10(7049.331) 7294.951 54.83747 0 11469.85 4403.133 0.005331 9526.829 2526.22 1.33E-07 

F11(0.75) 0.989846 0.050772 0.000232 0.993523 0.022413 0.000754 0.916785 0.080556 0.00141 
F12(-1) -1 0 0 -1 0 0 -1 0 0 

F13(0.05395) 0.560414 0.413835 0.390944 0.927177 0.459518 0.292293 0.882828 0.920231 0.307028 

F14(-47.7644) -600.508 78.6155 16.10625 -600.326 102.2095 16.23023 -579.912 81.80742 15.53552 
F15(961.7152) 963.1289 6.305416 4.063261 961.3322 8.355632 3.769078 966.3887 7.154036 4.99641 

F16(-1.90516) -1.59044 0.256306 0 -1.04276 0.35944 0.201877 -1.19034 0.284281 0.450135 

F17(8876.981) 9003.853 142.7094 30.96555 8990.757 193.768 31.91695 8929.208 116.5034 18.74239 
F18(-0.86574) -0.84201 0.027479 0 -0.82717 0.362107 0.001021 -0.84893 0.071195 0 

F19(32.65559) 33.99111 0.264876 0 63.73579 28.78157 0 38.20427 5.304822 0 

F20(0.096737) 10.08235 1.651068 4.1E-102 3.335363 3.852258 0.000374 13.78916 3.029195 0.00066 
F21(193.7783) 455.7864 256.5569 0.023609 530.8236 221.341 0.053087 383.6921 105.0488 0.002268 

F22(382.9022) 10174.84 6337.497 2.071688 7229.996 5026.967 4.038499 9366.282 3320.666 1.776864 

F23(-400.003) -2640.01 822.7776 0.03889 -331.988 591.8494 0.020182 -384.566 542.0023 0.032969 

F24(-5.50801) -5.50801 2.72E-15 0 -5.50801 2.72E-15 0 -5.50801 2.72E-15 0 

Function (best  
known) 

DE PSO SRPSO 
Mean SD CV Mean SD CV Mean SD CV 

F1(-15) -12.4364 2.502466 0 -4.36 1.036018 0 -6.83228 1.305682 0 

F2(-0.80362) -0.79238 0.016276 0 -0.68648 0.062665 0 -0.68679 0.106712 0 

F3(-1) -0.01071 0.03005 0.149962 -0.18985 0.23417 0.148455 -0.48089 0.639691 0.210944 
F4(-30665.5) -31325.3 1122.595 0 -29486.8 405.6533 0 -30723.1 1198.687 0 

F5(5126.498) 5219.651 946.6683 0.006027 4877.732 1354.467 0.008819 3974.255 940.1045 0.005773 
F6(-6961.81) -6933.85 398.9953 2.59E-08 -6693.97 173.6534 0 -6961.81 6.04E-12 0 

F7(24.30621) 24.30621 3.53E-10 0 36.80601 6.730795 0 25.64887 0.841462 0 

F8(-0.09583) -0.09583 1.10E-17 0 -0.09583 5.67E-18 0 -0.09583 0 0 
F9(680.6301) 680.6301 3.40E-13 0 680.6585 0.031011 0 680.6584 0.022747 0 

F10(7049.331) 7049.248 9.01E-10 0 10234.9 4256.344 0.007786 9302.731 2852.326 0 

F11(0.75) 0.992798 0.036008 0 0.953983 0.088969 0.00291 0.922428 0.088512 0.001842 
F12(-1) -1 0 0 -1 0 0 -1 0 0 

F13(0.05395) 0.552437 0.419471 0.415903 0.835273 0.252608 0.283881 0.809473 0.569648 0.286918 

F14(-47.7644) 65535 65535 10.78784 65535 65535 5.488816 65535 65535 13.95673 
F15(961.7152) 963.0761 5.808714 3.497524 964.3291 5.594058 3.201315 963.8202 7.112324 4.884559 

F16(-1.90516) -1.90516 4.53E-16 0 -1.28053 0.403819 0.030798 -1.30832 0.249289 0.030733 

F17(8876.981) 9003.642 155.3486 25.95694 8966.49 140.7033 17.49977 8919.62 69.80538 16.82341 
F18(-0.86574) -0.86603 1.17E-09 0 -0.85379 0.039339 0 -0.86011 0.007402 0 

F19(32.65559) 32.65559 9.18E-08 0 47.25497 11.61631 0 36.7614 2.93434 0 

F20(0.096737) 6.530594 3.335416 2.40E-101 14.97849 4.145621 0.009661 14.95971 2.553402 0.003393 
F21(193.7783) 568.1837 297.6404 0.0301 479.2614 139.1603 0.050674 354.1652 146.2568 0.002646 

F22(382.9022) 13102.8 6196.402 2.398096 8982.381 5909.016 4.167178 9252.614 3064.041 1.835317 

F23(-400.003) -557.235 613.7539 0.030127 -804.075 510.1871 0.015729 -720.201 507.5817 0.003075 
F24(-5.50801) -5.50801 3.40E-15 0 -5.50801 2.72E-15 0 -5.50801 2.72E-15 0 
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Table 4. Mean fitness, SD and CV of DE, PSO, and SRPSO with SR for the 24 benchmark functions 
Function (Best 

 Known) 
DE PSO SRPSO 

Mean SD CV Mean SD CV Mean SD CV 

F1(-15) -13.0103 1.6923 0 -4.44 1.386843 0 -7.94773 1.488485 0 

F2(-0.80362) -0.19712 0.015934 0 -0.62442 0.079308 0 -0.41673 0.046221 0 

F3(-1) -0.00454 0.022667 0.0037 -0.0793 0.133033 0.013335 -0.89853 1.526189 0.263529 
F4(-30665.5) -33849.5 12.42595 0 -29485.3 794.2444 0 -30392.2 150.1825 0 

F5(5126.498) 134.1894 670.9471 0.00023 5123.157 1184.92 0.002453 4142.449 941.5794 0.00429 

F6(-6961.81) -5475.51 2167.583 8.53E-15 -7030.35 1896.147 0.000159 -5921.14 2419.561 0.010841 
F7(24.30621) 24.48388 0.076643 0 89.078 185.4835 0.00122 73.33224 232.6751 0.010564 

F8(-0.09583) -0.09583 1.2E-17 0 -0.09583 7.49E-18 0 -0.09583 2.83E-18 0 

F9(680.6301) 680.6301 3.47E-06 0 680.8526 0.156221 0 680.736 0.091668 0 
F10(7049.331) 7156.786 40.42441 0 8716.707 4335.267 0.005914 8286.578 1796.72 1.86E-05 

F11(0.75) 0.860305 0.116336 0 0.978189 0.05159 7.09E-06 0.89946 0.074143 0.000771 

F12(-1) -1 0 0 -1 0 0 -1 0 0 
F13(0.05395) 0.824238 0.767846 0.09026 0.830601 0.618224 0.075564 0.984808 1.130536 0.037303 

F14(-47.7644) 65535 65535 6.35359 65535 65535 3.316417 65535 65535 14.4995 

F15(961.7152) 965.7359 4.300763 0.719579 961.5763 4.045743 0.958437 965.5757 3.38638 0.767159 

F16(-1.90516) -1.90516 6.66E-16 0 -0.9586 0.45069 0.009398 -1.44565 0.242351 0.04682 

F17(8876.981) 8954.244 66.9859 17.26602 9030.771 111.3835 25.6206 8904.431 45.76783 10.95915 

F18(-0.86574) -0.7504 0.071398 0 -1.7533 1.96835 0.013182 -0.90486 0.320363 0.000113 
F19(32.65559) 33.26251 0.271567 0 56.03146 17.43594 0 41.52282 5.324627 0 

F20(0.096737) 6.2342 2.379899 1.2E-101 2.463069 2.713516 0.000821 12.78582 2.528382 0.000468 
F21(193.7783) 0 0 1.9E-10 545.5506 190.508 0.097395 433.9268 181.5699 0.016669 

F22(382.9022) 0 0 0.021383 5345.159 3704.681 3.48975 5040.805 2682.456 0.339444 

F23(-400.003) -3041.85 1427.239 0.000632 -247.172 492.6405 0.010224 -588.604 358.556 0.004287 
F24(-5.50801) -5.50801 2.72E-15 0 -5.50801 2.72E-15 0 -5.50801 2.72E-15 0 

. 

 

Table 5. Mean fitness, SD, and CV of DE, PSO, and SRPSO with EC for the 24 benchmark functions 
Function (Best 

 Known) 
DE PSO SRPSO 

Mean SD CV Mean SD CV Mean SD CV 

F1(-15) -14.3563 1.183441 0 -4.76 0.925563 0 -6.11632 1.071534 0 

F2(-0.80362) -0.79238 0.016276 0 -0.6932 0.061398 0 -0.67331 0.121804 0 

F3(-1) -0.01071 0.03005 0.149962 -0.14721 0.187942 0.113368 -0.78411 1.188818 0.201064 

F4(-30665.5) -31325.3 1122.595 0 -29712 592.019 0 -30705.9 1125.215 0 

F5(5126.498) 5133.714 981.7052 0.005989 4512.796 1152.576 4.83798 3876.284 659.3796 0.009583 

F6(-6961.81) -6933.85 398.9953 2.59E-08 -7293.36 1362.639 0.000929 -4171.39 3212.246 0.042969 
F7(24.30621) 24.30621 5.31E-09 0 264.3745 533.246 0.001091 25.4833 0.778905 0 

F8(-0.09583) -0.09583 1.06E-17 0 -0.09583 4.91E-18 0 -0.09583 0 0 

F9(680.6301) 680.6301 3.32E-13 0 680.6969 0.043265 0 680.6644 0.0305 0 
F10(7049.331) 7049.248 2.99E-08 0 9668.624 3849.549 0.008153 10007.8 3351.308 2.05E-06 

F11(0.75) 0.992798 0.036008 0 0.970284 0.068685 0.001345 0.90767 0.080384 0.001471 

F12(-1) -1 0 0 -1 0 0 -1 0 0 
F13(0.05395) 0.533317 0.409617 0.415205 0.908666 0.201244 0.377034 0.789345 0.230082 0.372937 

F14(-47.7644) 65535 65535 10.78784 65535 65535 6.283597 65535 65535 15.64636 

F15(961.7152) 963.0761 5.808714 3.497524 963.4342 4.949284 3.120307 966.2169 6.753518 3.558619 
F16(-1.90516) -1.90516 4.53E-16 0 -1.26721 0.387681 0.119457 -1.36218 0.249364 0.010487 

F17(8876.981) 9038.18 165.8207 27.75915 9059.186 153.1178 28.82786 8930.053 99.96802 17.15935 
F18(-0.86574) -0.86603 4.47E-08 0 -1.0607 0.859783 0.000103 -0.86076 0.007094 0 

F19(32.65559) 32.65559 9.18E-08 0 54.48409 17.55147 0 36.5076 2.597452 0 

F20(0.096737) 6.530594 3.335416 2.4E-101 5.048785 4.137055 0.00082 11.89985 4.615015 0.00114 
F21(193.7783) 400.8797 359.9267 0.027802 511.2833 243.6481 0.063354 363.8738 131.4688 0.004926 

F22(382.9022) 2352.393 4957.482 0.69517 7051.872 6477.757 4.105713 9101.561 3352.511 1.866953 

F23(-400.003) -3175.53 848.1321 0.000532 -169.829 353.1054 0.011828 -846.372 460.6264 0.004514 
F24(-5.50801) -5.50801 3.4E-15 0 -5.50801 2.72E-15 0 -5.50801 2.72E-15 0 

 

 

Table 10. Statistical validation test for SF with 

DE, PSO, and SRPSO 

Fstat (3.16) < Fcrit (3.20) with CD=0.52 
Algorithm 

PSO SRPSO 

Mean Rank Diff w.r.t. DE 0.58 0.04 
 

Table 11. Statistical validation test for SP with DE, 

PSO, and SRPSO 

Fstat (4.35) > Fcrit (3.20) with CD=0.52 
Algorithm 

PSO SRPSO 

Mean Rank Diff w.r.t. DE 0.75 0.50 
 

 

 

Table 12. Statistical validation test for SR with 

DE, PSO, and SRPSO 

Fstat (12.23) > Fcrit (3.20) with CD=0.45 
Algorithm 

PSO SRPSO 

Mean Rank Diff w.r.t. DE 1.04 0.83 
 

Table 13. Statistical validation test for EC with DE, 

PSO, and SRPSO 

Fstat (10.31) > Fcrit (3.20) with CD=0.46 
Algorithm 

PSO SRPSO 

Mean Rank Diff w.r.t. DE 1.00 0.75 
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3.2.  Analysis from the test results 

Since SF has been identified to be the best CHT for SRPSO algorithm, detailed analysis by probing 

into each benchmark function for SF case in Table has been performed. It has been found that constrained 

SRPSO behaves well for functions having less number of inequality constraints (equality constraints may be 

higher) like F5, F8, F9, F17, F21, F22, and F23. For some non-linear functions such as: F6, F11, and F16 

constrained SRPSO algorithm violate constraints as compared to DE. For other most of the functions, 

constrained SRPSO algorithm converges prematurely. This is due to lack of diversity in SRPSO algorithm 

because of following the leader (Pbest and Gbest) as mentioned in (11) and (12), since if the leaders get trapped 

in local minima or infeasible region, they cannot leave. This is not the case with DE as a lot of diversity is 

present due to crossover and mutation operations as expressed in (7) and (8) where there is no leader. 

Therefore, DE has found to be the best candidate for constrained optimization in most of the problems. 

However, when adapting the SRPSO algorithm for constrained optimization, one must use SF technique. SF 

is the simplest technique to implement and based on three simple rules which direct the search towards the 

feasible region. 
 

 

4. CONCLUSION 

In this work, SRPSO algorithm has been evaluated for constrained problems. To comprehensively 

evaluate the performance of constrained SRPSO algorithm, not a single, but four versatile CHTs have been 

selected from the literature namely SF, SP, SR, and EC. SRPSO algorithm has been coupled with these four 

CHTs and its performance has been evaluated on 24 benchmark problems by comparing it with PSO and DE 

algorithms which have also been coupled with the same four CHTs. The following can be concluded from 

this work: It has been found through statistical analysis with 95% confedence level that DE has the best 

performance compared to PSO and SRPSO except when SRPSO is coupled with SP and SF for which the 

performance is similar, specifically the difference in performance is negligible between DE and SRPSO 

under SF. Whenever it comes to SRPSO algorithm, SF technique has been emerged as the best CHT for 

constrained problems. Furthermore, it has been found by analyzing results of SRPSO with SF technique 

combination that, it is the most suitable choice for constrained problems having linear objective function with 

higher number of equality constraints and lower number of inequality constraints. Some tuning of parameters 

and cognition strategies can be applied into SRPSO algorithm to further improve its performance specifically 

for CHTs other than SF. 
 

 

APPENDIX 
 

Table 6. Ranking of DE, PSO, and SRPSO with SF 

for the 24 benchmark functions 
Fn DE PSO SRPSO 

F1 1 3 2 
F2 1 3 2 

F3 2 1 3 

F4 1 3 2 
F5 2 3 1 

F6 3 2 1 

F7 1 3 2 
F8 1 1 1 

F9 3 2 1 

F10 1 3 2 
F11 1 3 2 

F12 1 1 1 

F13 3 1 2 
F14 2 1 3 

F15 2 1 3 

F16 1 3 2 
F17 3 2 1 

F18 1 3 2 
F19 1 3 2 

F20 1 3 2 

F21 2 3 1 
F22 2 3 1 

F23 3 2 1 

F24 1 1 1 
Sum 40 54 41 

Avg 1.67 2.25 1.71 
 

Table 7. Ranking of DE, PSO, and SRPSO with SP 

for the 24 benchmark functions 
Fn DE PSO SRPSO 

F1 1 3 2 
F2 1 3 2 

F3 2 1 3 

F4 1 3 2 
F5 1 3 2 

F6 1 2 3 

F7 1 3 2 
F8 3 2 1 

F9 1 2 3 

F10 1 3 2 
F11 1 2 3 

F12 1 1 1 

F13 3 1 2 
F14 2 3 1 

F15 2 1 3 

F16 1 2 3 
F17 2 3 1 

F18 1 3 2 
F19 1 3 2 

F20 1 2 3 

F21 2 3 1 
F22 2 3 1 

F23 3 1 2 

F24 1 1 1 
Sum 36 54 48 

Avg 1.5 2.25 2 
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Table 8. Ranking of DE, PSO, and SRPSO with SR 

for the 24 benchmark functions 
Fn DE PSO SRPSO 

F1 1 3 2 

F2 3 1 2 

F3 1 2 3 
F4 1 3 2 

F5 1 2 3 

F6 1 2 3 
F7 1 2 3 

F8 1 1 1 

F9 1 3 2 
F10 1 3 2 

F11 1 2 3 

F12 1 1 1 
F13 3 2 1 

F14 2 1 3 

F15 1 3 2 
F16 1 2 3 

F17 2 3 1 

F18 1 3 2 
F19 1 3 2 

F20 1 3 2 

F21 1 3 2 
F22 1 3 2 

F23 1 3 2 

F24 1 1 1 
Sum 30 55 50 

Avg 1.25 2.29 2.08 
 

Table 9. Ranking of DE, PSO, and SRPSO with EC 

for the 24 benchmark functions 
Fn DE PSO SRPSO 

F1 1 3 2 

F2 1 2 3 

F3 2 1 3 
F4 1 3 2 

F5 1 3 2 

F6 1 2 3 
F7 1 3 2 

F8 1 1 1 

F9 1 3 2 
F10 1 3 2 

F11 1 2 3 

F12 1 1 1 
F13 3 2 1 

F14 2 1 3 

F15 2 1 3 
F16 1 3 2 

F17 2 3 1 

F18 1 3 2 
F19 1 3 2 

F20 1 2 3 

F21 2 3 1 
F22 1 3 2 

F23 1 3 2 

F24 1 1 1 
Sum 31 55 49 

Avg 1.29 2.29 2.04 
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