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 Giving and receiving objects between humans and robots is a critical task 

which collaborative robots must be able to do. In order for robots to achieve 

that, they must be able to classify different types of human handover motions. 

Previous works did not mainly focus on classifying the motion type from both 

giver and receiver perspectives. However, they solely focused on object 

grasping, handover detection, and handover classification from one side only 

(giver/receiver). This paper discusses the design and implementation of 

different deep learning architectures with long short term memory (LSTM) 

network; and different feature selection techniques for human handover 

classification from both giver and receiver perspectives. Classification 

performance while using unimodal and multimodal deep learning models is 

investigated. The data used for evaluation is a publicly available dataset with 

four different modalities: motion tracking sensors readings, Kinect readings 

for 15 joints positions, 6-axis inertial sensor readings, and video recordings. 

The multimodality added a huge boost in the classification performance; 

achieving 96% accuracy with the feature selection based deep learning 

architecture. 
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1. INTRODUCTION 

Live interaction of robots with human beings is one of the emerging technologies with several research 

points to be addressed. One of the main challenges with robot’s interaction is its ability to take/give an object 

from/to a human successfully the robot must be able to classify the type of human’s handover action; so that it 

can successfully determine the apt response given any situation. Human handover classification is a research 

area with limited number of researchers working on it. 

Thus, automatic classification of different types of handover actions is one of the important 

challenging tasks for robots’ live interactions. Most of the previous works related to handover focus mainly on 

handover detection, hand grasping, the type of motion to take a steady object, and the classification of handover 

motion type from merely one perspective. The challenging task is to be able to classify different types of human 

motion; to make a successful object handover from both perspectives. 

Deep learning is one of the most recently used techniques in classification with many developed 

models for different tasks. These models are separated into two different types, which are unimodal and 

https://creativecommons.org/licenses/by-sa/4.0/


Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Multimodal deep learning model for human handover classification (Islam A. Monir) 

975 

multimodal architectures. Unimodal architectures are the most widely used models, these types of models 

usually train on one type of data, unlike multimodal architectures that may take many different types of data 

as input. Multimodal architectures exploit different types of inputs with different features to make a more 

accurate and specific representation of the input situation.  

The concept of multimodality depends on multimodal data. Multimodal data comes in different 

formats, such as different types of sensors readings, videos, and images. These data formats can be used 

separately in different unimodal classification models, or be integrated together to be used in one multimodal 

classification model. As an example, the work done by R. González-Ibáñez et al. [1] differentiates between 

unimodal and multimodal architectures for detection of relevance in interactive IR. Moreover, another work 

presents an overview on the state-of-the-art deep learning models used for classification of sensor-based data 

that are unimodal and multimodal [2]. Not to mention, it has been used in the field of video classification in 

other works [3], [4]. 

As multimodality proved its efficiency in many previous research areas as described in the related 

work section; the multimodal deep learning human handover classification model (MDHHC) proposed in this 

paper is designed with different architectures, mainly based on long short term memory (LSTM) network with 

different feature selection techniques; to investigate their effect on the model performance. Additionally, 

Unimodal architectures are designed for different data inputs with different model architectures to scrutinize 

their effect on the model performance and the effect of using concept of multimodality on the classification 

task. 

Object grasping by hand is a research area that has been studied lately in many previous works. Satish 

et al. [5] tried to train a robot policy that analyses millions of grasp candidates in 4-DOF using a fully 

convolutional network architecture. Prior works in this area presented many ways in grasp detection and/or 

classification. A research has been done on real time robotic grasp detection [6]. This work tries to find local 

optimal grasps in candidate grasp rectangles. It used enhanced segmentation techniques to separate the object 

from the background, along with morphological image processing techniques to generate candidate grasp 

rectangles sets for a Random Forest to be trained on; instead of searching on global grasp rectangles sets. Grasp 

detection technique was done using Random Forest model which achieved an accuracy of 94.26%. 

Grasping of objects may come in different shapes and techniques and grasp may fail if the object was 

not carried correctly. Some works that were done lately lets robots learn the correct grasping techniques based 

on human experience in grasping of objects. A work done in 2019 depends on predicting what action the human 

will perform to grasp the object [7]. A classifier is well trained on taking visual information of the object and 

predict the human grasping technique to be done, and use the prediction information for deciding the suitable 

action for robots’ soft hands to grasp the object. In the same line another work also depends on human 

experience but in a slightly different way, it utilizes human intervention to control the robot’s hand to grasp 

the object [8]. The data acquired from the human operator to do the grasp action is being used to train a Decision 

Tree that is used later to generate the hand movement action required to grasp the object. 

Furthermore, Arapi et al. [9] proposed a system to decide a hand grasp of objects. The objective of 

this work is to predict soft hand’s grasp failure before occurrence using IMU sensors data as input. Two deep 

learning architectures have been implemented and used in this work, none of which achieved 100% accuracy. 

Another work [10] enhances robots working in factories which enables robots to carry many heavy objects. 

This work depends on using deep convolutional neural networks (CNN) for hand grasping prediction of both 

single and multiple hand poses all at once using RGB images as input. Very few past works concentrated on 

handovers in specific, all work in this area focused on the detection of a handover action being performed and 

how the action is being performed. 

Detection of a handover action task was carried in many different forms. A work established in 2017 

[11] made use of kinematic features with SVM classifier to detect a handover action. Kinematic features like 

joint angles and distances between joints of the giver were measured and selected using bagged Random 

Forests. The extracted important kinematic features are input to SVM classifier to classify the giver’s intent to 

hand an object to the robot. The SVM classifier was able to classify 97.5% of the data correctly but from the 

receiver’s perspective only. Moreover, another work makes use of classifying object grasping and holding 

made by human in making successful handover [12]. It makes use of a human grasping and holding poses for 

grasping classification. With the classification data, the algorithm quickly plans a trajectory accordingly for 

the robot to meet the human half way and receive the object. 

The field of activity recognition and classification is a powerful research point that many researches 

worked on lately. Activity data may come into different forms like sensors, images, and videos. Wearable 

sensors are the most widely used data sources for human activity recognition. Meanwhile, a literature review 

of the sensor-based datasets that are used in the activity recognition task was done by De-La-Hoz-Franco et al. 

in 2018 [13]. Wang and Liu [14] presented a hierarchical LSTM architecture that accepts inputs from wearable 

sensors like accelerometer and gyroscope. Three public UCI datasets have been used in the experimental setup 

and proved the outperformance of this model by 99.15% accuracy. Serving the same task, Tang et al. [15] 
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proposed a lightweight CNN that is capable of making human activity recognition from wearable sensors 

readings. The datasets used for evaluation are UCI-HAR, PAMP2, WISDM, and OPPORTUNITY datasets, 

and the accuracy came to be 96.90%, 92.97%, 98.82%, and 88.09% respectively. Continuing in the same line 

a work [16] performs systematic-study on on-body sensor positioning and data acquisition. It depended on 

eight body worn inertial measurement sensors on different positions on body, sensors readings are being input 

to LSTM network for training. Afterwards, late fusion process is performed by having the output of different 

classes probabilities from each sensor classification as an input for an ensemble model to perform final 

classification; applying the concept of multimodality. The work done in 2021 [17] also tries to make supervised 

classification of different hand motions using EMG signals. The MYO-ARM BAND dataset was used for 

evaluation in this work and achieved a high accuracy of 83.9%. 

Feature extraction also plays an important role in all deep learning classification techniques. Some 

researches start to focus on how to improve feature extraction to get more accurate classification of the action being 

performed. Nafea et al. [18] in their research makes use of CNN and Bi-LSTM for feature extraction. Using UCI 

datasets as input the architecture extracts spatial and temporal features from the input sensor data for classification 

of the action being performed. This type of feature extraction actually gave good results (97-98%). 

Most of the researches made and demonstrated above either focus on activity recognition in general 

or on hand grasping, which means focusing on taking an object from anywhere. The rest of the researches who 

dealt with human handovers either worked on detecting the handover process or took only the perspective of 

the receiver and how the receiver shall deal with the handover. The Human Handover detection and 

classification task is a combination of all of the previously-mentioned tasks, in which the object is being 

grasped but by another person. The handover technique being done is a special type of activity that is 

recognized; and finally this activity involves both giver and receiver in the same action. 

In the upcoming sections, the proposed model is first introduced, which is able to classify the whole 

handover process, with its different architectures (unimodal and multimodal). The setup of the training 

environment and the dataset being used for evaluation are also discussed. Subsequently, a comparative study 

is being made on the results of all proposed architectures, outlining the architectures with the best outcomes. 

 

 

2. RESEARCH METHOD  

2.1.  The proposed approaches 

This section illustrates the proposed multimodal deep learning human handover classification 

(MDHHC) model, which tries to introduce multimodality in human handover classification and investigate its 

effect on the performance of the model. The model gets to work on a complete handover not just grasping and 

can work from either giver or receiver point of view without any difference. Furthermore, the different 

architectures tested for the MDHHC model are introduced. Multiple experiments with multiple architectures 

were performed to investigate their effect on the classification performance. First, a unimodal architecture was 

designed to take multiple sensors of only one type with two different architectures (with and without feature 

selection). Second, a multimodal architecture was designed to take several data formats as input with many 

different architectures being tested. The following sections go into details of every experiment model 

architecture. 

 

2.1.1. Unimodal architectures 

The unimodal architecture is designed to have only one type of sensors, such as motion tracking 

sensors, Kinect 15 joints positions readings, or inertial sensor readings as input for handover action 

classification. The architecture of this model takes as input multiple sensors readings of the same type, 

thereafter extracts features for each input sensor readings. The features are then merged together in different 

ways as discussed below. 

Figures 1 and 2 show both parts of the unimodal architecture. As shown in Figure 1, each sensor 

readings (x, y and z) are passed through time distributed fully connected layer for feature extraction. A time 

distributed layer is a wrapper layer which deals with sequential data. It takes each time-step data as a different 

input and deals with it as a normal input; and produces an output for that time-step. The concept of time 

distributed layer is introduced and used in [19]. The time distributed FC layer produces a 2-D feature vector 

containing feature vectors at each time-step. 

As shown in Figure 2, each 2-D vector is passed through LSTM network for temporal feature 

extraction producing a 1-D feature vector for each input sensor. Afterwards, all feature vectors are concatenated 

into one vector for first level of fusion. Two different paths for the concatenated feature vector were 

investigated here. 
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Figure 1. Time distributed layer architecture 

 
 

Figure 2. Architecture for LSTM network 
 
 

Experiment 1 (Unimodal-no feature selection architecture (Unimodal_No_FS)) 

The first architecture takes the feature vector as it is and passes it to the final classification layer. The 

final layer is a fully connected layer with a number of outputs the same as the number of classes to differentiate 

between them. The output is passed through a Sigmoid activation function to calculate the probabilities of the 

final classes.  

Experiment 2 (Unimodal-feature selection architecture with decision trees (Multimodal_DT_FS)) 

This architecture applied a type of feature selection using decision trees to choose only the important 

features out of the whole vector for classification. The feature selection technique here is seldom used. It makes 

use of decision trees for selecting the important features. Decision trees are one of the machine learning 

classification techniques. It consists of nodes and edges that form a tree. The node represents the feature on 

which a decision is to be made, whereas the edge represents the decision criteria based on the feature.  

The tree construction algorithm at each node selects the feature that best classifies the problem 

according to some measures of impurity. One of these measures is the Gini Index. The feature that gets the 

least Gini Index at that split is the best feature to be used. The process of exploiting the Gini Index for deciding 

the best feature that best splits the node into two sub-nodes is briefly described in [20], [21] and applied by 

Theodoridis and Gkikas using genetic algorithm [22]. A flow chart for the algorithm is shown in Figure 3. 
 

 

 
 

Figure 3. Decision tree process structure 
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In the model presented in this paper, the Gini Index calculation is used in decision tree building. Given 

the fact that decision trees sort the features according to their importance, it is used here as a feature selection 

method for the concatenated feature vector; to select the features that are deemed salient. The selected features 

are then passed to the same final layer described in the first architecture as shown in Figure 4. 
 

 

 
 

Figure 4. Classification layer with Sigmoid activation function 

 

 

2.1.2. Multimodal architectures 

This subsection presents the whole multimodal architecture, and introduces the concept of 

multimodality in many different model architectures. Different architectures are designed to have three 

channels for three different data modalities to be input together at once (motion tracking sensors readings, 

Kinect 15 joints positions, Inertial 6-axis sensor readings). Architectures were investigated with and without 

different types of feature selection techniques. 

Experiment 3 (Multimodal-no feature selection architecture (Multimodal_No_FS)) 

The architecture of the model here is simple; for each input channel different readings are being input 

and passed through the aforementioned time distributed FC layer. Following that, the output vector of each 

sensor reading is passed through the same LSTM network. Concatenating the outputs of all LSTM networks 

of all 3 input channels without any type of selection is the concept being applied in this experiment. The resulted 

feature vector is then passed through a fully connected hidden layer. The output feature vector is then passed 

through the final classification layer mentioned above, as shown in Figure 5(a). 

Experiment 4 (Multimodal-feature selection architecture with decision trees (Multimodal_DT_FS)) 

As mentioned above, Decision Trees can be used in feature selection. For 3 input channels, each 

channel will have its feature selection done on feature vector of its own type of input. The feature vector 

selected in each channel is passed through a semi-final classification layer with two outputs representing the 

classes’ probabilities predicted by the channel. The three channels outputs are then passed to the final 

classification layer, as shown in Figure 5(b). 

Experiment 5 (Multimodal-feature selection architecture with random forests (Multimodal_RF_FS)) 

This experiment has the same architecture as Multimodal_DT_FS with replacing the feature selection 

technique. Random forest is a machine learning algorithm that consists of more than one decision tree, they 

are deeply discussed in [23]. It is being trained through bagging or bootstrap aggregation ensemble algorithms. 

As a result, random forests can be used in the same way for feature selection akin to decision trees. 

Experiment 6 (Multimodal with late fusion) 

Late Fusion can come into different forms, one of which is described in a work done by  Pandeya and 

Lee [24]. The architecture used here is similar to Multimodal_No_FS architecture, different readings are being 

input and passed through the previously-mentioned Time Distributed FC layer for each input channel. 

Subsequently, the output vector of each sensor reading is passed through the same LSTM network. The outputs 

of the all LSTMs of each channel are later joined together and passed through a fully connected layer with two 

outputs representing the classes’ probabilities predicted by the channel. The three channels outputs are then 

passed to a semi-final classification layer to apply Late Fusion of the feature vectors with FC layer. The output 

feature vector is then passed through the final classification layer mentioned above, as shown in Figure 5(c). 

Experiment 7 (Multimodal with attention layer) 

The architecture investigated here used the Attention Layer concept. Attention Layer is a layer that is 

responsible for paying attention to only important features, it was also mentioned and used in other researches 
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[25]. The architecture here takes the concatenation of all feature vectors being output by all LSTM networks 

and passes them through an Attention Layer. The layers here consist of a fully-connected layer with Softmax 

output, with an equal number of inputs. Thus, the output scores represent the importance of each feature in the 

input feature vector. Multiplying the output scores with the feature vector, a new feature vector is produced 

that pays attention to the important features. The new feature vector is then passed through a fully-connected 

layer that then outputs a vector that will pass through the final classification layer mentioned above, as shown 

in Figure 5(d). 

 

 

 
 

(a) (b) 

  

  
(c) (d) 

  

Figure 5. Design of different proposed multimodal architectures (a) Multimodal_No_FS,  

(b) Multimodal_DT_FS/Multimodal_RF_FS, (c) multimodal with late fusion, and (d) multimodal with 

attention layer 

 

 

2.2.    Experimental setup 

2.2.1. Dataset 

The dataset used for the evaluation purpose is a publicly available one [26]. Eighteen volunteers 

participated in the construction of this dataset making two types of experiments (single-blinded and double-

blinded). The double-blinded experiment was to investigate whether or not the giver/receiver need to move to 

get to the handover; and to classify the object being handed. Ergo, this type of experiments was not of concern. 

The single-blinded type of experiment had each volunteer facing an experimenter. The experimenter makes a 

handover process with the volunteer, then checks how the volunteer will react and make the handover process, 

sometimes with the volunteer being the receiver and other times being the giver. Some of these experiments 

mandated the volunteer to make a move to reach the correct place for handover. Same as before these samples 

were excluded. 

The data in this dataset came into four different modalities. The first is the motion tracking sensors. 

20 motion tracking sensors were placed on the volunteer and the experimenter in different places with  

10 sensors on each, the last 5 sensors came to have missing readings in some experiments so they were not 

used in the experiment. The second modality is the Kinect readings for positions of 15 different joints of the 

volunteer, such as left/right hip, left/right foot, left/right elbow, left/right shoulder, left/right knee, left/right 

hand, neck, torso, and head. The third modality is a 6-axis inertial sensor in an LG smart watch worn by the 

volunteer. The fourth modality which is yet to be exploited for this research is video recording of the handover 

action itself. 
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2.2.2. Dataset preparation 

A problem in this dataset is that all handovers happen to have very similar motion, only one pair of handover 

types have some recognizable difference (normal handover, wrongpose handover). Consequently, only those two 

classes were used in experiments. Each record in the data accounts as a whole action. Hence, the use of sliding 

window technique was abated. Sliding window would have caused a problem as the sequence being input to the 

model is only part of a handover action not the whole action. The next step was to ensure that all data sequences 

have the same length. By taking all records into consideration, the record with the least sequence is recognized so 

that all other sequences are truncated from the beginning; in order to have the same length of the smallest sequence. 

Sequence truncation has been made to all records of data as shown in Figure 6. 

 

 

 
 

Figure 6. An example of sequence truncation assuming that record 3 has minimum length 

 

 

2.2.3. Training 

The training had two different processes whether for unimodal or multimodal architectures. Without 

feature selection using decision trees or random forests, the training happened to be a normal end-to-end 

training using 80% of the dataset samples, whilst the other 20% was for testing. 

 

 

 
 

Figure 7. Training steps when using feature selection techniques 

 

 

Decision trees and random forests are machine learning techniques that are trained via training data 

induction, unlike deep learning algorithms which are trained via looping on training data. As a result of both 

having different training techniques, this architecture training will have two steps. First, train each unimodal 

channel end-to-end training without using feature selection. After training finishes, training and testing data 

samples are input to the model with cutoff before the feature selection part. Take the extracted features of the 
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training data to train the machine learning part and extract important features for training and testing data. 

Second, use the new feature vectors to train the final classification part of the model again, as shown in  

Figure 7. The training parameters that were used in all of the training experiments were chosen by trial and 

error. It was clear that these parameters were the ones that gave the best performance for all the mentioned 

architectures. The parameters configuration is summarized in Table 1. 

 

 

Table 1. Summary of fixed training parameters 
Parameter Value 

Number of training samples 80% (120 samples) 
Number of testing samples 20% (24 samples) 
Number of epochs 100 
Batch size 10 
Learning rate 0.01 

 

 

2.2.4. Hyper parameter optimization 

For the proposed model to get the highest performance, the concept of hyper parameter tuning was 

used in a number of sections in the model. Hyper parameter is a normal parameter in the model. Nonetheless, 

instead of having a fixed value, a range of values is defined. The model starts to run many times while changing 

the values for this parameter in the defined range, searching for the parameter value that will give the model 

the best performance. A detailed description of the hyper parameter optimization is in [27]. 

The MDHHC model had four different defined hyper parameters that are the same in each of the 

architectures Multimodal_No_FS, Multimodal with late fusion, and multimodal with attention layer. The fully 

connected layer that was used in the time distributed wrapping layer must have a specific number of perceptrons 

to make the calculations, this was defined as a hyper parameter ranging from 5 to 20 perceptrons with step of 

+1 every trial. In the same way the number of units in each LSTM network was a hyper parameter ranging 

from 25 to 500 with step of +25 every trial. Moreover, the final hidden layer before the classification layer had 

its number of perceptrons defined as a hyper parameter in the same way ranging from 5 to 20 with step +1. 

These ranges and the number of steps were changed and tested multiples times and were found to be optimal. 

In addition to that, the activation function of the final classification layer was optimized by searching between 

Sigmoid and Softmax activation functions which are mentioned in [28]; as they both can work for classification 

between two classes. Ten test runs ran on the model as a whole having different combinations of the defined 

hyper parameters resulting in the combination that best suits the model. 

Furthermore, the MDHHC model had three different hyper parameters that are the same in each of 

the architectures Multimodal_DT_FS and Multimodal_RF_FS. The fully connected layer defined after every 

feature selection block had its number of perceptrons defined as hyper parameter ranging from 1 to 10 with 

step +1. The second hyper parameter is the same one described above in the final classification layer between 

Sigmoid and Softmax activation functions. The third and final hyper parameter is a manually tuned hyper 

parameter to choose the best number of features to be selected by the feature selection mechanism. The number 

of features ranged from 1 to 20 with step +5. As a result of manual tuning every value chosen, the model runs 

10 trials to find the best values for the other two hyper parameters that give good performance with this number 

of features, resulting in a 20*10 trial runs. 

 

 

3. RESULTS AND DISCUSSION  

This section presents the detailed results of evaluation of the different proposed architectures in this 

paper. Table 2 shows the detailed data splitting between training and testing. The data were split in a standard 

way with 80% for training and 20% for testing. In the evaluation aspect, multiple evaluation metrics were used 

in evaluating and comparing the performance of different architectures. 

 

 

Table 2. Dataset training/testing splitting details 

Data 
Total number 

of samples 

Number of class 1 samples 

(normal handover) 

Number of class 2 

samples (wrongpose) 

Training data 120 60 60 
Testing data 24 12 12 

 

 
𝑇𝑃 + 𝐹𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
=Accuracy (1) 
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𝑇𝑃

𝑇𝑃+𝐹𝑃
=Precision (2) 

 
𝑇𝑃

𝑇𝑃+𝐹𝑁
=Recall (3) 

 
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=F1-score (4) 

 

Where TP (true positive) count represents the number of class 1 samples that have been correctly classified. 

TN (true negative) count represents the number of class 2 samples that have been correctly classified. On the 

other hand, FP (false positive) count represents the number of class 2 samples that have been miss-classified 

as class 1 and vice-versa with FN (false negative) count. A specific part in the work done by El-Razzaz explains 

these metrics briefly and utilizes it in other evaluations [29]. 

In addition to these metrics, there is another one that is precise and widely used in many evaluations: 

precision recall area under curve (PR-AUC), which plots a curve between precision and recall values and 

evaluate the area under the curve. A study of the performance of each of the aforementioned architectures in 

section 2.1 with the setup mentioned in section 2.2 is done. It starts by evaluating the performance of the 

unimodal architecture with its two different architectures on the three different data modalities used. Table 3 

summarizes different data inputs used to evaluate the unimodal architecture. 

The evaluation is performed on Unimodal_No_FS architecture described above on each of the inputs 

mentioned in Table 3. The accuracy, precision, and recall came almost equal for every input. For the motion tracking 

sensors, the performance seemed to increase by increasing the number of sensors until it reached 10 sensors with 

80% performance in all measures, after that, a drop occurred in performance with 15 sensors. This may be because 

the 10 sensors relate to giver or receiver only and the extra 5 sensors related to the other person. The result that caught 

the attention is the performance of the LG-smart watch inertial sensor, which scored 91% in accuracy and precision 

with 83% recall. This is marked to be the highest in the three performance measures. 

 

 

Table 3. Summary of inputs for testing the unimodal architecture 
Data modality Number of readings 

Motion tracking sensors 2-3D sensors 

4-3D sensors 
10-3D sensors 

15-3D sensors 

Kinect volunteer joints positions  15 3-axis readings of 15 different joints of volunteer’s body positions 
LG smart watch inertial sensor 1 6-axis sensor divided into two 3D readings 

 

 

When unimodal_DT_FS architecture was evaluated on the same inputs, it made an improvement in 

the model performance with some inputs and a drop with others. In general, no significant change was 

observable. Table 4 summarizes the difference in performance between both architectures. Not to mention, LG 

watch sensor readings gave the highest performance 91% in accuracy and precision with 88% in recall (+5% 

recall), which indicates that the sensor readings in this watch is able to give precise classification of the 

handover action being done. As a result, this modality type will give a boost in performance to other modalities 

when used together. 

 

 

Table 4. Comparison between performances of unimodal_No_FS and Unimodal_DT_FS architectures on 

different data inputs 
Model Unimodal-No-FS Unimodal-DT-FS 

Data inputs/measures Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%) 
2-Sensors 46 46 46 37.5 37.5 37.5 

4-Sensors 58 58 58 75 69 67 

10-Sensors 80 80 80 54 51 62 
15-Sensors 66 66 66 62.5 63 58 

Kinect 70 70 70 70 74 70 

LG-Smart Watch 91 91 83 91 91 88 

 

 

From the above experiments, a deduction can be made that the impact of having the smart watch 

inertial sensor readings as input to the classification model is the highest among all inputs. The second-best 
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input is the Kinect readings. The purpose of this work is to investigate the impact of putting all of these inputs 

together in one classification network. In the coming part, two of the proposed MDHHC architectures 

multimodal_DT_FS and multimodal_RF_FS, that contain feature selection are studied, one with Decision 

Trees and the other with random forests. The first point that was to be studied is finding the best number of 

features to be selected from the total concatenated feature vector.  

In this experiment, both models were run with changing the number of features to be selected (5, 10, 

15, and 20). With decision Trees the selection of 20 best features gave the highest possible performance of 

about 96% in all evaluation metrics; proving that it was able to classify all test samples correctly. Whereas with 

random forests, the selection of 15 and 20 best features gave the best performance of about 96% in all 

evaluation metrics. The difference in the resulted number of features selected in both algorithms may come to 

that the Random Forests consists of many decision trees resulting in choosing the more important features. 

Below is a summary of both models’ performance on different numbers of selected features. As shown in  

Table 5, random forests gave better results when selecting 15 and 20 best features, while decision trees gave 

better results when selecting exactly 20 best features. As an example, Table 6 shows the output confusion 

matrix of the model when choosing best 15 features using random forests. 

 

 

Table 5. Summary of Multimodal_DT_FS and Multimodal_RF_FS architectures performance with different 

number of features selecting 
 Multimodal_DT_FS Multimodal_RF_FS 

# of 

features 

Acc 

(%) 

Prec 

(%) 

Rec 

(%) 

F1- 

score(%) 

PR- 

AUC(%) 

Acc 

(%) 

Prec 

(%) 

Rec 

(%) 

F1- 

score(%) 

PR- 

AUC(%) 
5 91.67 92.86 91.67 91.67 92.86 83.33 84.29 83.33 83.33 87.2 

10 91.67 92.86 91.67 91.67 92.86 87.5 87.76 87.5 87.5 90.22 

15 91.67 92.86 91.67 91.67 92.86 95.83 96.15 95.83 95.83 96.15 

20 95.83 96.15 95.83 95.83 96.15 95.83 96.15 95.83 95.83 96.15 

 

 

Table 6. MDHHC with random forests selecting 15 features confusion matrix 
 

 

Actual values 

Class 1 Class 2 

Predicted values 
Class 1 12 1 
Class 2 0 11 

 

 

Investigating the effect of other MDHHC architectures multimodal_No_FS, multimodal with late 

fusion and multimodal with attention layer, there is a little drop in the performance. The worst performance 

was for the architecture having the late fusion mechanism with 87.5% accuracy, recall, and F1-score with 

87.76% precision and 90.22% PR-AUC. This model misclassified 3 samples out of 24 divided into 2 false 

positives and 1 false negative. 

Attention and No FS mechanisms described above achieved the same performance evaluation with 

91.67% for accuracy, precision, recall and F1-score; and 93.75% PR-AUC. The performance is slightly better 

than the late fusion architecture and slightly lower than the feature selection architectures with 2 samples being 

misclassified. Table 7 shows a comparison between all MDHHC architectures performance. 

 

 

Table 7. Summary of performance measures of all MDHHC architectures 
 Accuracy (%) Precision (%) Recall (%) F1-score (%) PR-AUC (%) 

Multimodal-NO-FS 91.67 91.67 91.67 91.67 93.75 
Multimodal-DT-FS 95.83 96.15 95.83 95.83 96.15 
Multimodal-RF-FS 95.83 96.15 95.83 95.83 96.15 

Multimodal with late fusion 87.5 87.76 87.5 87.5 90.22 
Multimodal with attention layer 91.67 91.67 91.67 91.67 93.75 

 

 

Comparing the results of all experiments, it was found that the architectures that applied inner feature 

selection mechanisms achieved higher performance in both unimodal and multimodal architectures. In 

unimodal architecture, the best input discussed above is the smart watch sensor, which gave better recall with 

feature selection being applied. Also, in multimodal architectures, feature selection models gave the best 

performance. Other than that, the above results of all architectures deeply show the effect of using the concept 

of multimodality. In unimodal architectures the best performance achieved was having 91% accuracy and 

precision, and 88% recall, while out of 5 proposed multimodal MDHHC architectures 4 architectures 

outperformed these results with the least having 91.67% accuracy, precision and recall. Comparing that with 
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the previously-mentioned works, the proposed models yielded high performance measures dealing with the 

very specific task of human handover. It included, grasping and action recognition from both giver and receiver 

perspectives. 

 

 

4. CONCLUSION AND FUTURE WORK 

In this study, multiple architectures for MDHHC model to make successful handover classification 

were proposed. Architectures were divided into unimodal and multimodal architectures, and the concept of 

multimodality proved efficiency in the task of handover classification. Along the same line, embedded feature 

selection techniques proved to have high influence on the model performance. All of the different proposed 

architectures did not take into consideration the handover action from only one perspective like previous works, 

but rather, from all perspectives. The next step is to work more on this model to deal with few samples of data 

and missing data readings; an endeavor to ameliorate the model to classify more deeply other classes which 

seem to have almost the same input readings. 
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